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Abstract. We study the structure of the set of tilings of a polygon P with bars of fixed length.
We obtain an undirected graph connecting two tilings if one can pass from one tile to the other one
by a flip (i.e., a local replacement of tiles).

Using algebraic tools (such as tiling groups and their quotients and subgroups), we give a formula
to compute the distance in this graph (i.e., the minimal number of necessary flips) between two tilings.
Moreover, we prove that, for each pair (T, T ′) of tilings, the set ΥT,T ′ consisting of tilings which are
in a path of minimal length from T to T ′ canonically has a structure of distributive lattice.
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1. Introduction. In 1990, Conway and Lagarias [2] introduced the notion of
tiling groups, which is a very powerful tool for studying tiling problems. Using tiling
groups, a lot of necessary conditions for a simply connected figure to be tileable (see
[5], [6]) were discovered and unified.

This work has been prolonged by Thurston [11], who especially studied tilings
formed with dominoes (i.e., rectangles 2 × 1) and tilings formed with calissons (i.e.,
lozenges formed with two equilateral triangles of unit side, with a common edge).
For these examples, Thurston [11] introduced the notion of height function associated
with a tiling of polygon P . Such a height function permits us to encode each tiling
as a mapping from vertices in P to the set Z of integer numbers.

Using this new notion, a linear algorithm which, given a polygon as input, pro-
duces a tiling of this polygon as output (if there exists one tiling; otherwise, the claim
of the impossibility is the output) is exhibited.

Thurston’s ideas have been taken again by Kenyon and Kenyon [4] and Rémila [7],
who obtained some tiling algorithms for the case when tiles are m-bars (rectangles of
length m and unit width) and when tiles are equilateral triangles with sides of length
2 or “leaning dominoes” (parallelograms formed with four equilateral triangles of sides
of unit length). For these authors, height functions appear as heights on special trees.

In each of the papers cited above, local transformations on tilings, called flips,
are introduced. (For example, for tilings with dominoes, a flip is the replacement of
two tiles covering a 2× 2 square by the other pair of tiles covering the same square.)
The space of tilings of P is the (undirected) graph GP = (VP , EP ) whose vertices are
the tilings of P , and two tilings are linked by an edge if and only if one can pass from
a tiling to the other one using only one flip.

This space has been precisely studied for the cases of dominoes and calissons [10],
[8]. The main result is that edges can be directed in such a way that the space of
tilings becomes the Hasse diagram of a distributive lattice (see, for example, [1] or
[3] for definitions about orders and lattices). On the opposite side, before the present
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work, the only result known about spaces of tilings introduced in [4] and [7] was the
connectivity of these spaces.

In this paper (which is an extended and improved version of [9]), we first study the
space of tilings with m-bars. After recalling general notions about tiling groups and
their applications (section 2), we focus on the structure of the tiling group used for
m-bars (section 3). We especially show the importance of a special normal subgroup
of the main quotient of the tiling group. Using this subgroup, we are able to give
an algebraic characterization of functions which encode tilings and give the definition
of a distance between tilings. We prove (section 4) that this distance is (up to a
multiplicative constant) the distance in the space of tilings, i.e., the minimal number
of necessary flips to transform a tiling into another one. This fact gives the flip
formula, which permits us to compute this number of flips, and an algorithm to find a
shortest path between two tilings given as input. From the algebraic characterization
of functions which encode tilings, we also prove (section 5) that, for each pair (T, T ′)
of tilings, the subgraph of the space of tilings induced by tilings which are in a path
of minimal length from T to T ′ canonically has a structure of distributive lattice.
Afterwards, we prove that the same method gives similar results for examples in
spaces of tilings induced by tilings in the triangular lattice.

2. Tiling groups and tiling functions.

2.1. Tilings. let Λ be the square lattice of the Euclidean plane. A (finite) figure
F of Λ is a (finite) union of closed square cells of Λ. A figure F is simply connected
if F and its complement R

2 \ F both are connected. A finite simply connected figure
F is called a polygon of Λ. The boundary of a polygon P canonically induces a cycle
in Λ, which is called the boundary cycle of P . A set S of prototiles is a fixed finite
set of polygons of Λ. A tile is a translated copy of a prototile. A tiling T of a figure
F is a set of tiles included in F , with pairwise disjoint interiors, such that the union
of the tiles of T equals F .

2.2. Groups and their representation. Let Σ be the set {a, b, a−1, b−1}, let
Fa,b be the free group generated by a, b, and let π denote the canonical surjection
from the language Σ∗ of words with letters in Σ to Fa,b.

Let R = {r1, r2, . . . , rp} be a finite set of words of Σ∗. The group NR denotes
the normal group of Fa,b generated by the elements of π(R) and 〈a, b|r1, r2, . . . , rp〉
denotes the quotient group Fa,b/NR. The group 〈a, b|r1, r2, . . . , rp〉 has a classical
graphic representation: the Cayley graph CR is the directed graph with labeled edges
with labels in {a, b} such that

• vertices of CR are elements of 〈a, b|r1, r2, . . . , rp〉;
• the set of labels is {a, b};
• for each 3-uple (g, g′, u) of elements of (〈a, b|r1, r2, . . . , rp〉)2 × {a, b}, gu = g′

if and only if there exists an edge of CR from g to g′, labeled by u.

Hence, the underlying graph of Λ can be seen as the Cayley graph Ccell = CR0
,

with R0 = {aba−1b−1}, each element of {a, b} being associated with a unit move (a
for a horizontal rightward move, b for a vertical upward move). In this way, each
vertex of Λ is identified to an element of 〈a, b|aba−1b−1〉.

2.3. Tiling groups. Let µ = (v0, v1, . . . , vp′) be a path of Λ, i.e., a sequence of
vertices such that, for each integer i, with 0 ≤ i < p′, there exists an element of Σ
such that viui = vi+1. The path word w(µ) is the word u0u1 . . . up′−1. Moreover, if µ
is a boundary cycle of a polygon P , we say that w(µ) is a contour word of P .
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Let S = {t1, t2, . . . , tp} be a set of prototiles, and let R = {r1, r2, . . . , rp} be a set
of words such that for each integer i such that 1 ≤ i ≤ p, ri is a contour word of ti.
The tiling group of S is the group Gtile = 〈a, b|r1, r2, . . . , rp〉, and the tiling Cayley
graph of S is the graph Ctile = CR.

Remark that tiling groups and tiling Cayley graphs depend only on the set S,
and not on the contour words chosen for each prototile.

For S0 = {c0}, where c0 denotes the unit cell of Λ, the tiling group Gcell of S0 is
isomorphic to Z

2 and can be identified with Λ.

2.4. Tiling functions. Let T be a tiling of a figure F . The graph GT of T is the
subgraph of Λ(= Gcell = Z

2) generated by the set of edges which are on boundaries
of tiles of T (i.e., which cut no tile of T ).

Definition 2.1. Let T be a tiling of a figure F . A tiling function induced by T
is a mapping fT from the set VT of vertices of GT to Gtile such that, for each pair
(v, u) of VT × {a, b}, if the edge outgoing from v labeled by u is an edge of GT , then
the equality fT (vu) = fT (v)u holds.

Proposition 2.2 (J. H. Conway). Let F be a figure of Λ, T be a tiling of F , v0

be a vertex of GT , and g0 be an element of Gtile.

If F is connected (respectively, is a polygon), then there exists at most one (re-
spectively, exactly one) tiling function fT induced by T such that fT (v0) = g0.

Proof (sketch). A function fT can easily be constructed successively exploring the
contour of each tile: fT is first defined on the vertices of a tile t0 which has v0 on its
boundary. Afterwards, fT is defined on the vertices of a tile t1 which has a common
vertex with t0 and so on.

This method gives the uniqueness of fT for F connected. Nevertheless, a conflict
(i.e., a vertex v such that two distinct values of fT (v)) can arise if F has some holes,
which yields that there is no tiling function.

Remark 2.3. let P be a polygon and v0 be a vertex of the boundary of P . If
f and f ′ are tiling functions such that f(v0) = f ′(v0), then, for each vertex v of the
boundary of P , f(v) = f ′(v).

The use of tiling functions is one of the main methods for studying tilings. Inter-
esting examples are developed in [2], [4], [5], [6], [7], [11].

We apply the theoretical notions on our special case below.

3. Groups for tilings with bars . Let m and n be fixed positive integers such
that m ≥ 2 and n ≥ 2. The first sets of prototiles on which we apply notions of the
previous section is (as in [4]) the set Sm,n = {hm, vn}, where

• the prototile hm denotes an m × 1 horizontal rectangle, which admits
amba−mb−1 for a contour word, and

• the prototile vn denotes a 1 × n vertical rectangle which admits bnab−na−1

for a contour word.

Thus, a set Rbars of contour words of prototiles is {amba−mb−1, bnab−na−1},
which gives a group Gbars = 〈a, b|amba−mb−1, bnab−na−1〉. Since this group has a
complex structure, quotient groups of Gbars will be used in order to have groups that
can be easily described. This is an indirect way to understand the structure of Gbars.

3.1. Quotient groups. To obtain such quotient groups, it suffices to ex-
hibit a set R′ = {r′1, r′2, . . . , r′p′} of words such that the words of Rbars are null
in 〈a, b|r′1, r′2, . . . , r′p′〉. In this case, we have a natural surjection from Gbars to
〈a, b|r′1, r′2, . . . , r′p′〉.
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3.1.1. The cycle group. As in [4], the principal quotient group used is con-
structed from the auxiliary set R′ = {am, bn}. Obviously, the elements of Rbars are
null in 〈a, b|am, bn〉, which guarantees that we have a canonical surjection s from Gbars

to 〈a, b|am, bn〉.
The structure of 〈a, b|am, bn〉 is rather simple: it is isomorphic to the free product

of a cyclic group of m elements and a cyclic group of n elements. The associated
Cayley graph CR′ is formed with directed cycles of length m with edges labeled by a
and directed cycles of length n with edges labeled by b, each vertex being element of
exactly two cycles, one of each type (see Figure 1). Moreover, CR′ is a tree of cycles:
the only cycles of CR′ are those described above. Thus we pose CR′ = Ccycles and
〈a, b|am, bn〉 = Gcycles.
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Fig. 1. The Cayley graph of the group Gcycles (example with m = 4 and n = 3).

We introduce some definitions which permit us to have a geometrical understand-
ing of Gcycles.

Definition 3.1 (canonical expression, length, distance, order in the cycle group).

Each element w of Gcycles has a canonical expression w = xi11 xi22 . . . x
ip
p , where,

• for each integer j, xj is an element of {a, b} and (for j < p) xj �= xj+1;
• if xj = a (respectively, xj = b), then 1 ≤ ij < m (respectively, 1 ≤ ij < n).

With these notations, we say that the integer p is the length of w (denoted by
l(w)). For p ≥ 2, the element init(w) = xi11 xi22 of Gcycles is called the initial part of

w, and the element fin(w) = x
ip−1

p−1 x
ip
p is called the final part of w.

The distance d(w′, w′′) between two elements of Gcycles is equal to l(w′−1w′′).
Moreover, we say that w′ ≤cycles w′′ if l(w′−1w′′) = l(w′′)− l(w′).

The relation ≤cycles is obviously an order relation. Each element w of G (such
that w �= 1Gcycles

) has a unique immediate predecessor. In other words, the re-
lation ≤cycles induces a structure of tree on Gcycles. Thus, the order ≤cycles has
the following infimum property: for each pair (w′, w′′) of elements of Gcycles, there
exists an element infcycles(w

′, w′′) in Gcycles such that infcycles(w
′, w′′) ≤cycles w′,

infcycles(w
′, w′′) ≤cycles w′, and for each element w′′′, if w′′′ ≤cycles w′ and w′′′ ≤cycles

w′′, then w′′′ ≤cycles infcycles(w′, w′′).
3.1.2. The cell group. Another quotient group of Gbars is the group Gcell de-

fined from the set R0 = {aba−1b−1}. As we have seen before, this group is isomorphic
to Z

2.
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3.1.3. The torus group. The third quotient group which will be used is
Gtorus = 〈a, b|am, bn, aba−1b−1〉, constructed using the set R′′ = R′ ∪ R0 =
{am, bn, aba−1b−1}. This group is isomorphic to Zm × Zn, i.e., the direct product
of a cyclic group of m elements and a cyclic group of n elements; each element can
be seen as a pair (i, j) of Zm × Zn. The associated Cayley graph CR′′ is formed with
directed cycles of length m with edges labeled by a and directed cycles of length n
with edges labeled by b in such a way that a and b commute. It has the structure of
a torus Tm×n. Notice that Gtorus is also a quotient group of both Gcycles and Gcell.

3.2. Bar tiling projections. Let T be a tiling of a polygon P , and let fT be
a tiling function induced by T . Function gT , defined by gT = π′ ◦ fT (where π′

denotes the canonical surjection from Gbars to Gcycles and ◦ denotes the composition
of functions), is called a tiling projection of T (see Figure 2). Notice that, for a set of
bars as the set of prototiles, the set of vertices of GT is the set of vertices which are
elements of P (since each vertex of P is on the boundary of a bar of T ).

F
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G
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g

T

T

Fig. 2. Mappings used (dark arrows represent canonical surjective group morphisms).

Fix a vertex v0 of the boundary of P and assume that gT (v0) = 1Gcycles
. Let v be

any vertex of P ; how can we compute gT (v)? We have to find a path of P from v0 to
v which cuts no tile of T , and, from the definitions of fT and gT , the word associated
with this path, seen as an element of Gcycles, is equal to gT (v) (see Figure 3).
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Fig. 3. Computation of gT (v).
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Let (v′, v′′) be a pair of neighbor vertices of P . If the line segment [v′, v′′] is on the
boundary of a bar of T , then d(gT (v′), gT (v′′)) = 1. If, otherwise, this line segment
cuts a bar of T , then d(gT (v′), gT (v′′)) = 3. Thus function gT encodes the tiling T .

Also, notice that, for each vertex v of the boundary of P , the value gT (v) does
not depend on the tiling T , from Remark 2.3.

Definition 3.2. For each element v of the planar grid, there exists a unique pair
(iv, jv) of Z

2 such that v = v0a
ivbjv . We define congtorus(v) as the element of Gtorus

such that

congtorus(v) = aivbjv .

Remark 3.3. Let s denote the canonical surjective morphism from Gcycles to
Gtorus. One obviously sees (by induction on the length of a shortest path, from v0

to v, which cuts no tile) that, for each tiling T and each vertex v of P , we have
s(gT (v)) = congtorus(v).

Thus, for each pair (T, T ′) of tilings of P and each vertex v of P , we have

gT (v)−1gT ′(v) ∈ ker(s).

The proposition below gives a characterization of tiling projections, from a con-
gruence condition and a local Lipschitz condition. It gives an algebraic interpretation
of the geometrical regularity of a tiling.

Proposition 3.4. Let g be a function from the set of vertices of P to Gcycles

such that
• g(v0) = 1Gcycles

;
• for each vertex v of P , s(g(v)) = congtorus(v);
• for each pair (v, v′) of neighbor vertices of P , d(g(v), g(v′)) ≤ 3, and if,
moreover, the line segment [v, v′] is included on the boundary of P , then
d(g(v), g(v′)) = 1.

There exists a tiling T of P such that g = gT .
Proof. Let v and v′ be vertices of the polygon P such that v′ = va (respectively,

v′ = vb). Let u be the element of Gcycles such that g(v′) = g(v)u. We necessarily
have s(u) = a (respectively, s(u) = b). Thus, since l(u) ≤ 3, there exists an integer
j, with 0 ≤ j < n, such that u = bjab−j (respectively, there exists an integer i, with
0 ≤ i < m, such that u = aiba−i).

We claim the following fact. (We can also claim the symmetric fact.)
Fact. Assume that v′ = va and there exists an integer j, with 0 < j < n, such

that g(v′) = g(v)bjab−j . Then, for each integer j′ such that j − n ≤ j′ ≤ j, we have
g(vbj

′
) = g(v)bj

′
and g(v′bj

′
) = g(v′)bj

′
.

We prove this fact as follows: first notice that the cells an edge of which is the
line segment [v, v′] are included in P , since d(g(v), g(v′)) �= 1. Thus, the vertices vb
and v′b are both in P .

Now let u′ and u′′ such that g(vb) = g(v)u′ and g(v′b) = g(v′)u′′. There exists a

pair (i, i′) of {0, 1, . . . ,m−1}2 such that u′ = ai
′
ba−i

′
and u′′ = ai

′′
ba−i

′′
. With these

notations, using the path (vb, v, v′, v′b), we have g(v′b) = g(vb)(u′)−1bjab−ju′′. From
our hypothesis, we have l((u′)−1bjab−ju′′) ≤ 3, which necessarily yields i′ = i′′ = 0,
since j �= 0.

We have obtained the claim for j′ = 1, and, moreover, g(v′b) = g(vb)bj−1ab−j+1.
Thus, if j − 1 �= 0, we can repeat the same argument for g(v′b2) and g(vb2), and so
on for g(vbj

′
) and g(vbj

′
), while j′ ≤ j. We can also use the same argument in the

other direction (for j′ < 0) while j′ ≥ j − n, which concludes the proof of the fact.
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We now introduce the set T of tiles defined as follows: a vertical (respectively,
horizontal) bar is in T if and only if there exists a vertex v of P and an integer j with
0 < j < n (respectively, an integer i with 0 < i < m) such that g(va) = g(v)bjab−j

(respectively, g(vb) = g(v)aiba−i).
There is no overlap, from the fact above. Let (v0, v1, v2, v3, v4 = v0) be a contour

cycle of a cell, in the trigonometric sense, such that v0 is the southwest corner of the
cell. If we have d(g(v0), g(v1)) = d(g(v1), g(v2)) = d(g(v2), g(v3)) = d(g(v3), g(v4)) =
1, then we have g(v0) = g(v0)aba−1b−1, which is a contradiction. Thus there exists
an integer i of {0, 1, 2, 3} such that d(g(vi), g(vi+1)) = 3, which guarantees that the
cell is covered by a bar of T . Thus there is no gap and T is actually a tiling of P .

The fact that gT = g is obvious, from the definition of T and the fact above,
which concludes the proof.

3.3. The kernel of the morphism from Gcycles to Gtorus. Let s denote the
canonical surjective morphism from Gcycles to Gtorus. We will see that the subgroup
ker(s) of Gcycles has a fundamental importance in the comparison of tilings. This is
a consequence of Remark 3.3. We thus have to explore the structure of this group.

Let Srect be the subset of Gcycles defined by Srect = {aibja−ib−j , bjaib−ia−j , for
1 ≤ i < m and 1 ≤ j < n}. One easily verifies that Srect is closed by inverse (i.e., if
t ∈ Srect, then t−1 ∈ Srect) and Srect ⊂ ker(s).

Remark 3.5. Let w be an element of ker(s). By projection (since Gtorus is
commutative), one obviously verifies that l(w) ≤ 4 if and only if w ∈ Srect∪{1Gcycles

}.
We need the following result to study the space of tilings of P with bars.

Proposition 3.6. Let w be an element of ker(s). There exists a unique finite
sequence (t1, t2, . . . , tp) of elements of Srect (called the decomposition of w) such that
w = Πp

i=1ti and, for each integer i, such that 0 < i < p, titi+1 �= 1Gcycles
.

Moreover, the decomposition of w can be computed in O(l(w)) time units, from
the canonical expression of w given as input.

We decompose the proof of the above proposition into two lemmas.

Lemma 3.7 (existence and computation of a decomposition). Let w be an element
of ker(s) (different from 1Gcycles

) such that the initial part of w is aibj (respectively,
bjai). We state w = aibja−ib−jw′ (respectively, w = bjaib−ja−iw′).

We have l(w′) ≤ l(w)− 1.

Proof. Assume that the initial part of w is aibj . From Remark 3.5, we have
l(w) ≥ 4. Thus, we can state w = aibjaku, with aibjak ≤cycles w. Thus w′ = bjak−iu,
which gives l(w′) ≤ l(u) + 2 = l(w)− 3 + 2 = l(w)− 1.

The symmetric case can be treated in a symmetric way.

Lemma 3.8 (uniqueness of the decomposition). Let (t1, t2, . . . , tp) be a
(nonempty) sequence of elements of Srect such that, for each integer i such that
0 < i < p, titi+1 �= 1. Let w be defined by w = Πp

i=1ti. Then

• l(w) ≥ p + 3,
• tp = a−ib−jaibj (respectively, tp = b−ja−ibjai) if and only if the final part of

w is aibj (respectively, bjai).

Proof. The proof is by induction on the integer p. The result is obvious if p = 1.
Assume that the result is true for each element w such that w is a product of p elements
of Srect. Let w′ be a product of p+ 1 elements of Srect. We state w′ = t1t2 . . . tptp+1.
By induction hypothesis, if tp = a−ib−jaibj , the canonical expression of element
w = t1t2 . . . tp is of type uaibj , with u such that l(u) ≥ p + 1, and the canonical
expression of u finishes by b.
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If tp+1 = a−kb−lakbl, then the canonical expression of w′ is uaibj
′
am−kbn−lakbl,

which gives the first item and the direct part of the second item of the lemma.

If tp+1 = b−la−kblak, then we have w′ = uaibj−la−kblak. If j �= l, then the results
of the lemma hold. If j − l = 0, then we have w′ = uai−kblak. Notice that if i = k,
then tptp+1 = 1, which is a contradiction. Thus ai−k �= 1, which gives the first item
and the direct part of the second item of the lemma.

Conversely, if the final part of w′ is albk, then we necessarily have tp+1 =
b−la−kblak, since, otherwise, the direct part of the second item of the lemma would
be contradicted.

The symmetric cases can be treated in a similar way.

The proposition proved above allows the definitions below.

Definition 3.9 (decomposition number of an element of ker(s)). The decom-
position number of an element w of ker(s) (denoted by num(w)) is the number of
factors of its decomposition.

Definition 3.10 (order on ker(s)). Let w and w′ be elements of ker(s) whose

decompositions are w = Πp
i=1ti and w′ = Πp′

i=1t
′
i. We say that w ≤decomp w′ if p ≤ p′,

and, for each integer i such that 1 ≤ i ≤ p, we have ti = t′i
The relation ≤decomp is an order relation on the set ker(s). Each element w

of ker(s) (such that w �= 1Gcycles
) has a unique immediate predecessor (denoted by

prdecomp(w)), which induces a structure of a directed tree on ker(s).

The order ≤decomp has the infimum property. The infimum of a pair (w,w′) of
elements of ker(s) is denoted by infdecomp(w,w′). Notice that, from the tree structure,
infdecomp(w,w′) is the unique element w′′ of ker(s) such that

infdecomp(w
′′−1w,w′′−1w′) = infdecomp(w

′′−1, w′′−1w) = infdecomp(w
′′−1, w′′−1w′)

= 1Gcycles
.

From Lemma 3.7, we have the following characterization of the predecessor.

Remark 3.11. For each element w of ker(s) (such that w �= 1Gcycles
), there

exists a unique element ti of Srect such that l(wti) ≤ l(w)− 1. For any other element
tj of Srect, we have l(wtj) ≥ l(w) + 1.

We have the equality prdecomp(w) = wti.

4. Distance between tilings. We introduce a distance in the space of tilings
by the definition below.

Definition 4.1. Let (T, T ′) be a pair of tilings of P , and let gT and gT ′ be the
associated projections (such that gT (v0) = gT ′(v0) = 1Gcycles

). The distance ∆(T, T ′)
is defined by the equality

∆(T, T ′) =
∑

v∈P
num(gT ′(v)−1gT (v)).

We will prove that the distance defined above has a geometric interpretation,
using the local flips defined below.

4.1. Local flips. Let T be a tiling of P . Assume that there exists an m × n
rectangle R0 such that T contains a tiling T0 of R0. (In this case, tiles of T0 are copies
of the same prototile.) Another tiling Tflip of P is obtained by replacing tiles of T0

by tiles of T1, where T1 denotes the only tiling of R0 different from T0. We say that
Tflip is deduced from T by a local flip whose support is R0 (see Figure 4).
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Fig. 4. Local flips for bars.

If v is a vertex of P which is not in the interior of R0, then there exists a path
from v0 to v which cuts no tile of T and does not go through the interior part of R0.
This path also cuts no tile of Tflip. Thus, gT (v) = gTflip

(v).
If v is an interior vertex of R0, let r0 be the lower left corner of R0. Let us

denote v = r0a
ibj(= r0b

jai). Assume that T0 consists of hm tiles. Then we have
gT (v) = gT (r0)bjai and gTflip

(v) = gT (r0)aibj . Thus

gTflip
(v) = gT (v)a−ib−jaibj .

This equality means that a local flip induces a multiplication of the tiling projec-
tion of each interior vertex of R0 by an appropriate element of Srect. Thus

∆(T, Tflip) = (m− 1)(n− 1).

4.2. The flip formula. It has been proved, as a consequence of the algorithm
of tiling [4], that, for each pair (T, T ′) of tilings of P , there exists a sequence of local
flips which permit us to deduce T ′ from T . We will improve this result, giving a
formula for the minimal number minflip(T, T ′) of necessary flips.

Proposition 4.2. For each pair (T, T ′) of tilings of P , we have

∆(T, T ′) ≤ (m− 1)(n− 1)minflip(T, T ′).
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Proof. Let (T = T0, T1, . . . , Tp = T ′) be a sequence of tilings such that, for 0 ≤
i < p, Ti+1 is deduced from Ti by a local flip. We have ∆(T, T ′) ≤ Σp−1

i=0 ∆(Ti, Ti+1).
From the study of local flips, we see that, for 0 ≤ i < p, ∆(Ti, Ti+1) = (m −

1)(n − 1): If v is not in the interior part of the rectangle on which the flip is done,
then gTi

(v) = gTi+1
(v), thus num(gTi(v)−1gTi+1

(v)) = 0; if v is in the interior part
of the rectangle on which the flip is done (we have (m − 1)(n − 1) such interior
vertices), then gTi+1(v) is obtained by multiplying gTi(v) by an element of Srect, thus
num(gTi(v)−1gTi+1(v)) = 1.

Thus ∆(Ti, Ti+1) = (m−1)(n−1), which yields that ∆(T, T ′) ≤ (m−1)(n−1)p,
which gives the result.

We will prove that the inequality of the previous proposition is actually an
equality. To do it, we have to exhibit a local flip in T which decreases ∆(T, T ′)
of (m− 1)(n− 1) units. This flip will be done in the neighborhood of a special point
which will be called a maximal vertex.

4.2.1. Maximal vertex.
Definition 4.3. A maximal vertex for a pair (T, T ′) of distinct tilings is a vertex

v of P such that
• gT (v) �= gT ′(v),
• max[l(gT (v)), l(gT ′(v))] is maximal with the previous condition.

There exists such a maximal vertex (since otherwise gT = gT ′ , which yields that
T = T ′). Let v1 be a maximal vertex. It can be assumed without loss of generality
that l(gT ′(v1)) ≤ l(gT (v1)).

Lemma 4.4. We have l(gT (v1)) ≥ 2 and, moreover, fin(gT (v1)) =
fin(gT ′(v1)−1gT (v1)).

Proof. We state gT (v1) = uw and gT ′(v1) = uw′, where u denotes
infcycles(gT (v1), gT ′(v1)). Thus, gT ′(v1)−1gT (v1) = w′−1w. Since it is assumed that
l(gT ′(v1)) ≤ l(gT (v1)), we have l(w′) ≤ l(w). Moreover, 4 ≤ l(w′−1w) ≤ l(w′) + l(w),
which yields that 2 ≤ l(w).

If w = aibj , then we necessarily have w′ = bjai, since l(w′) ≤ l(w), w′ �= w, and
w′−1w = gT ′(v1)−1gT (v1) is an element of ker(s). This fact gives the result. (The
same argument can be used in the symmetric case, when w = bjai.)

If l(w) ≥ 3, then the result is obvious, since infcycles(w,w′) = 1Gcycles
.

Proposition 4.5. Assume that the final part of gT (v1) is aibj (respectively, bjai).
Let r0 be the vertex of the plane defined by v1 = r0a

ibj (respectively, v1 = r0b
jai).

This vertex is the lower left corner of an m× n-rectangle R0 such that T contains a
tiling TR0 of R0 consisting of vertical (respectively, horizontal) tiles.

Proof. We treat the case when the final part of gT (v1) is aibj . Let u1 be the
element of Gcycles such that u1a

ibj = gT (v1). By the definition of gT , there exists a
unique integer l such that 0 ≤ l < n and gT (v2) = gT (v1)b−labl = u1a

ibjb−labl. If we
have l �= j, then l(gT (v2)) = l(gT (v1)) + 2, thus l(gT (v2)) > l(gT (v1)).

Moreover, from the previous lemma, the canonical expression of gT ′(v1)−1gT (v1)
is w1a

ibj , with w1 finishing by b, thus gT ′(v1)−1gT (v2) = w1a
ibjb−labl. Thus,

if l �= j, then we have d(gT (v2), gT ′(v1)) = d(gT (v1), gT ′(v1)) + 2, which gives
d(gT (v2), gT ′(v1)) ≥ 6.

On the other hand, we have d(gT ′(v2), gT ′(v1)) ≤ 3, which yields that gT (v2) �=
gT ′(v2). The previous facts contradict the maximality of v1. Thus we necessarily have
j = l and, consequently, gT (v2) = gT (v1)b−jabj . This last equality implies (using the
same kind of argument used in the proof of the fact of Proposition 3.4) that the
vertical tile whose lower left corner is r0a

i is an element of T .
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If, moreover, v2 is an interior vertex of R0, then i + 1 �= m, thus l(gT (v2)) =
l(gT (v1)) and d(gT (v2), gT ′(v1)) = d(gT (v1), gT ′(v1)) ≥ 4, which gives gT (v2) �=
gT ′(v2). Hence, v2 is also a maximal vertex, and we can repeat the argument for
v3, the right neighbor of v2, and so on. The same kind of argument can also be used
leftward. This gives the tiling TR0 of R0.

Proposition 4.6. Let Tflip be the tiling deduced from T by a flip on R0. We
have the equality ∆(Tflip, T

′) = ∆(T, T ′)− (m− 1)(n− 1) .

Proof. Let us denote, for any vertex v of the interior of R0, v = r0a
i′bj

′
(= r0b

j′ai
′
),

and gT ′(v)−1gT (v) = Πp
i=1ti. The final part of gT (v) is ai

′
bj

′
, which yields that the

last factor of gT ′(v)−1gT (v) is tp = a−i
′
b−j

′
ai

′
bj

′
. On the other hand,

gT (v)−1gTflip
(v) = (gT (v)−1gT (v0))(gT (v0)−1gTflip

(v)) = b−j
′
a−i

′
bj

′
ai

′
= (tp)

−1.

Thus,

gT ′(v)−1gTflip
(v) = (gT ′(v)−1gT (v))(gT (v)−1gTflip

(v)) = (Πp
i=1ti)(tp)

−1 = Πp−1
i=1 ti,

which yields that num(gT ′(v)−1gTflip
(v)) = num(gT ′(v)−1gT (v))−1, which gives the

result.
Corollary 4.7 (flip formula). For each pair (T, T ′) of tilings of P , we have

∆(T, T ′) = (m− 1)(n− 1)minflip(T, T ′).

Proof. The proof is obvious, by induction on ∆(T, T ′).

4.3. Algorithm.

4.3.1. Presentation. The notion of maximal vertex permits us to give an
algorithm which, given a pair (T, T ′) of tilings of a polygon, gives a sequence
(R1, R2, . . . , Rminflip(T,T ′)) of rectangles on which flips can successively be done, to
go from T to T ′. Informally, such a sequence is a space economic way to encode a
shortest path of tilings from T to T ′. The algorithm is presented below.

Input: a pair (T, T ′) of tilings of a same polygon P .
Initialization: Construct a spanning tree rooted in a fixed vertex v0.

When a new vertex v is reached, compute the canonical expressions of gT (v),
gT ′(v), gT ′(v)−1gT (v), compute max(l(gT )(v)), l(gT ′(v))), and place v in a “list
of lists” such that each vertex v′ is in a basic list corresponding to the value
max(l(gT (v′)), l(gT ′(v′))), and those basic lists are ordered according to their de-
creasing corresponding values.

A variable list L of rectangles stores the sequence of rectangles used. The begin-
ning of this list consists of rectangles which are supports of flips deduced from T , and
the end of the list contains the rectangles which are supports of flips deduced from
T ′. For initialization, L is empty and each insertion is done just between both parts.

We also need a variable vertex v1, which, for initialization, is the first element of
the “list of lists” of vertices.

Repeat: Take the first element of the “list of lists” for v1.
If gT (v1) = gT ′(v1), then delete the value of v1 from the “list of lists.”
Otherwise, v1 is a maximal vertex, which (in the case when l(gT (v1)) ≥ l(gT ′(v1)),

the symmetric case being treated in a symmetric way) is in a rectangle R on which a
flip of tiling T can be done. (R is defined by the final part of gT (v1).)

Insert this rectangle in L and update replacing T by Tflip: for each vertex v of
the interior of R, update gT (v), max(l(gT (v)), l(gT ′(v))) and the place of v in the “list
of lists” of vertices.
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Notice that l(gT (v))−4 ≤ l(gTflip
(v)) ≤ l(gT (v)), which permits us to update the

place of v in a constant time.
Until: the “list of lists” is empty.

4.3.2. Analysis. Correctness. Just before the i + 1st passage through the
loop, a pair (T1,i, T2,i) of tilings is stored. At the initialization, (T1,0, T2,0) = (T, T ′);
at each passage through the loop (T1,i, T2,i) is replaced by a pair (T1,i+1, T2,i+1) such
that

• minflip(T1,i+1, T2,i+1) = minflip(T1,i, T2,i)− 1;
• either T1,i+1 = T1,i and T2,i+1 is deduced from T2,i by a flip, or T2,i+1 = T2,i

and T1,i+1 is deduced from T1,i by a flip.
The algorithm stops for the integer i0 such that T1,i0 = T2,i0 .
We define a finite subsequence of (T1,0, T1,1, . . . , T1,i0) constructed extracting

different tilings: precisely (T ′1,0, T
′
1,1, . . . , T

′
1,p) is the sequence of tilings such that

T ′1,0 = T1,0, T ′1,p = T1,i0 , and, for each integer i such that i < p, T ′1,i+1 equals the first
element T1,j of the sequence (T1,0, T1,1, . . . , T1,i0) such that T1,j �= T ′1,i. We similarly
define a subsequence (T ′2,0, T

′
2,1, . . . , T

′
2,p′) of (T2,0, T2,1, . . . , T2,i0).

By this way, the sequence (T ′1,0, T
′
1,1, . . . , T

′
1,p = T ′2,p′ , T

′
2,p′−1, . . . , T

′
2,0) is a short-

est path of tilings from T to T ′. The sequence of supports of flips necessary to pass
from a tiling of this sequence to its successor is exactly the final list L, obtained at
the end of the execution of the algorithm. This proves the correctness.

Time complexity. The characteristic values of a vertex v can be deduced from
those of its father in the spanning tree in O(1) time units. Thus, the initialization
can be done in O(A(P )) time units, where A(P ) denotes the area (i.e., the number of
cells) of P .

Each passage through the loop costs O(1) time units (for m and n been fixed)
and reduces the distance between the current tiling and T ′ from (m−1)(n−1). Thus
the second part of the algorithm costs at most O(∆(T, T ′)) time units.

Thus the complete time cost is O(A(P ) + ∆(T, T ′)), which is optimal since
O(A(P )) time units are necessary to read the input and O(∆(T, T ′)) time units are
necessary to write the output.

5. Structures of lattices and semilattices.

5.1. Order relations on the set of tilings. In this section, a tiling T0 of P is
fixed and the tiling projection induced by T0 is denoted by g0.

Definition 5.1. Let (T, T ′) be a pair of tilings of P . We say that T ≤T0 T ′ if,
for each vertex v of P , g0(v)−1gT (v) ≤decomp g0(v)−1gT ′(v).

The relation defined in this way is obviously an order relation on the set ΥP of
tilings of P . The proposition below gives a geometrical interpretation of this order.

Proposition 5.2. Let (T, T ′) be a pair of tilings of P . We have T ≤T0 T ′ if
and only if there exists a sequence (T0, T1, . . . , Tp) of tilings of P such that Tp = T ′,
p = minflip(T0, T

′), for each integer i such that 0 ≤ i < p; Ti + 1 is deduced from Ti
by a local flip, and there exists an integer i0 such that 0 ≤ i0 ≤ p and T = Ti0 .

Proof. T ≤T0 T ′ if and only if we have the equality

∆(T0, T
′) = ∆(T0, T ) + ∆(T, T ′)

from the definition of the distance between tilings. Moreover, from the flip formula,
the above equality is equivalent to

minflip(T0, T
′) = minflip(T0, T ) + minflip(T, T ′),
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which means that there exists a sequence of tilings as described in the
proposition.

5.2. The infimum property.
Proposition 5.3. Let (T, T ′) be a pair of tilings of P . We define the function

ginf(T,T ′) by, for each vertex v of P ,

ginf(T,T ′)(v) = g0(v)infdecomp(g0(v)−1gT (v), g0(v)−1gT ′(v)).

There exists a tiling T ′′ of P such that gT ′′ = ginf(T,T ′).
The proof of the above proposition is based on the following lemma.
Lemma 5.4. Let (w,w′) be a pair of elements of ker(s) such that

infdecomp(w,w′) = 1Gcycles
, and let (j, j′) be a pair of integers. We state u =

a−1wbjab−j and u′ = a−1wbj
′
ab−j

′
. (Notice that u and u′ both are elements of

ker(s).)
• If there exists an integer j′′ such that 0 < j′′ < n and bj

′′ ≤cycles
infcycles(w,w′), then infdecomp(u, u

′) = a−1bj
′′
ab−j

′′
;

• otherwise, infdecomp(u, u′) = 1Gcycles
.

Proof. First assume that there exists an integer j′′ such that 0 < j′′ < n and
bj

′′ ≤cycles infcycles(w,w′). Thus, we can state w = bj
′′
w1 with the canonical expres-

sion of w1 beginning by a and l(w1) ≥ 3 (since l(w) ≥ 4)
If l(w) = 4, then w is an element of Srect, thus l(wbjab−j) = 7 and

init(wbjab−j) = init(w). If l(w) ≥ 5, we obviously have l(wbjab−j) ≥ 2 and
init(wbjab−j) = init(w). Thus, in any case, we can state w = bj

′′
aiw1 with 0 < i < m

and either w1 = 1Gcycles
or the canonical expression of w1 begins by b.

In a similar way, we can state w′bj
′
ab−j

′
= bj

′′
ai

′
w′1. Notice that

i �= i′, from Lemma 3.7. Thus, u = (a−1bj
′′
ab−j

′′
)(bj

′′
a−1+iw1) and u′ =

(a−1bj
′′
ab−j

′′
)(bj

′′
a−1+i′w′1), which gives the result, since init(bj

′′
a−1+iw1) �=

init(bj
′′
a−1+i′w1).

Now we treat the second alternative of the lemma: if w = abja−1b−j , then
u = 1Gcycles

, which obviously gives the result. The same argument can be used if

w′ = abj
′
a−1b−j

′
. In any remaining case, one can remark as it has been done for the

first alternative that init(wbjab−j) = init(w) and init(w′bjab−j) = init(w′). Thus
init(wbjab−j) �= init(w′bjab−j), which yields that init(u) �= init(u′), which gives the
result from Lemma 3.7.

Proof of Proposition 5.3. We prove this proposition, proving that ginf(T,T ′) sat-
isfies the hypothesis of Proposition 3.4. The only nontrivial point is the verification
that, for each pair (v, v′) of neighbor vertices of P , d(ginf(T,T ′)(v), ginf(T,T ′)(v

′)) ≤ 3.
We will prove it assuming, moreover, that v′ = va (which can be done without

loss of generality, since the case when v′ = vb can be treated in a symmetric way).
We need some notations: we state g0(v′) = g0(v)bj0ab−j0 , gT (v′) =

gT (v)bjT ab−jT , and gT ′(v′) = gT ′(v)bjT ′ab−jT ′ .
We also state ginf(T,T ′)(v)−1g0(v) = w0, ginf(T,T ′)(v)−1gT (v) = wT ,

ginf(T,T ′)(v)−1gT ′(v) = wT ′ . With these notations, we have infdecomp(w0, wT ) =
infdecomp(w0, wT ′) = infdecomp(wT , wT ′) = 1Gcycles

.
Afterwards, we state u0 = a−1w0b

j0ab−j0 , uT = a−1wT b
jT ab−jT , uT ′ =

a−1wT ′bjT ′ab−jT ′ .
(a) If there exists an integer j′′ such that 0 < j′′ < n and bj

′′ ≤cycles
infcycles(w0, wT , wT ′), then, from the previous lemma, we have

infdecomp(u0, uT ) = infdecomp(u0, uT ′) = infdecomp(uT , uT ′) = a−1bj
′′
ab−j

′′
.
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Thus, if we state t = a−1bj
′′
ab−j

′′
, we have

infdecomp(t
−1u0, t

−1uT ) = infdecomp(t
−1u0, t

−1uT ′) = infdecomp(t
−1uT , t

−1uT ′)

= 1Gcycles

which means that ginf(T,T ′)(va) = ginf(T,T ′)(v)bj
′′
ab−j

′′
and gives the result.

(b) If there exists an integer j′′ such that 0 < j′′ < n and bj
′′ ≤cycles

infcycles(w0, wT ) (which yields that infdecomp(u0, uT ) = a−1bj
′′
ab−j

′′
= t), and

infdecomp(u0, uT ′) = infdecomp(uT , uT ′) = 1Gcycles
, then

infdecomp(t
−1u0, t

−1uT ) = infdecomp(t
−1u0, t

−1uT ′) = infdecomp(t
−1uT , t

−1uT ′)

= 1Gcycles,

which means that ginf(T,T ′)(va) = ginf(T,T ′)(v)bj
′′
ab−j

′′
and gives the result.

(c) If infdecomp(u0, uT ) = infdecomp(u0, uT ′) = infdecomp(uT , uT ′) = 1Gcycles
,

then we have ginf(T,T ′)(va) = ginf(T,T ′)(v)a, which gives the result.
We have treated all the cases (up to symmetry) from the previous lemma.
Corollary 5.5. For each tiling T0 of P , the order relation (ΥP ,≤T0

) is an
inferior semilattice.

Proof. The proof is obvious.
Proposition 5.6. For each pair (T0, T

′
0) of tilings of P , we define the set ΥT0,T ′

0

consisting of tilings T such that T0 ≤T0
T ≤T0

T ′0.
The order relation (ΥT0,T ′

0
,≤T0

) is a distributive lattice.
Proof. We have seen that ΥT0,T ′

0
has the infimum property. Notice that T0 ≤T0

T ≤T0 T ′0 if and only if T ′0 ≤T ′
0
T ≤T ′

0
T0. Thus ΥT0,T ′

0
has the supremum property,

since ΥT ′
0,T0

has the infimum property. We have proven that ΥT0,T ′
0

has a lattice
structure.

For each vertex v of P , we state gT ′
0
(v) = gT0

(v)Π
p(v)
i=1 ti(v), where Π

p(v)
i=1 ti(v) is the

decomposition of gT0(v)−1gT ′
0
(v). Let T be a tiling of ΥT0,T ′

0
. There exists a unique

integer qT (v) such that 0 ≤ q(v) ≤ p(v) and gT (v) = gT0(v)Π
qT (v)
i=1 ti(v). Thus, one

can define the injective mapping Q from ΥT0,T ′
0

to Z
V (where V denotes the set of

vertices of P ) such that Q(T ) is the vector consisting of values qT (v).
By definition of the order on ΥT0,T ′

0
, the mapping Q is a lattice morphism (i.e.,

Q(inf(T, T ′)) = inf(Q(T ), Q(T ′)) and Q(sup(T, T ′)) = sup(Q(T ), Q(T ′))), which
yields that ΥT0,T ′

0
is isomorphic to a sublattice of Z

V and, consequently, is a distribu-
tive lattice.

6. Tilings with leaning dominoes and triangles. From a similar method,
we will see that similar results and algorithms can be obtained working with sets of
prototiles of the triangular lattice. In this section, we limit ourselves to present the
general framework and the main tools used, and do not give proofs, since most of
them are very similar to those of previous sections, about tilings with bars.

The triangular lattice Γ induces three unit moves in the plane: rightward, denoted
by a, and b and c, such that angle(a, b) = angle(b, c) = angle(c, a) = 2π/3. Let v
be a vertex of Γ and u denote an element of {a, b, c, a−1, b−1, c−1}. The element of Γ
which is reached from v with a u-move is denoted by vu.

We now study the set of prototiles S = {ld1, ld2, ld3, ld4, ld5, ld6, tr1, tr2} (previ-
ously studied in [7]), where ldi (respectively, tri) denotes a parallelogram (respectively,
an equilateral triangle) formed with four cells of Γ (see Figure 5). Each prototile ldi
is called a leaning domino.
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A set of contour words of S is R = {a2ba−2b−1, a2ca−2c−1, b2ab−2a−1, b2cb−2c−1,
c2ac−2a−1, c2bc−2b−1, a2b2c2, a2c2b2}, thus the tiling group Gtile is the group gener-
ated by {a, b, c} whose set of relators is R (i.e., the quotient group Fa,b,c/NR).

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA AAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

Fig. 5. A leaning domino and a triangular prototile. Counterclockwise, starting from the lower
left corners, the contour words, respectively, are ac−2a−1c2 and a2b2c2.

6.1. Quotient groups.

6.1.1. The tricolored group. Since Gtile is complex, we use quotients of it.
The main quotient group used is 〈a, b, c|a2, b2, c2〉. This group is isomorphic of the
free product of three groups, each of them with only two elements. If we identify
opposite arcs with the same label, the induced Cayley graph is a tree (see Figure 6).

Each element w of Gtricolored has a canonical expression: w can be written in
a unique way as w = Πp

i=1xi with, for each integer i, xi ∈ {a, b, c} and, for i < p,
xi �= xi+1. This permits us to define the initial (respectively, final part) of w (the
word formed by the two first (respectively, last) letters of the canonical expression of
w), the length l(w) of w by l(w) = p, and the distance d(w′, w′′) between elements of
Gtricolored by d(w′, w′′) = l(w′−1w′′). One can also canonically define an order rela-
tion (denoted by ≤tricolored) on Gtricolored. This relation obviously has the infimum
property.

Let P be a fixed polygon formed with cells of the triangular lattice, and let v0 be
a fixed vertex of the boundary of P . As in section 3, for each tiling T of P , one can
define a tiling projection gT , which associates an element of Gtricolored to each vertex
v of the polygon. Such a tiling projection encodes the tiling T .
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Fig. 6. The Cayley graph of Gtricolored.

6.1.2. The cell group and the tetrahedron group. Another quotient group
of Gtile is Gcell = 〈a, b, c|abc, acb〉 (i.e., the set of relators is a set of contour words of
cells). This group is isomorphic to Z

2, and the induced Cayley graph is the planar
triangular grid.
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The third quotient group is Gtetrahedron = 〈a, b, c|a2, b2, c2, abc, acb〉. This group
has four elements, and the induced Cayley graph is a tetrahedron. Since there exists
a canonical morphism from Gcell (which can be seen as the planar triangular grid) to
Gtetrahedron, we can define (after an origin vertex v0 has been fixed), for each vertex
v of the grid, the element congtetrahedron(v) of Gtetrahedron.

Given a tiling T of a polygon P with a fixed vertex v0 of its boundary, one can
define a tiling projection gT from vertices of P to Gtricolored. We have, in a similar
way as in section 3, the proposition below.

Proposition 6.1. Let g be a function from the set of vertices of P to Gtricolored.
There exists a tiling T of P such that g = gT if and only if the following constraints
are satisfied:

• g(v0) = 1Gtricolored
;

• for each vertex vertex v of P , s(g(v)) = congtetrahedron(v);
• for each pair (v, v′) of neighbor vertices of P , d(g(v), g(v′)) ≤ 3, and if,
moreover, the line segment [v, v′] is included on the boundary of P , then
d(g(v), g(v′)) = 1.

Proof (sketch). The direct part of the proposition is very easy. Conversely, assume
that g satisfies the constraint above and let [v, va] be a line segment included in P .
We necessarily have g(v)−1g(va) ∈ {a, bc, cb, cac, bab}. (We have a similar fact for line
segments [v, vb] and [v, vc].)

Moreover, we have a large amount of information about the values of g(vb−1)
and g(vc−1): Precisely, if g(v)−1g(va) = bab, then g(v)−1g(vc−1) = ba and
g(v)−1g(vb−1) = b; if g(v)−1g(va) = bc, then g(v)−1g(vb−1) = b and g(v)−1g(vb−1) ∈
{c, ba, bcb}. (We also have a lot of symmetric equalities.)

The above equalities imply that the set of edges [v, v′] such that d(g(v), g(v′)) = 1
draw a tiling T of P : precisely, for each cell C of P , the set of cells C ′, such that
there exists a path starting in C and finishing in C ′ which cuts no edge [v, v′] such
that d(g(v), g(v′)) = 1, form a tile. The set of those tiles form a tiling T of P , and we
obviously have g = gT .

As a corollary, we obtain that, for each pair (T, T ′) of tilings of P and for each
vertex v of P , gT ′(v)−1gT (v) is an element of the kernel of the canonical morphism
from Gtricolored to Gtetrahedron. For the following, this kernel is denoted by N ′cell.

6.1.3. Structures that are induced by N ′
cell. We state Striangle =

{abc, acb, bac, bca, cab, cba} (i.e., the set of possible contour words of triangular cells).
As in section 3, one can prove that each element w of N ′cell can be written in a unique

way as w = Πp′
i=1xi with, for each integer i, xi ∈ Striangle and, for i < p, xi �= xi+1.

Moreover, the canonical expression of w finishes by ab (respectively, ac, ba, bc,
ca, cb) if and only if xp′ = cab (respectively, bac, cba, abc, bca, acb).

Thus, as in section 3, one can define the order relation ≤decomp on N ′cell, the
decomposition number num(w) of w by num(w) = p′, and, afterwards, the distance
∆(T, T ′) between two tilings of a same polygon P .

6.2. Local flips. We have two kinds of local flips (see Figure 7): a lozenge L0,
formed with eight triangular cells of P , admits three tilings. Two of those tilings
consist of two leaning dominoes, and the third one consists of two triangles. The
replacement of a tiling of L0 consisting of parallelograms by a tiling consisting of
triangles (or the inverse) is our first kind of local flip (the lozenge flips).

An isosceles trapezoid Tr0 formed with eight triangular cells of P admits two
tilings, each of them consisting of a parallelogram and a triangle. The replacement
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of one of these two tilings by the other one is our second kind of local rotations (the
trapezoid flips).

Fig. 7. Flips for leaning dominoes and triangles.

Let T be a tiling and Tflip be a tiling deduced by a flip of support Sup (which is
either a lozenge or a trapezoid). Let vSup denote the only vertex which is in the interior
part of Sup. For each vertex v of P such that v �= vSup, we have gT (v) = gTflip

(v),
and gT (vSup)

−1gTflip
(vSup) is an element of Striangle.

6.2.1. Maximal vertex. A maximal vertex for a pair (T, T ′) of tilings can be
defined exactly as in section 3, but the use of maximal vertices is a little different.

Let v1 be a maximal vertex for a pair (T, T ′) of distinct tilings. One can assume
without loss of generality that l(gT ′(v1)) ≤ l(gT (v1)).

From the tree structure of Gtricolored, one easily proves that l(gT (v1)) ≥ 2. More-
over, if the final part of gT (v1) is ab, then, since l(gT ′(v1)) ≤ l(gT (v1)), the last factor
of the decomposition of gT ′(v1)−1gT (v1) is necessarily cab.

Proposition 6.2. Consider the line segment [v1b
−1, v1b]. This line segment is

the common side of two tiles of T . Moreover, each leaning domino of T , a large side
of which is [v1b

−1, v1b], admits b2a−1b−2a as contour word.

Proof (sketch). We first claim that the line segment [v1, v1c] necessarily cuts a
tile of T ; otherwise, we have l(gT (v1c)) = l(gT (v1)) + 1.

On the other hand, since the final part of gT ′(v1)−1gT (v1) is ab, we have

d(gT ′(v1), gT (v1c)) = d(gT ′(v1), gT (v1)) + 1 ≥ 3 + 1 = 4.

These inequalities prove that gT (v1c) �= gT ′(v1c), since d(gT ′(v1), gT ′(v1c)) ≤ 3.
Thus v1c contradicts the maximality of v1.

The same argument can also be used for v1a, v1c
−1 and v1a

−1. This gives the
first part of the proposition.

If we assume that a leaning domino, whose sides issued from v1b
−1 are [v1b

−1, v1b]
and [v1b

−1, v1b
−1c], is an element of T , then one proves as above that l(gT (v1c)) =

l(gT (v1)) + 1 and gT (v1c) �= gT ′(v1c), which contradicts the maximality of v1. This
gives the second part of the proposition.

From the above proposition, it follows that a flip can be done around such an
extremal vertex v1. This flip decreases the distance between T and T ′. Thus, by a
similar study as in section 3, we obtain

• a flip formula: minflip(T, T ′) ==
∑
v∈P num(gT ′(v)−1gT (v));

• an algorithm which, given a pair of tilings, produces a sequence of minimal
length of necessary flips to transform the first tiling into the second one.

6.3. Lattice structures. For each tiling T0, we can define, as in section 5,
an order relation ≤T0 , which can be geometrically interpreted by the following: for
each pair (T, T ′) of tilings of P , T ≤T0

T ′ if and only if there exists a sequence
(T0, T1, . . . , Tp) of tilings of P such that Tp = T ′, p = minflip(T0, T

′), for each
integer i such that 0 ≤ i < p; Ti + 1 is deduced from Ti by a local flip, and there
exists an integer i0 such that 0 ≤ i0 ≤ p and T = Ti0 .
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Fig. 8. Flips for calissons.

Lemma 6.3. Let (w,w′) be a pair of elements of N ′cell such that infdecomp(w,w′)
= 1Gtricolored

and (s, s′) be a pair of elements of {a, bc, cb, cac, bab}. We state u = aws
and u′ = aws′. (Notice that u and u′ both are elements of N ′cell.)

• If b ≤tricolored inftricolored(w,w′), then infdecomp(u, u
′) = abc.

• If c ≤tricolored inftricolored(w,w′), then infdecomp(u, u
′) = acb.

• Otherwise, infdecomp(u, u′) = 1Gtricolored
.

From this lemma, as in section 5, one deduces that the order ≤tricolored induces a
structure of inferior semilattice on the set of tilings of P , with T0 as minimum element,
and a structure of distributive lattice for each interval of tilings.

7. Tilings with calissons. The same method can easily be applied to the set
of prototiles S = {cal1, cal2, cal3} (the calissons, studied in [11]), each element of S
being formed with two cells of Γ with a common edge. A set of contour words is
{aba−1b−1, aca−1c−1, bcb−1c−1}.

The main quotient group used is Gline = 〈a, b|ab−1, ac−1〉. Each element w of
Gline has a canonical expression: there exists a unique relative integer such that
w = ap. This permits us to define the length l(w) of w by l(w) = |p|.

Given a tiling T of a polygon P , one can define a tiling projection gT from vertices
of P to Gline. One can prove that, for each vertex v of P , gT ′(v)−1gT (v) is an element
of the normal group N ′′cell of Gline generated by {abc, acb} = {a3}. Thus, each element

w of N ′′cell can be written in a unique way as w = a3p′ . This permits us to define the
decomposition number num(w) of w by num(w) = |p′|(= l(w)/3) and, afterwards,
the distance ∆(T, T ′) between two tilings of a same polygon P .

The local flips are induced by the two possible tilings or a hexagon formed with
six cells of Γ (see Figure 8). In this case, the end of the study is very simple, since
Gline is isomorphic to Z. We obtain

• a flip formula: minflip(T, T ′) =
∑
v∈P |l(gT ′)(v)− l(gT (v))|/3;

• an algorithm which, given a pair of tilings, produces a sequence of minimal
length of necessary flips to transform the first tiling into the second one;
• a structure of distributive lattice in the set of tilings (the addition of an arti-

ficial maximum is not needed because of the structure of line of the quotient
group).

As for the dominoes, results about calissons were previously obtained using ele-
mentary methods [8], [10], but here we explain them with a general framework.
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Abstract. We consider the problem of determining whether a given function f : {0, 1}n → {0, 1}
belongs to a certain class of Boolean functions F or whether it is far from the class. More precisely,
given query access to the function f and given a distance parameter ε, we would like to decide
whether f ∈ F or whether it differs from every g ∈ F on more than an ε-fraction of the domain
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provide algorithms whose query complexity is independent of n (the number of function variables),
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1. Introduction. The newly founded country of Eff is interested in joining the
international organization Pea. This organization has one rule: it does not admit
dictatorships. Eff claims it is not a dictatorship but is unwilling to reveal the proce-
dure by which it combines the votes of its government members into a final decision.
However, it agrees to allow Pea’s special envoy, Tee, to perform a small number of
experiments with its voting method. Namely, Tee may set the votes of the government
members (using Eff’s advanced electronic system) in any possible way and obtain the
final decision given these votes. Tee’s mission is not to actually identify the dictator
among the government members (if one exists) but only to discover whether such a
dictator exists. Most importantly, she must do so by performing as few experiments
as possible. Given this constraint, Tee may decline Eff’s request to join Pea even if
Eff is not exactly a dictatorship but behaves like one most of the time.

The above can be formalized as a property testing problem: Let f : {0, 1}n →
{0, 1} be a fixed but unknown function, and let P be a fixed property of functions.
We would like to determine, by querying f , whether f has the property P or whether
it is ε-far from having the property for a given distance parameter ε. By ε-far we
mean that more than an ε–fraction of its values should be modified so that it obtains
the property P. For example, in the above setting we would like to test whether a
given function f is a “dictatorship function,” that is, whether there exists an index
1 ≤ i ≤ n such that f(x) = xi for every x ∈ {0, 1}n.
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Previous work on testing properties of functions mainly focused on algebraic prop-
erties (e.g., [6, 21, 20]), or on properties defined by relatively rich families of functions
such as the family of all monotone functions [12, 9]. Here we are interested in studying
the most basic families of Boolean functions: singletons, monomials, and disjunctive
normal form (DNF) functions.

One possible approach to testing whether a function f has a certain property P is
to try and actually find a good approximation for f from within the family of functions
FP having the tested property P. For this task we would use a learning algorithm
that performs queries and works under the uniform distribution. Such an algorithm
ensures that if f has the property (that is, f ∈ FP), then with high probability
the learning algorithm outputs a hypothesis h ∈ FP such that Pr[f(x) �= h(x)] ≤ ε,
where ε is a given distance (or error) parameter. The testing algorithm would run
the learning algorithm, obtain the hypothesis h ∈ FP , and check that h and f in fact
differ only on a small fraction of the domain. This last step is performed by taking
a sample of size Θ(1/ε) from {0, 1}n and comparing f and h on the sample. Thus, if
f has the property P, then it will be accepted with high probability, and if f is ε-far
from having P, so that Pr[f(x) �= h(x)] > ε for every h ∈ FP , then it will be rejected
with high probability.

Hence, provided that there exists a learning algorithm for the tested family FP ,
we obtain a testing algorithm whose complexity is of the same order of that of the
learning algorithm. To be more precise, the learning algorithm should be a proper
learning algorithm. That is, the hypothesis h it outputs must belong to FP .1

A natural question that arises is whether we can do better by using a different
approach. Recall that we are not interested in actually finding a good approxima-
tion for f in FP , but we want only to know whether such an approximation exists.
Therefore, perhaps we can design a different and more efficient testing algorithm than
the one based on learning. In particular, the complexity measure we would like to
improve is the query complexity of the algorithm.

As we show below, for all the properties we study, we describe algorithms whose
query complexity is linear in 1/ε, where ε is the given distance parameter, and inde-
pendent of the input size n.2 As we discuss shortly, the corresponding proper learning
algorithms have query complexities that depend on n, though only polylogarithmi-
cally. We believe that our results are of interest both because they completely remove
the dependence on n in the query complexity, and also because in certain aspects they
are inherently different from the corresponding learning algorithms. Hence they may
shed new light on the structure of the properties studied.

1.1. Our results. We present the following testing algorithms:

• An algorithm that tests whether f is a singleton function, that is, whether
there exists an index 1 ≤ i ≤ n such that f(x) = xi for every x ∈ {0, 1}n or
f(x) = x̄i for every x ∈ {0, 1}n. This algorithm has query complexity O(1/ε).

• An algorithm that tests whether f is a monomial with query complexity
O(1/ε).

1This is as opposed to nonproper learning algorithms that given query access to f ∈ FP are
allowed to output a hypothesis h that belongs to a more general hypothesis class F ′ ⊃ FP . Nonproper
learning algorithms are not directly applicable for our purposes.

2The running times of the algorithms are all linear in the number of queries performed and in n.
This dependence on n in the running time is clearly unavoidable, since even writing down a query
takes time n.
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• An algorithm that tests whether f is a monotone DNF having at most �
terms, with query complexity Õ(�2/ε).

We note that the above results improve on those presented in an extended abstract
of this work [17].

Techniques. Our algorithms for testing singletons and for testing monomials have
a similar structure. In particular, they combine two tests. One test is a “natural”
test that arises from an exact logical characterization of these families of functions.
In the case of singletons, this test uniformly selects pairs x, y ∈ {0, 1}n and verifies
that f(x∧ y) = f(x)∧ f(y), where x∧ y denotes the bitwise “and” of the two strings.
The corresponding test for monomials performs a slight variant of this test. The other
test in both cases is a seemingly less evident test with an algebraic flavor. In the case
of singletons it is a linearity test [6], and in the case of monomials it is an affinity
test. This test ensures that if f passes it, then it has or is close to having a certain
structure. This structure aids us in analyzing the logical test. We note that our
current analysis of the affinity test differs from the one presented in previous versions
of this work [17, 18]. In particular, in previous versions we used the discrete Fourier
transform, while here we build on basic probabilistic arguments.

The testing algorithm for monotone DNF functions uses the test for monomials
as a subroutine. Recall that a DNF function is a disjunction of monomials (the terms
of the function). If f is a DNF function with a bounded number of monotone terms,
then the test will isolate the different terms of the function and test that each is in
fact a monotone monomial. If f is far from being such a DNF function, then at least
one of these tests will fail with high probability.

1.2. Related work.

1.2.1. Property testing. Property testing was first defined and applied in the
context of algebraic properties of functions [21], and has since been extended to various
domains, perhaps most notably those of graph properties (e.g., [13, 14, 1]). (For
surveys see [19, 10].) The relation between testing and learning is discussed at length
in [13]. In particular, that paper suggests that testing may be applied as a preliminary
stage to learning. Namely, efficient testing algorithms can be used in order to help in
determining what hypothesis class should be used by the learning algorithm.

Linearity testing and its variants. As noted above, we use linearity testing [6]
in our test for singletons and affinity testing, which can be viewed as an extension
of linearity testing, for testing monomials. Other works in which improvements and
variants of linearity testing are analyzed include [4, 3].

Testing the long code. We note that a test which is very similar to our test for
singletons was applied to testing the long code [5]. Specifically, Bellare, Goldreich,
and Sudan [5] considered the following task. For an integer �, let F� be the set of all
Boolean functions over {0, 1}�. Let G be a function from F� to {0, 1}. The goal is to
test whether G has the following property: there exists some fixed a ∈ {0, 1}� such

that G(f) = f(a) for every f ∈ F�. In such a case G is the code word of length 22�

corresponding to the plaintext a.
In order to better understand the relation to our problem, we view each string

a ∈ {0, 1}� as an index between 0 and 2� − 1, and each function f ∈ F� as a string of
length 2� that corresponds to the truth table of f . Then the test should accept G if
there exists some index a such that for every f , G(f) = f(a). The test should reject
f if for every a, G(f) �= f(a) on more than an ε-fraction of the strings (functions)
f . In other words, testing the long code is equivalent to testing monotone singletons
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over {0, 1}n when n = 2�. Thus we extend the long code/singletons test to any n,
while simplifying the analysis.

Testing k-juntas. Following the publication of the extended abstract of this work
[17], a recent work [11] addresses the problem of testing whether a Boolean function
depends on at most k variables for a given parameter k. In [11] it is shown that this
“k-junta” property can be tested using a number of queries that is linear in 1/ε and
polynomial in k. It is also noted that the k-junta testing algorithm can be applied as
a subroutine to testing monomials using a number of queries that is Õ(1/ε).

1.2.2. Learning Boolean formulae. Singletons, and more generally monomi-
als, can be easily learned under the uniform distribution. The learning algorithm
uniformly selects a sample of size Θ(log n/ε) and queries the function f on all sample
strings. It then searches for a monomial that is consistent with f on the sample.
Finding a consistent monomial, if one exists, can be done in time linear in the sample
size and in n. A simple probabilistic argument, which is a slight variant of Occam’s
Razor [7],3 can be used to show that a sample of size Θ(log n/ε) is sufficient to ensure
that with high probability any monomial that is consistent with the sample is an
ε-good approximation of f .

There is a large variety of results on learning DNF functions, and in particular
monotone DNF, in several different models. We restrict our attention to the model
most relevant to our work, namely when membership queries are allowed and the
underlying distribution is uniform. The best known algorithm results from combining
the works of [8] and [16], and builds on Jackson’s celebrated Harmonic Sieve algo-

rithm [15]. This algorithm has query complexity Õ(r · ( log2 n
ε + �2

ε2 )), where r is the
number of variables appearing in the DNF formula, and � is the number of terms.
However, this algorithm does not output a DNF formula as its hypothesis. On the
other hand, Angluin [2] describes a proper learning algorithm for monotone DNF for-
mulae that uses membership queries and works under arbitrary distributions. The
query complexity of her algorithm is Õ(� · n + �/ε). Using the same preprocessing
technique as suggested in [8], if the underlying distribution is uniform, then the query

complexity can be reduced to Õ( r·log
2 n

ε +� ·(r+ 1
ε )). Recall that the query complexity

of our testing algorithm has similar dependence on � and 1/ε but does not depend on
n.

1.3. Organization. We start with some necessary preliminaries in section 2. In
section 3 we present our algorithm for testing singleton functions. The algorithm for
testing monomials is presented in section 4, and the algorithm for testing monotone
DNF in section 5. In section 6 we discuss a possible simpler alternative to the singleton
test.

2. Preliminaries. We shall use the following definitions.

Definition 1. Let x, y ∈ {0, 1}n, and let [n] def
= {1, . . . , n}.

• We denote by |x| the number of ones in the vector x.
• We write y � x if in each coordinate yi ≥ xi.

• Let 2x def
= {z ∈ {0, 1}n : z � x}. Hence, |2x| = 2|x|.

• Let x∧y denote the string z ∈ {0, 1}n such that for every i ∈ [n], zi = xi∧yi.
• Let x⊕y denote the string z ∈ {0, 1}n such that for every i ∈ [n], zi = xi⊕yi.

3Applying the theorem known as Occam’s Razor would give a stronger result in the sense that
the underlying distribution may be arbitrary (that is, not necessarily uniform). This however comes
at a price of a linear, as opposed to logarithmic, dependence of the sample/query complexity on n.
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Definition 2 (singletons, monomials, and DNF functions). A function f :
{0, 1}n → {0, 1} is a singleton function if there exists an i ∈ [n] such that f(x) = xi
for every x ∈ {0, 1}n or f(x) = x̄i for every x ∈ {0, 1}n.

We say that f is a monotone k-monomial for 1 ≤ k ≤ n if there exist k indices
i1, . . . , ik ∈ [n] such that f(x) = xi1 ∧ · · ·∧xik for every x ∈ {0, 1}n. If we allow some
of the xij ’s above to be replaced with x̄ij , then f is a k-monomial. The function f is
a monomial if it is a k-monomial for some 1 ≤ k ≤ n.

A function f is an �-term DNF function if it is a disjunction of � monomials. If
all monomials are monotone, then it is a monotone DNF function.

When the identity of the function f is clear from the context, we may use the
following notation.

Definition 3. Define F0
def
= {x|f(x) = 0} and F1

def
= {x|f(x) = 1}.

Definition 4 (distance between functions). The distance according to the uni-
form distribution between two functions f, g : {0, 1}n → {0, 1} is denoted by dist(f, g)
and is defined as follows: dist(f, g)

def
= Prx∈{0,1}n [f(x) �= g(x)].

The distance between a function f and a family of functions F is dist(f,F) def
=

ming∈F dist(f, g). If dist(f,F) > ε for some 0 < ε < 1, then we say that f is ε-far
from F . Otherwise, f is ε-close to F .

Definition 5 (testing algorithms). A testing algorithm for a family of Boolean
functions F over {0, 1}n is given a distance parameter ε, 0 < ε < 1, and is provided
with query access to an arbitrary function f : {0, 1}n → {0, 1}.

If f ∈ F , then the algorithm must output accept with probability at least 2/3, and
if f is ε-far from F , then it must output reject with probability at least 2/3.

3. Testing singletons. We start by presenting an algorithm for testing single-
tons. The testing algorithm for k-monomials will generalize this algorithm. More
precisely, we present an algorithm for testing whether a function f is a monotone
singleton. In order to test whether f is a singleton we can check whether either f or
f̄ pass the monotone singleton test. For the sake of succinctness, in what follows we
refer to monotone singletons simply as singletons.

The following characterization of monotone k-monomials motivates our tests. We
later show that the requirement of monotonicity can be removed.

Claim 1. Let f : {0, 1}n → {0, 1}. Then f is a monotone k-monomial if and
only if the following two conditions hold:

1. Pr[f = 1] = 1/2k.
2. For all x, y, f(x ∧ y) = f(x) ∧ f(y).

Proof. If f is a k-monomial, then clearly the conditions hold. We turn to prove
the other direction. We first observe that the two conditions imply that f(x) = 0
for all |x| < k, where |x| denotes the number of ones in x. In order to verify this,
assume in contradiction that there exists some x such that |x| < k but f(x) = 1. Now
consider any y such that yi = 1 whenever xi = 1. Then x ∧ y = x, and therefore
f(x ∧ y) = 1. By the second item, since f(x) = 1, it must also hold that f(y) = 1.
However, since |x| < k, the number of such points y is strictly greater than 2n−k,
contradicting the first item.

Next let y =
∧

x∈F1
x. Using the second item in the claim we get

f(y) = f

(
∧

x∈F1

x

)
=
∧

x∈F1

f(x) = 1.
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However, we have just shown that f(x) = 0 for all |x| < k, and thus |y| ≥ k.
Hence, there exist k indices i1, . . . , ik such that yij = 1 for all 1 ≤ j ≤ k. However,
yij =

∧
x∈F1

xij . Hence, xi1 = · · · = xik = 1 for every x ∈ F1. The first item now
implies that f(x) = xi1 ∧ · · · ∧ xik for every x ∈ {0, 1}n.

Definition 6. We say that x, y ∈ {0, 1}n are a violating pair with respect to a
function f : {0, 1}n → {0, 1} if f(x) ∧ f(y) �= f(x ∧ y).

Given the above definition, Claim 1 states that a basic property of monotone
singletons, and more generally of monotone k-monomials, is that there are no violating
pairs with respect to f . A natural candidate for a testing algorithm for singletons
would take a sample of uniformly selected pairs x, y and for each pair verify that it
is not violating with respect to f . In addition, the test would check that Pr[f = 0] is
roughly 1/2 (or else any monotone k-monomial would pass the test).

As we discuss in section 6, we were unable to give a complete proof for the
correctness of this test. Somewhat counterintuitively, the difficulty with the analysis
lies in the case when the function f is very far from being a singleton. More precisely,
the analysis is quite simple when the distance δ between f and the closest singleton
is bounded away from 1/2. However, the argument does not directly apply to δ
arbitrarily close to 1/2. We believe it would be interesting to prove that this simple
test is in fact correct (or to come up with an example of a function f that is almost
1/2-far from any singleton but passes the test).

In the algorithm described below we circumvent the above difficulty by “forcing
more structure” on f . Specifically, we first perform another test that accepts only
functions that have or, more precisely, that are close to having a certain structure.
In particular, every singleton will pass the test. We then perform a slight variant of
our original test. Provided that f passes the first test, it will be easy to show that f
passes the second test with high probability only if it is close to a singleton function.
Details follow.

The algorithm begins by testing whether the function f belongs to a larger family
of functions that contains singletons as a subfamily. This is the family of parity
functions.

Definition 7. A function f : {0, 1}n → {0, 1} is a parity function (a linear
function over GF(2)) if there exists a subset S ⊆ [n] such that f(x) = ⊕i∈Sxi for
every x ∈ {0, 1}n.

The test for parity functions is a special case of the linearity test over general
fields due to Blum, Luby, and Rubinfeld [6]. If the tested function f is a parity
function, then the test always accepts, and if f is ε-far from any parity function, then
the test rejects with probability at least 9/10. The query complexity of this test is
O(1/ε). Specifically, the test uniformly picks O(1/ε) pairs x, y ∈ {0, 1}n and checks
that f(x)⊕ f(y) = f(x⊕ y).

Assuming this test passes, we still need to verify that f is actually close to a
singleton function and not to some other parity function. If the parity test accepted
only proper parity functions, then the following claim would suffice. It shows that if
f is a nonsingleton parity function, then a constant size sample of pairs x, y would,
with high probability, contain a violating pair with respect to f .

Claim 2. Let g = ⊕i∈Sxi for S ⊆ [n]. If |S| is even, then

Pr[g(x ∧ y) = g(x) ∧ g(y)] =
1

2
+

1

2|S|+1
,
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and if |S| is odd, then

Pr[g(x ∧ y) = g(x) ∧ g(y)] =
1

2
+

1

2|S|
.

Proof. Let s = |S|, and let x, y be two strings such that (i) x has 0 ≤ i ≤ s ones
in S, that is, |{� ∈ S : x� = 1}| = i; (ii) x ∧ y has 0 ≤ k ≤ i ones in S; and (iii) y has
a total of j + k ones in S, where 0 ≤ j ≤ s− i.

If g(x ∧ y) = g(x) ∧ g(y), then either (1) i is even and k is even, or (2) i is odd
and j is even. Let Z1 ⊂ {0, 1}n × {0, 1}n be the subset of pairs x, y that obey the
first constraint, and let Z2 ⊂ {0, 1}n × {0, 1}n be the subset of pairs x, y that obey
the second constraint. Since the two subsets are disjoint,

Pr[g(x ∧ y) = g(x) ∧ g(y)] = 2−2n · (|Z1|+ |Z2|).(3.1)

It remains to compute the sizes of the two sets. Since the coordinates of x and y
outside S do not determine whether the pair x, y belongs to one of these sets, we have

|Z1| = 2n−s · 2n−s ·



s∑

i=0,i even

(
s

i

) i∑

k=0,k even

(
i

k

) s−i∑

j=0

(
s− i

j

)

(3.2)

and

|Z2| = 2n−s · 2n−s ·



s∑

i=0,i odd

(
s

i

) i∑

k=0

(
i

k

) s−i∑

j=0,j even

(
s− i

j

)

 .(3.3)

The first expression equals

22n−2s · (22s−2 + 2s−1) = 22n−2 + 22n−s−1 = 22n · (2−2 + 2−(s+1)).

The second sum equals 22n · (2−2 + 2−(s+1)) if s is odd and 22n−2 if s is even. The
claim follows by combining (3.2) and (3.3) with (3.1).

Hence, if f is a parity function that is not a singleton, that is, |S| ≥ 2, then
the probability that a uniformly selected pair x, y is violating with respect to f is at
least 1/8. In this case, a sample of 16 such pairs will contain a violating pair with
probability at least 1− (1− 1/8)16 ≥ 1− e−2 > 2/3.

However, what if f passes the parity test but is only close to being a parity
function? Let g denote the parity function that is closest to f , and let δ be the distance
between them. (Note that g is unique, given that f is sufficiently close to a parity
function.) What we would like to do is check whether g is a singleton, by selecting
a sample of pairs x, y and checking whether it contains a violating pair with respect
to g. Observe that, since the distance between functions is measured with respect to
the uniform distribution, then for a uniformly selected pair x, y, with probability at
least (1− δ)2, both f(x) = g(x) and f(y) = g(y). However, we cannot make a similar
claim about f(x ∧ y) and g(x ∧ y), since x ∧ y is not uniformly distributed. Thus it
is not clear that we can replace the violation test for g with a violation test for f . In
addition, we would like to verify that g is not the all-0 function.

The solution is to use a self-corrector for linear (parity) functions [6]. Given
query access to a function f : {0, 1}n → {0, 1}, which is strictly closer than 1/4 to
some parity function g, and an input x ∈ {0, 1}n, the procedure Self-Correct(f, x)
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returns the value of g(x), with probability at least 9/10. The query complexity of the
procedure is constant.

The above discussion suggests the following testing algorithm.

Algorithm 1. Test for singleton functions.

1. Apply the parity test to f with distance parameter min(1/5, ε). If the parity
test rejects, then reject.

2. If Self-Correct(f,�1) = 0, then reject (where �1 is the all-1 vector).
3. Uniformly and independently select m = 64 pairs of points x, y.

• For each such pair, let bx = Self-Correct(f, x), by = Self-Correct(f, y),
and bx∧y = Self-Correct(f, x ∧ y).

• Check that bx∧y = bx ∧ by.
4. If one of the checks fails, then reject. Otherwise, accept.

Theorem 1. Algorithm 1 is a testing algorithm for monotone singletons. Fur-
thermore, it has a one-sided error. That is, if f is a monotone singleton, the algorithm
always accepts. The query complexity of the algorithm is O(1/ε).

Proof. Since the testing algorithm for parity functions has a one-sided error,
if f is a singleton function, then it always passes the test. In this case the self-
corrector always returns the value of f on every given input point. In particular,
Self-Correct(f,�1) = f(�1) = 1, since every monotone singleton has value 1 on the all-1
vector. Similarly, no violating pair can be found in Step 1. Hence, the test always
accepts a singleton.

Assume, without loss of generality, that ε ≤ 1/5. Consider the case in which f
is ε-far from any singleton. If it is also ε-far from any parity function, then it will be
rejected with probability at least 9/10 in the first step of the algorithm. Otherwise,
there exists a unique parity function g such that f is ε-close to g. If g is the all-0
function, then f is rejected with probability at least 9/10. Otherwise, g is a parity
function of at least two variables. By Claim 2, the probability that a uniformly
selected pair x, y is a violating pair with respect to g is at least 1/8. Given such a
pair, the probability that the self-corrector returns the value of g on all the three calls
(that is, bx = g(x), by = g(y), and bx∧y = g(x ∧ y)), is at least (1 − 1/10)3 > 7/10.
The probability that Algorithm 1 obtains a violating pair with respect to g and all
calls to the self-corrector return the correct value is greater than 1/16. Therefore,
a sample of 64 pairs will ensure that a violation bx∧y �= bx ∧ by will be found with
probability at least 9/10. The total probability that f is accepted, despite being ε-far
from any singleton, is hence at most 3 · (1/10) < 1/3.

The query complexity of the algorithm is dominated by the query complexity of
the parity tester which is O(1/ε). The second stage takes a constant time.

4. Testing monomials. In this section we describe an algorithm for testing
monotone k-monomials, where k is provided to the algorithm. We discuss later how
to extend this to testing monomials when k is not specified. As for the monotonicity
requirement, the following observation and corollary show that this requirement can
be easily removed, if desired.

Observation 3. Let f : {0, 1}n → {0, 1}, and let z ∈ {0, 1}n. Consider the
function fz : {0, 1}n → {0, 1} that is defined by fz(x) = f(x⊕ z). Then the following
are immediate:

1. The function f is a k-monomial if and only if fz is a k-monomial.
2. Let y ∈ F1. If f is a (not necessarily monotone) k-monomial, then fȳ is a
monotone k-monomial.
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Corollary 4. If f is ε-far from every (not necessarily monotone) k-monomial,
then for every y ∈ F1, fȳ is ε-far from every monotone k-monomial.

We next observe that we can also assume, without loss of generality, that ε <
2−k+2, or else the testing problem is trivial.

Observation 5. Suppose that ε ≥ 2−k+2. Then,
1. if Pr[f = 1] ≤ ε

2 , then f is ε-close to every k-monomial and in particular to
every monotone k-monomial;

2. if Pr[f = 1] > ε
4 , then f is not a k-monomial.

Proof. If Pr[f = 1] ≤ ε
2 , then for every k-monomial g,

dist(f, g) = Pr[f = 1∧g = 0]+Pr[f = 0∧g = 1] ≤ Pr[f = 1]+Pr[g = 1] ≤ ε

2
+2−k ≤ ε.

Since ε ≥ 2−k+2, if Pr[f = 1] > ε
4 , then Pr[f = 1] > 2−k, while by the definition of a

k-monomial, Pr[f = 1] = 2−k.
By Observation 5, if the algorithm receives parameters ε and k such that ε ≥

2−k+2, then it simply needs to obtain an estimate α for p = Pr[f = 1] such that the
following holds with probability of at least 2/3: if p > ε/2, then α > 3ε/8, and if
p ≤ ε/4, then α ≤ 3ε/8. By a multiplicative Chernoff bound, such an estimate can
be obtained using a sample of size O(1/ε). The algorithm accepts if α ≤ 3ε/8 and
rejects otherwise.

Hence, from this point on we can assume that ε < 2−k+2.
We now present the algorithm for testing monotone k-monomials. The first two

steps of the algorithm are an attempt to generalize the parity test in Algorithm 1.
Specifically, we test whether F1 is an affine subspace.

Definition 8 (affine subspaces). A subset H ⊆ {0, 1}n is an affine subspace of
{0, 1}n if and only if there exist an x ∈ {0, 1}n and a linear subspace V of {0, 1}n
such that H = V ⊕ x. That is,

H = {y | y = v ⊕ x, for some v ∈ V }.
The following is a well-known alternative characterization of affine subspaces,

which is a basis for our test.4

Fact 6. H is an affine subspace if and only if for every y1, y2, y3 ∈ H we have
y1 ⊕ y2 ⊕ y3 ∈ H.

Note that the above fact implies that for every y1, y2 ∈ H and y3 /∈ H we have
y1 ⊕ y2 ⊕ y3 /∈ H.

Algorithm 2. Test for monotone k-monomials.
1. Size Test: Uniformly and independently select a sample of Θ(2k) strings in
{0, 1}n. For each x in the sample, obtain f(x). Let α be the fraction of sample
strings x such that f(x) = 1. If |α − 2−k| > 2−(k+5), then reject; otherwise,
continue.

2. Affinity Test:
(a) Set δ = 1/36.
(b) Uniformly and independently select m = 25/(ε · δ) points a1, . . . , am ∈
{0, 1}n.

(c) Uniformly and independently select m′ = 4/δ pairs of points (x1, y1), . . . ,
(xm′ , ym′) ∈ F1 × F1.

4Here and in most of what follows we use yi (similarly, xi) to denote strings in {0, 1}n, and not
single bits. We find this notation easier to read than the alternative notation yi. We use the latter
only when necessary, that is, when we need to refer to particular coordinates yij of the string.



TESTING BASIC BOOLEAN FORMULAE 29

(d) If for some 1 ≤ i ≤ m, 1 ≤ j ≤ m′, the equality f(ai⊕xj⊕yj) = f(ai)
does not hold, then reject.

As we show in our analysis, passing this step with sufficiently high probability ensures

that f is close to some function g for which g(x) ⊕ g(y) ⊕ g(z) = g(x ⊕ y ⊕ z) for

all x, y, z ∈ G1 = {x|g(x) = 1}. That is, G1 is an affine subspace.

3. Closure-Under-Intersection Test:
(a) Uniformly and independently select 32 points x ∈ F1.
(b) Uniformly and independently select 2k+3 points y ∈ {0, 1}n.
(c) If for some pair x, y selected, Self-Correct(f, x ∧ y) �= Self-Correct(f, y),

then reject. Here Self-Correct is a procedure that given any input z and
oracle access to f asks a constant number of queries and returns with
high constant probability, the value g(z), where g is as described in Step 2.

4. If no step caused rejection, then accept.
In both the affinity test and the closure-under-intersection test, we need to select

strings in F1 uniformly. This is simply done by sampling from {0, 1}n and using only
x’s for which f(x) = 1. Since in both tests the number of strings selected from F1 is
a constant, the total number of queries required is O(2k) = O(1/ε). (Recall that we
can assume that ε < 2−k+2.)

We now embark on proving the correctness of the algorithm.
Theorem 2. Algorithm 2 is a testing algorithm for monotone k-monomials. The

query complexity of the algorithm is O(1/ε).
The proof of Theorem 2 is based on the following two lemmas whose proofs are

provided in subsections 4.1 and 4.2, respectively.
Lemma 7. Let f be a function for which |Pr[f = 1] − 2−k| < 2−k−3. If the

probability that the affinity test accepts f is greater than 1/10, then there exists a
function g : {0, 1}n → {0, 1} for which the following holds:

1. dist(f, g) ≤ ε/25.

2. G1
def
= {a : g(a) = 1} is an affine subspace of dimension n− k.

3. There exists a procedure Self-Correct that given any input a ∈ {0, 1}n and
oracle access to f asks a constant number of queries and returns the value
g(a) with probability at least 1− 1/40.

Furthermore, if F1 is an affine subspace, then the affinity tests always accepts, g = f ,
and Self-Correct(f, a) = f(a) with probability 1 for every a ∈ {0, 1}n.

Lemma 8. Let f : {0, 1}n → {0, 1} be a function for which |Pr[f = 1] − 2−k| <
2−k−3. Suppose that there exists a function g : {0, 1}n → {0, 1} such that the following
hold:

1. dist(f, g) ≤ 2−k−3.

2. G1
def
= {x : g(x) = 1} is an affine subspace of dimension n− k.

3. There exists a procedure Self-Correct that given any input a ∈ {0, 1}n and
oracle access to f returns the value g(a) with probability at least 1− 1/40.

If g is not a monotone k-monomial, then the probability that the closure-under-
intersection test rejects is at least 9/10.

Proof of Theorem 2. If f is a monotone k-monomial, then Pr[f = 1] = 2−k. By a
multiplicative Chernoff bound, for the appropriate constant in the Θ(·) notation, the
probability that it is rejected in the first step of Algorithm 2 is less than a 1/3. By
the definition of k-monomials, f always passes the affinity test and the closure-under-
intersection test.

Suppose that f is ε-far from any monotone k-monomial. We show that it is
rejected with probability greater than 2/3.
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1. If |Pr[f = 1] − 2−k| ≥ 2−k−3, then by a multiplicative Chernoff bound f is
rejected in the first step of the algorithm with probability at least 9/10.

2. Otherwise, |Pr[f = 1]−2−k| < 2−k−3. If f is (ε/25)-far from every function g
such that G1 = {x : g(x) = 1} is an affine subspace of dimension n− k, then
by Lemma 7 it is rejected in the second step of the algorithm (the affinity
test) with probability at least 9/10.

3. Otherwise, both |Pr[f = 1]−2−k| < 2−k−3 and f is (ε/25)-close to a function
g as described in the previous item. Since f is assumed to be ε-far from any
monotone k-monomial, the function g cannot be a monotone k-monomial.
Since ε ≤ 2−k+2 then ε/25 ≤ 2−k−3 and therefore f is 2−k−3-close to g.
Hence, by Lemma 8, f will be rejected with probability at least 9/10 in the
third step of the algorithm (the closure-under-intersection test).

Summing up, we get that the probability that f is accepted by the algorithm is less
than a 1/3, as required.

4.1. Analysis of the affinity test. In this subsection we prove Lemma 7. To
this end we define the function g as follows:

g(a)
def
= 1 if Prx,y∈F1 [f(a⊕x⊕y) = 1] ≥ 1/2 and g(a)

def
= 0 otherwise.(4.1)

We shall prove two lemmas from which Lemma 7 follows.

Lemma 9. If the probability that the affinity test accepts f is greater than 1/10,
then dist(f, g) ≤ ε/25.

Lemma 10. If the probability that the affinity test accepts f is greater than 1/10,
then for every a, b, c ∈ G1 we have (a⊕b⊕c) ∈ G1.

Proof of Lemma 9. By definition,

dist(f, g) = 2−n · (|F1 \G1|+ |G1 \ F1|) .

We observe that for any particular a ∈ F1 \G1

Prx,y∈F1 [f(a⊕x⊕y) �= f(a)] = Prx,y∈F1 [f(a⊕x⊕y) = 0] > 1/2,

where the equality follows from a ∈ F1, and the inequality from a /∈ G1. Similarly,
for any particular a ∈ G1 \ F1,

Prx,y∈F1 [f(a⊕x⊕y) �= f(a)] = Prx,y∈F1 [f(a⊕x⊕y) = 1] ≥ 1/2.

Assume, contrary to the claim, that dist(f, g) > ε/25. Then with probability

at least 1 − (1 − ε/25)2
5/(ε·δ) > 1 − e−1/δ, one of the ai’s selected in Step 2(b)

of Algorithm 2 is in the symmetric difference (F1 \G1)∪ (G1 \ F1). For that ai, with
probability at least 1−(1−1/2)4/δ > 1−e−2/δ, Algorithm 2 selects, in Step 2(c), a pair
(xj , yj) such that f(ai) �= f(ai⊕xj⊕yj). Hence, the probability that f is rejected in
this case is greater than (1 − e−1/δ)(1 − e−2/δ) > 9/10 for δ ≤ 1/5. However, this
contradicts the premise of the lemma by which f is accepted with probability greater
than 1/10.

In order to prove Lemma 10 we introduce some notation and prove a few claims.

For any a ∈ {0, 1}n let

WP (a)
def
= {(x, y) ∈ F1 × F1 : f(a⊕x⊕y) �= f(a)}(4.2)
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be the set of witness pairs (x, y) that together with a constitute evidence against the
affinity of F1. Let

H = {a ∈ {0, 1}n : |WP (a)| > δ · |F1|2}(4.3)

be the set of heavy points a ∈ {0, 1}n for which there are relatively many pairs
(x, y) ∈ F1 × F1 that together with a constitute evidence against the affinity of F1.

The claim below follows from the definition of H and the test, similarly to
Lemma 9, where we take into account that ε ≤ 2−k+2. (See Observation 5 and
the discussion following it.)

Claim 11. If the probability that the affinity test accepts f is greater than 1/10,
then |H| ≤ δ · 2n−k−1.

In all that follows we assume that the affinity test accepts f with probability
greater than 1/10. Since we assume that |F1| ≥ 2n−k−1, it directly follows from
Claim 11 that |H| ≤ δ · |F1|.

By the definition of g we know that for every a ∈ {0, 1}n, Prx,y∈F1 [g(a) =
f(a⊕x⊕y)] ≥ 1/2. In the claim below we show that this agreement probability is
actually higher.

Claim 12. For every a ∈ {0, 1}n, Prx,y∈F1 [g(a) = f(a⊕x⊕y)] ≥ 1− 4δ.

Proof. We fix a and let γ
def
= Prx,y∈F1 [g(a) = f(x⊕y⊕a)]. By the definition of

g(·), γ ≥ 1
2 . We are interested in strengthening this bound. Consider the following

equality and inequality for Prx1,x2,y1,y2∈F1
[f(a⊕x1⊕y1) = f(a⊕x2⊕y2)]:

Prx1,x2,y1,y2∈F1
[f(a⊕x1⊕y1) = f(a⊕x2⊕y2)]

= Prx1,x2,y1,y2∈F1
[(f(a⊕x1⊕y1) = g(a)) ∧ (f(a⊕x2⊕y2) = g(a))]

+ Prx1,x2,y1,y2∈F1
[f(a⊕x1⊕y1) �= g(a)) ∧ (f(a⊕x2⊕y2) �= g(a))]

= γ2 + (1− γ)2(4.4)

and

Prx1,x2,y1,y2∈F1
[f(a⊕x1⊕y1) = f(a⊕x2⊕y2)]

≥ Prx1,x2,y1,y2∈F1
[ f(a⊕x1⊕y1) = f(a⊕x1⊕x2⊕y1⊕y2))

∧ (f(a⊕x2⊕y2) = f(a⊕x1⊕x2⊕y1⊕y2)) ]

= 1− Prx1,x2,y1,y2∈F1
[ (f(a⊕x1⊕y1) �= f(a⊕x1⊕x2⊕y1⊕y2))

∨ (f(a⊕x2⊕y2) �= f(a⊕x1⊕x2⊕y1⊕y2)) ]

≥ 1− 2 · Prx1,x2,y1,y2∈F1 [ f(a⊕x1⊕y1) �= f(a⊕x1⊕x2⊕y1⊕y2) ].(4.5)

Subclaim 12.1. Prx1,x2,y1,y2∈F1 [ (f(a⊕x1⊕y1) �= f(a⊕x1⊕x2⊕y1⊕y2)) ] ≤ 2δ.
Proof. We bound Prx1,x2,y1,y2∈F1 [ (f(a⊕x1⊕y1) �= f(a⊕x1⊕x2⊕y1⊕y2)) ] by the

sum of two terms:

Prx1,x2,y1,y2∈F1
[ f(a⊕x1⊕y1) �= f((a⊕x1⊕y1)⊕x2⊕y2) ]

≤ Prx1,y1∈F1 [(a⊕x1⊕y1) ∈ H] · max
a′∈H

{Prx2,y2∈F1 [f(a
′) �= f(a′⊕x2⊕y2)]}

+ Prx1,y1∈F1 [(a⊕x1⊕y1) /∈ H] · max
a′ /∈H

{Prx2,y2∈F1 [f(a
′) �= f(a′⊕x2⊕y2)]} .(4.6)

By the definition of H and since Prx1,y1∈F1 [(a⊕x1⊕y1) /∈ H] ≤ 1, the second term in
the above sum is bounded by δ. It remains to bound the first term by δ as well. We
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shall use the trivial bound of 1 for maxa′∈H {Prx2,y2∈F1
[f(a′) �= f(a′⊕x2⊕y2)]} and

show that Prx1,y1∈F1
[(a⊕x1⊕y1) ∈ H] ≤ δ.

For each choice of x1 ∈ F1, consider the set B(a, x1)
def
= {y1 ∈ F1 : a⊕x1⊕y1 ∈

H}. Since for each pair y1, y
′
1 ∈ F1 such that y1 �= y′1 we have a⊕x1⊕y1 �= a⊕x1⊕y′1,

then there is a one-to-one mapping from B(a, x1) into H. Therefore, |B(a, x1)| ≤ |H|
for every x1 ∈ F1. It follows that

Prx1,y1∈F1
[(a⊕x1⊕y1) ∈ H] =

1

|F1|2
∑

x1∈F1

|B(a, x1)|

≤ |H||F1| ≤ δ · |F1|
|F1| = δ,(4.7)

where we have used Claim 11 in the last inequality.
Subclaim 12.2. Let 1

2 ≤ γ ≤ 1 and suppose that γ2 + (1 − γ)2 ≥ 1 − β for some
0 < β < 1. Then γ ≥ 1− β.

Proof. If γ2 + (1− γ)2 ≥ 1− β, then 2γ(1− γ) ≤ β. Since γ ≥ 1/2, this implies
that 1− γ ≤ β or, equivalently, that γ ≥ 1− β.

By combining (4.4) and (4.5) with Subclaim 12.1, we obtain that γ2 +(1− γ)2 ≥
1− 4δ. Claim 12 follows by applying Subclaim 12.2.

Recall that in order to prove Lemma 10 we need to show that for every
a, b, c ∈ G1, g(a⊕b⊕c) = 1. That is, by the definition of g, we need to show that
Prx,y∈F1 [f((a⊕b⊕c)⊕x⊕y) = 1] ≥ 1/2 for every a, b, c ∈ G1. To this end we first
prove the following related claim.

Claim 13. For every a, b, c ∈ G1

Prx1,y1,x2,y2,x3,y3∈F1
[f((a⊕x1⊕y1)⊕(b⊕x2⊕y2)⊕(c⊕x3⊕y3)) = 1] ≥ 1− 14δ.

Proof. We first observe that by the definition of WP (·) (see (4.2)) we have
Prx1,y1,x2,y2,x3,y3∈F1

[f((a⊕x1⊕y1)⊕(b⊕x2⊕y2)⊕(c⊕x3⊕y3)) = 1]

≥ Prx1,y1,x2,y2,x3,y3∈F1
[(a⊕x1⊕y1) ∈ F1 \H and

((b⊕x2⊕y2), (c⊕x3⊕y3)) ∈ (F1 × F1) \WP (a⊕x1⊕y1)]

≥ Prx1,y1∈F1 [(a⊕x1⊕y1) ∈ F1 \H]

× min
a′∈F1\H

Prx2,y2,x3,y3∈F1 [((b⊕x2⊕y2), (c⊕x3⊕y3)) ∈ (F1 × F1) \WP (a′)].(4.8)

By Claim 12 and since a ∈ G1, we know that Prx1,y1∈F1
[(a⊕x1⊕y1) ∈ F1] ≥ 1 − 4δ.

By (4.7) we know that Prx1,y1∈F1 [(a⊕x1⊕y1) ∈ H] ≤ δ. Hence,

Prx1,y1∈F1 [(a⊕x1⊕y1) ∈ F1 \H] ≥ 1− 5δ.(4.9)

It remains to bound the second term in the product above in (4.8). By Claim 12, and
since b, c ∈ G1, we know that Prx2,y2∈F1 [(b⊕x2⊕y2) ∈ F1] ≥ 1− 4δ and similarly that
Prx3,y3∈F1 [(c⊕x3⊕y3 ∈ F1] ≥ 1− 4δ. Hence

Prx2,y2,x3,y3∈F1 [((b⊕x2⊕y2), (c⊕x3⊕y3)) ∈ (F1 × F1)] ≥ (1− 4δ)2

≥ 1− 8δ.(4.10)

Let us fix some a′ ∈ F1 \H. By the definition of H we know that |WP (a′)| ≤ δ · |F1|2.
For any fixed x2, x3 ∈ F1 let

B(a′, b, c, x2, x3)
def
= {(y2, y3) ∈ F1 × F1 : ((b⊕x2⊕y2), (c⊕x3⊕y3)) ∈WP (a′)}.
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Observe that for every two different pairs (y2, y3), (y
′
2, y
′
3) ∈ F1 × F1 (i.e.,

such that either y2 �= y′2 or y3 �= y′3) the pair ((b⊕x2⊕y2), (c⊕x3⊕y3)) dif-
fers from ((b⊕x2⊕y′2), (c⊕x3⊕y′3)). That is, there is a one-to-one mapping from
B(a′, b, c, x2, x3) into WP (a′). It follows that for every x2, x3 ∈ F1,

|B(a′, b, c, x2, x3)| ≤ |WP (a′)| ≤ δ · |F1|2

and so

Prx2,y2,x3,y3∈F1
[((b⊕x2⊕y2), (c⊕x3⊕y3)) ∈WP (a′)] =

1

|F1|4
∑

x2,x3∈F1

|B(a′, b, c, x2, x3)|

≤ δ · |F1|2
|F1|2 = δ.(4.11)

The claim follows by combining (4.8)–(4.11).
We are now ready to prove Lemma 10.
Proof of Lemma 10. Consider any fixed choice of a, b, c ∈ G1. If a = b, then

(a⊕b⊕c) = c, so that (a⊕b⊕c) ∈ G1 and the claim holds by definition, and similarly
for the case a = c or b = c. Hence we may assume from now on that all three points
a, b, c are different.

Assume contrary to the claim that there exist a, b, c ∈ G1 such that g(a⊕b⊕c) �= 1.
By the definition of g this means that Prx,y∈F1 [f((a⊕b⊕c)⊕x⊕y) = 1] < 1/2. In other
words, if we let

O(a, b, c)
def
= {(x, y) ∈ F1 × F1 : f((a⊕b⊕c)⊕x⊕y) = 1},

then |O(a, b, c)| < |F1|2/2. We shall show that this contradicts Claim 13.
For every fixed choice of x1, x2, y1, y2 ∈ F1, let

O(x1, x2, y1, y2)
def
= {(x3, y3) ∈ F1 × F1 : ((x1⊕x2⊕x3), (y1⊕y2⊕y3)) ∈ O(a, b, c)}.

(In order to be consistent with previous notation, we should have let O(x1, x2, y1, y2)
be denoted by O(a, b, c, x1, x2, y1, y2), but we have chosen the above notation in con-
sideration of the reader.) Then similarly to what we have argued before for similar
subsets, |O(x1, x2, y1, y2)| ≤ |O(a, b, c)|. Hence,

Prx1,x2,x3,y1,y2,y3∈F1 [((x1⊕x2⊕x3), (y1⊕y2⊕y3)) ∈ O(a, b, c)]

=
1

|F1|6
∑

x1,x2,y1,y2∈F1

|O(x1, x2, y1, y2)|

≤ |O(a, b, c)|
|F1|2 < 1/2.(4.12)

Recalling that O(a, b, c) ⊂ F1 × F1, this implies that

Prx1,x2,x3,y1,y2,y3∈F1 [f((a⊕x1⊕y1)⊕(b⊕x2⊕y2)⊕(c⊕x3⊕y3)) = 1]

≤ Prx1,x2,x3,y1,y2,y3∈F1 [((x1⊕x2⊕x3), (y1⊕y2⊕y3)) ∈ O(a, b, c)]

+ Prx1,x2,x3,y1,y2,y3∈F1 [((x1⊕x2⊕x3), (y1⊕y2⊕y3)) /∈ F1 × F1].(4.13)

By (4.12), the first term in the sum above is less than 1/2. We turn to bound the
second term.
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Prx1,x2,x3,y1,y2,y3∈F1
[((x1⊕x2⊕x3), (y1⊕y2⊕y3)) /∈ F1 × F1]

≤ 2 · Prx1,x2,x3∈F1
[(x1⊕x2⊕x3) /∈ F1]

≤ 2 · Prx1∈F1
[x1 ∈ H]

+ 2 · Prx1∈F1 [x1 /∈ H] · max
x′
1 /∈H

Prx2,x3∈F1 [(x
′
1⊕x2⊕x3) /∈ F1]

≤ 2 · (δ + δ),(4.14)

where in the last inequality we have applied Claim 11 and the definition of H. Thus
we get that

Prx1,x2,x3,y1,y2,y3∈F1
[f((a⊕x1⊕y1)⊕(b⊕x2⊕y2)⊕(c⊕x3⊕y3)) = 1] < (1/2) + 4δ .

However, for δ ≤ 1/36 we get a contradiction to Claim 13.
Proof of Lemma 7. Suppose that the affinity test accepts with probability greater

than 1/10, and let g be as defined in (4.1). By Lemma 9 we have that dist(f, g) ≤ ε/25

as required. By applying Lemma 10 we get thatG1 is an affine subspace. Furthermore,
its dimension must be n − k given the premise of the lemma concerning the size of
F1. The last item in the lemma follows from the definition of g: given any input a,
the procedure Self-Correct simply selects a sufficiently large (but constant) number of
pairs x, y ∈ F1 and returns the majority value obtained for f(a⊕x⊕y). By Claim 12
it returns the correct value g(a) with high probability.

If F1 is an affine subspace, then by Fact 6 the test always accepts f , and, by
definition of g in (4.1), g = f . Finally, the procedure Self-Correct as defined above
always returns f(a) for every a ∈ {0, 1}n.

4.2. Analysis of the closure-under-intersection test. In this subsection we
prove Lemma 8.

4.2.1. Properties of affine subspaces. We first recall several simple proper-
ties of affine subspaces.

Claim 14. Let H be an affine subspace such that H = V ⊕ x, where x ∈ {0, 1}n
and V ⊆ {0, 1}n is a linear subspace. Then, we have the following:

1. x ∈ H.
2. For every z ∈ H we have that H = V ⊕z. By the definition of the ⊕ operator,
we thus also have that V = H ⊕ z for every z ∈ H.

3. |H| = |V | = 2dimV .
Claim 15. Let H, H ′ be two affine subspaces of {0, 1}n such that H �⊆ H ′. Then

|H ∩H ′|
|H| ≤ 1

2
.

Proof. The claim follows from the corresponding property of linear subspaces,
namely, V �⊆ V ′ implies that |V ∩ V ′|/|V | ≤ 1/2.

The following corollary is immediate.
Corollary 16. Let H, H ′ be two affine subspaces of {0, 1}n such that H ′ ⊆ H.

Then either H ′ = H or |H ′| ≤ |H|/2.
Claim 17. Let H, H ′ be two affine subspaces of {0, 1}n such that H ′ ⊆ H, and

let y ∈ H ′. Denote by V ′ the linear subspace such that H ′ = V ′ ⊕ y, and by V the
linear subspace such that H = V ⊕ y. Then we have the following:

1. V ′ ⊆ V .
2. For any x ∈ V we have (H ′⊕x) ⊆ H, and for any x �∈ V we have (H ′⊕x)∩

H = ∅.
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Proof. By definition, V ′ = H ′ ⊕ y ⊆ H ⊕ y = V . This proves the first part of the
lemma.

Now let x ∈ V . Since V and V ′ are linear subspaces and V ′ ⊆ V , then (V ′⊕x) ⊆
V . Thus, H ′ ⊕ x = (V ′ ⊕ y)⊕ x = (V ′ ⊕ x)⊕ y ⊆ V ⊕ y = H. On the other hand, let
x �∈ V . Observe that (V ′ ⊕ x) ∩ V = ∅. Since H ′ ⊕ x = (V ′ ⊕ y)⊕ x = (V ′ ⊕ x)⊕ y,
we get that (H ′ ⊕ x) ∩H = (V ′ ⊕ x)⊕ y ∩ (V ⊕ y) = ∅. This concludes the proof of
the claim.

4.2.2. Auxiliary claims. In order to prove Lemma 8 we will need several aux-
iliary claims. The first claim relates affine spaces that correspond to k-monomials and
monotonicity.

Claim 18. Let H be an affine subspace of {0, 1}n of size 2n−k. Assume also that
H is monotone. Namely, if x ∈ H and y � x, then y ∈ H. Then H = {x : xi1 =
1, . . . , xik = 1} for some subset i1, . . . , ik of coordinates.

Proof. Let V be an n−k dimensional linear subspace, and let y ∈ {0, 1}n be such
that H = V ⊕y. Let v1, . . . , vn−k be a basis of V . Consider an (n−k)×n matrix with
rows v1, . . . , vn−k. Its rank is n − k, and therefore it has n − k linearly independent
columns. Without loss of generality, these are the first n− k columns. Therefore the
restriction of the rows to the first n− k coordinates is a basis of {0, 1}n−k, and thus

it spans all the vectors in {0, 1}n−k and in particular the first n− k coordinates of y.
It follows that there is a vector v ∈ V , namely a linear combination of the rows, that
is equal to y on the first n − k coordinates. Therefore, z = (v ⊕ y) ∈ H is 0 on the
first n− k coordinates.

Since H is monotone, if |z| < k, or there exists a z′ �� z such that z′ ∈ H, then
|H| > 2n−k, contradicting our assumption on H. Hence H = {x : xi1 = 1, . . . , xik =
1}, where i1, . . . , ik are the coordinates on which z is 1.

Recall that by the premise of Lemma 8 there exists a function g such that

dist(f, g) ≤ 2−k−3, and G1
def
= {x : g(x) = 1} is an affine subspace of dimension

n − k. Claim 18 implies that if g is not a k-monomial, then the affine subspace G1

cannot be monotone. We shall use this, together with the fact that f and g are close,
to prove that there are many pairs x ∈ F1, y ∈ {0, 1}n such that f(y) �= f(x ∧ y). To
this end we define the following subsets.

Definition 9. Let x ∈ {0, 1}n and z ∈ 2x. Define G(x, z)
def
= {y| x ∧ y = z}.

We shall show that for many pairs (x, z), with x ∈ G1 and z ∈ 2x, the function g
is far from constant on G(x, z). Since the functions f and g are close to each other,
this will imply the existence of many violating pairs, as desired. First, we prove some
properties of the subsets G(x, z).

Claim 19. For every x ∈ {0, 1}n and z ∈ 2x, G(x, z) is an affine subspace
of {0, 1}n of size 2n−|x|. Furthermore, for every x ∈ {0, 1}n, the affine subspaces
{G(x, z)}z∈2x partition {0, 1}n.

Proof. These facts about G(x, z) follow easily from the following observation:
for a fixed x, the map mx : y → x ∧ y is a linear map from {0, 1}n to 2x, and
G(x, z) = m−1

x (z).

Claim 20. Let x ∈ G1 be such that there exists z ∈ 2x for which G(x, z) ⊆ G1.
Then G(x, x) ⊆ G1.

Proof. We first show that G(x, z) ⊕ x ⊕ z ⊆ G1. Since G1 is an affine subspace,
by Fact 6, it is enough to show that x and z lie in G1 and that G(x, z) is a subset
of G1. Taking into account the assumptions of the claim, we need only to show that
z ∈ G1. Since z � x, we have z ∧ x = z. Hence, z ∈ G(x, z) ⊆ G1.
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Next, we show that G(x, x) ⊆ G(x, z) ⊕ x ⊕ z. Take y ∈ G(x, x). Now define
y′ as follows. If zi = 1, then y′i = 1 (in this case always xi = 1). If zi = 0 and
xi = 1, then y′i = 0, and if zi = 0 and xi = 0, then y′i = yi. Thus, y′ ∧ x = z and
so y′ ∈ G(x, z). It is also easy to verify that y′ ⊕ x ⊕ z = y. (Note that y � x, and
therefore xi = 1 implies that yi = 1.) Hence, y ∈ G(x, z) ⊕ x ⊕ z. Since we have
shown that G(x, z)⊕ x⊕ z ⊆ G1, the claim follows.

We shall be interested in the following set:

X def
= {x ∈ G1 : G(x, x) ⊆ G1}.(4.15)

Thus X consists of those x ∈ G1 for which every y � x is in G1. Since, by Claim 18,
the set G1 is not monotone, then necessarily X �= G1. As we show momentarily, X is
actually significantly smaller than G1, and we shall exploit this in our proof.

Claim 21. The set X is an affine subspace of G1. Furthermore, if g is not a
k-monomial, then |X | ≤ 1

2 |G1|.
Proof. By Fact 6, in order to prove the first part of the lemma it suffices to show

that for every x1, x2, x3 ∈ X , we have x1 ⊕ x2 ⊕ x3 ∈ X . Let us fix x1, x2, x3 ∈ X ,
and let x = x1 ⊕ x2 ⊕ x3. To show that x ∈ X we have to show that G(x, x) ⊆ G1,
namely, that for every y � x we have y ∈ G1. Let y � x. Then there exist y1, y2, y3

such that y = y1 ⊕ y2 ⊕ y3, where yj � xj for j = 1, . . . , 3. (To verify this, choose
a coordinate i: (1) If yi = xi, set yji = xji for all j. (2) If yi = 1 and xi = 0, set

yji = 1 for all j.) That is, yj ∈ G(xj , xj) ⊆ G1. Therefore yj ∈ G1 for all j, and so
y = y1 ⊕ y2 ⊕ y3 ∈ G1.

By Corollary 16, since X is an affine subspace of G1, either X = G1 or |X | ≤
1
2 |G1|. If X = G1, then for any x ∈ G1 we have G(x, x) = {y : y � x} ⊆ G1, namely,
G1 is monotone. By Claim 18, g is a k-monomial, which contradicts our assumptions.
Therefore, |X | ≤ 1

2 |G1|.
In the next claim we show that for every x ∈ G1 \ X , the function g is far from

constant on G(x, z) for many z ∈ 2x. Observe that this is trivially true if g is a
monotone monomial, since in this case the set G1 \ X is empty.

Claim 22. For every x ∈ G1 \X , and for any fixed function h : {0, 1}n → {0, 1},
1

2|x|
·
∑

z∈2x

Pry∈G(x,z)[g(y) �= h(z)] ≥ 2−k .

Proof. Let us fix x ∈ G1 \X and a function h. For every z ∈ 2x, if h(z) = 0, then

Pry∈G(x,z)[g(y) �= h(z)] =
|G(x, z) ∩G1|
|G(x, z)| ,

and if h(z) = 1, then

Pry∈G(x,z)[g(y) �= h(z)] =
|G(x, z) \G1|
|G(x, z)| = 1− |G(x, z) ∩G1|

|G(x, z)| .

Hence,

Pry∈G(x,z)[g(y) �= h(z)] ≥ min

{ |G(x, z) ∩G1|
|G(x, z)| , 1− |G(x, z) ∩G1|

|G(x, z)|
}
.(4.16)

However, for all z ∈ 2x, G(x, z) �⊆ G1. (Otherwise, by Claim 20, we would have

G(x, x) ⊆ G1, and so x ∈ X .) Thus, by Claim 15, |G(x,z)∩G1|
|G(x,z)| ≤ 1

2 . Combining this
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with (4.16), we get

1

2|x|
·
∑

z∈2x

Pry∈G(x,z)[g(y) �= h(z)] ≥ 1

2|x|
·
∑

z∈2x

|G(x, z) ∩G1|
|G(x, z)|

= 2−n ·
∑

z∈2x

|G(x, z) ∩G1| = 2−n · |G1| = 2−k.(4.17)

In the last sequence of steps we have used the following: (1) |G(x, z)| = 2n−|x| for
every z (Claim 19); (2) For every x, the subsets G(x, z) form a partition of {0, 1}n
(Claim 19); (3) G1 is of size 2n−k.

4.2.3. Proof of Lemma 8. Let g be the function ensured by the premise of
Lemma 8. If g is not a k-monomial, then by Claim 21 we know that |X | ≤ |G1|/2. In
other words,

|G1 \ X | ≥ 1

2
|G1| ≥ 2n−k−1,

where the second inequality follows from the fact that G1 is an affine subspace of
dimension n− k. Since dist(f, g) ≤ 2−k−3, where | |F1| − 2n−k | ≤ 2n−k−3, we know
that

|(F1 ∩G1) \ X | ≥ 2n−k−2.

Hence, with probability of at least 1− (1− 1/4)32 > 1− e−8, Algorithm 2 obtains in
Step 3(a) a point x ∈ (F1 ∩G1) \ X . Let us denote this point by x1.

Since x1 ∈ G1 \ X we know by Claim 22 that

1

2|x1| ·
∑

z∈2x1

Pry∈G(x1,z)[g(y) �= g(z)] ≥ 2−k .(4.18)

By Claim 19, |G(x1, z)| = 2n−|x
1|, and so we have that

1

2|x1| ·
∑

z∈2x1

Pry∈G(x1,z)[g(y) �= g(z)] =
1

2|x1|
∑

z∈2x1

1

2n−|x1|
∣∣{y ∈ G(x1, z) : g(y) �= g(z)}∣∣

=
1

2n
∣∣{y ∈ {0, 1}n : g(y) �= g(x1 ∧ y)}∣∣

= Pry∈{0,1}n [g(y) �= g(x1 ∧ y)].(4.19)

By combining (4.18) and (4.19) we have that

Pry∈{0,1}n [g(y) �= g(x1 ∧ y)] ≥ 2−k .(4.20)

Hence, with probability of at least 1−(1−2−k)2k+3

> 1−e−8, Algorithm 2 will select,
in Step 3(b), such a point y1 ∈ {0, 1}n for which g(y1) �= g(x1 ∧ y1). Finally, if both
calls to Self-Correct, in Step 3(c), return correct values, which occurs with probability
of at least 1− 1/20, then the algorithm will reject as desired. The lemma follows by
combining all error probabilities.
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4.3. Testing monomials when k is unspecified. Suppose that we want to
test whether a function f is a monomial without the size of the monomial, k, being
specified. In this case we start by finding k. We obtain an estimate α to Pr[f = 1] by
taking a sample of size Θ(1/ε). By a multiplicative Chernoff bound, such a sample
ensures that, with high probability, if Pr[f = 1] ≥ ε/2, then α ≥ ε/4, while if
Pr[f = 1] < ε/8, then α < ε/4. Hence, if α < ε/4, then we can immediately accept.
This is true, since we may assume that Pr[f = 1] < ε/2, and so f is close to every
monomial that contains at least log(2/ε) literals.

Otherwise, we may assume that Pr[f = 1] ≥ ε/8, and a multiplicative Chernoff
bound implies that, with high probability, (1−1/4)·Pr[f = 1] < α < (1+1/4)·Pr[f =
1]. Now we look for an integer k for which 4/5α ≤ 2−k ≤ 4/3α. If there is no such
integer, we reject. If there is, there is at most one, and we choose it as our estimate for
k. If f is in fact a monomial, then this estimate of k is correct with high probability.
Given this k, we proceed as before.

5. Testing monotone DNF formulae. In this section we describe an algo-
rithm for testing whether a function f is a monotone DNF formula with at most �
terms for a given integer �.

In other words, we test whether f = T1 ∨ T2 ∨ · · · ∨ T�′ , where �′ ≤ �, and each
term Ti is a monotone monomial. Note that we allow the size of the terms to vary. We
assume, without loss of generality, that no term contains the set of variables of any
other term (or else we can ignore the more specific term), though the same variable
can of course appear in several terms.

The basic idea underlying the algorithm is to test whether the set F1
def
= {x :

f(x) = 1} can be “approximately covered” by at most � terms (monomials). To this
end, the algorithm finds strings xi ∈ {0, 1}n and uses them to define functions fi that
are tested for being monomials. If the original function f is in fact an �-term DNF,
then, with high probability, each such function fi corresponds to one of the terms of
f .

The following notation will be useful. Let f be a monotone �-term DNF, and let
its terms be T1, . . . , T�. Then, for any x ∈ {0, 1}n, we let S(x) ⊆ {1, . . . , �} denote
the subset of indices of the terms satisfied by x. That is,

S(x)
def
= {i : Ti(x) = 1} .

In particular, if f(x) = 0, then S(x) = ∅. This notion extends to a set R ⊆ F1, where

S(R)
def
=
⋃

x∈R S(x). We observe that if f is a monotone �-term DNF, then for every

x, y ∈ {0, 1}n

S(x ∧ y) = S(x) ∩ S(y).

We shall also need the following definitions.
Definition 10 (single-term representatives). Let f be a monotone �-term DNF.

We say that x ∈ F1 is a single-term representative for f if |S(x)| = 1. That is, x
satisfies only a single term in f .

Definition 11 (neighbors). Let x ∈ F1. The set of neighbors of x, denoted by
N(x), is defined as follows:

N(x)
def
= {y | f(y) = 1 and f(x ∧ y) = 1}.

The notion of neighbors extends to a set R ⊆ F1, where N(R)
def
=
⋃

x∈RN(x).
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Note that the above definition of neighbors is very different from the standard
notion (that is, strings at Hamming distance 1), and in particular depends on the
function f .

Consider the case in which x is a single-term representative of f , and S(x) = {i}.
Then, for every neighbor y ∈ N(x), we must have i ∈ S(y) (or else S(x∧ y) would be
empty, implying that f(x∧ y) = 0). Notice that the converse statement holds as well;
that is, i ∈ S(y) implies that x and y are neighbors. Therefore, the set of neighbors
of x is exactly the set of all strings satisfying the term Ti. The goal of the algorithm
will be to find at most � such single-term representatives x ∈ {0, 1}n, and for each
such x to test that its set of neighbors N(x) satisfies some common term. We shall
show that if f is in fact a monotone �-term DNF, then all these tests pass with high
probability. On the other hand, if all the tests pass with high probability, then f is
close to some monotone �-term DNF.

We start with a high-level description of the algorithm and then show how to
implement its main step of finding single-term representatives.

Algorithm 3. Test for monotone �-term DNF.

1. R← ∅. R is designated to be a set of single-term representatives for f .

2. For i = 1 to �+ 1 (try to add � single-term representatives to R):
(a) Take a uniform sample Ui of size m1 = Θ(� log �/ε) strings. Let Wi =

(Ui ∩ F1) \ N(R). That is, Wi consists of strings x in the sample such
that f(x) = 1, and x is not a neighbor of any string already in R.
Observe that if the strings in R are in fact single-term representatives, then

every x ∈ Wi satisfies only terms not satisfied by the representatives in R.

(b) If i = �+ 1 and Wi �= ∅, then reject.
If there are more than 
 single term representatives for f , then necessarily f

is not an 
-term DNF.

(c) Else, if |Wi|
m1

< ε
4 then go to Step 3.

The current set of representatives already “covers” almost all of F1.

(d) Else ( |Wi|
m1
≥ ε

4 and i ≤ �), use Wi in order to find a string xi that is des-
ignated to be a single-term representative of a term not yet represented
in R. This step will be described subsequently.

3. For each string xi ∈ R, let the function fi : {0, 1}n �→ {0, 1} be defined as
follows: fi(y) = 1 if and only if y ∈ N(xi).
As observed previously, if xi is in fact a single-term representative, then fi is a

monomial.

4. For each fi, test that it is monomial, using distance parameter ε′ = ε
2� and

confidence 1− 1
6� (instead of 2

3—this can simply be done by O(log �) repeated
applications of each test).
Note that we do not specify the size of the monomial, and so we need to apply the

appropriate variant of our test, as described in subsection 4.3.

5. If any of the tests fail then reject, otherwise accept.

The heart of the algorithm lies in finding a new representative in each iteration
of Step 2(d). This procedure will be described and analyzed shortly. In particular,
we shall prove the following lemma.

Lemma 23. Suppose that f is a monotone �-term DNF, and let R ⊂ {0, 1}n
be a subset of single-term representatives for f such that Pr [x ∈ (F1 \N(R))] ≥ ε/8.
Let Ui be a uniformly selected sample of m1 = Θ(� log �/ε) strings, and let Wi =
(Ui ∩ F1) \N(R). Then there exists a procedure that receives Wi as input, for which
the following holds:
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1. With probability at least 1 − 1
6� , taken over the choice of Ui and the inter-

nal coin flips of the procedure, the procedure returns a string xi that is a
single-term representative for f of a term not yet represented in R. That is,
|S(xi)| = 1 and S(xi) ∩ S(R) = ∅.

2. The query complexity of the procedure is O(� log2 �/ε).
Conditioned on the above lemma we can prove the following theorem.
Theorem 3. Algorithm 3 is a testing algorithm for monotone �-term DNF. The

query complexity of the algorithm is Õ(�2/ε).
Proof. We shall use the following notation: for any set R ⊂ {0, 1}n, let

p̄(R)
def
= Pr[x ∈ (F1 \N(R))].

Suppose that f is a monotone �-term DNF, and consider each iteration of Step 2. By
Lemma 23, if all strings in R are single-term representatives for f and p̄(R) ≥ ε/8, then
with probability of at least 1− 1

6� the procedure for finding a single-term representative
in fact returns a new representative (of a term not yet represented in R). Hence,
the probability that, for some iteration i, the string xi returned by the procedure
is not a single-term representative is at most 1/6. Conditioned on such an event
not occurring, Algorithm 3 completes Step 2 with a set R that contains at most �
single-term representatives for f .

In such a case, by the definition of single-term representatives, each fi defined in
Step 3 of Algorithm 3 is a monotone monomial. For each fixed fi, the probability that
it fails the monomial test is at most 1

6� . By applying a union bound, the probability

that any one of the fi’s fail is at most 1
6 . Adding up the error probabilities, we obtain

that f is accepted with probability of at least 2/3.
We now turn to the case in which f is ε-far from being a monotone �-term DNF.

Consider the value of p̄(R) at the start of each iteration i of Step 2. Observe that p̄(R)
does not increase with i. If p̄(R) > ε/2, then, by a multiplicative Chernoff bound, the

probability that |Wi|
m1
≤ ε/4 (causing Algorithm 3 to exit Step 2) is smaller than 1

6� .
Hence, the probability that Algorithm 3 completes Step 2 without rejecting and with
a set R for which p̄(R) > ε/2 is at most 1/6.

Conditioned on such an event not occurring, consider the functions fi defined
in Step 3 of Algorithm 3. We claim that at least one of these functions is ε

2� -far
from being a monomial. To verify this, assume in contradiction that all these |R| ≤ �
functions are ε

2� -close to being monomials. For each such function fi, let gi be a closest
monomial to fi, and let g = g1 ∨ g2 ∨ · · · ∨ g|R|. Then dist(f, g) ≤ |R| · ε

2� + p̄(R) ≤ ε,
contradicting the fact that f is ε-far from any �-term DNF. Thus, let ft be one of the
fi’s that is ε

2� -far from being a monomial. The probability that the monomial test
does not reject ft is at most 1

6� . Adding up the error probabilities, f is rejected with
probability of at least 2/3.

Finally, we bound the query complexity of Algorithm 3. There are at most �+ 1
iterations in Step 2 of the algorithm. In each iteration, m1 = O(� log �/ε) strings are
queried in Step 2(a). By Lemma 23, O(� log2 �/ε) strings are queried by the procedure
for finding a new representative that is called in Step 2(d). By Theorem 2, testing that
each of the at most � functions fi is a monomial requires a total of �·O(1/ε′)·O(log �) =
Õ(�2/ε) queries. Therefore, the total number of queries performed by Algorithm 3 is
Õ(�2/ε).

5.1. Finding new representatives. Suppose that f is a monotone �-term DNF
with terms T1, . . . , T�, and consider an arbitrary iteration i in Step 2 of Algorithm 3.
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Assume that R ⊂ {0, 1}n is a subset of single-term representatives for f , such that

Pr[x ∈ (F1 \N(R))] ≥ ε/8. Let N(R)
def
= F1 \N(R) be the set of all the strings that

are not neighbors of any string in R, and let S(R)
def
= {1, . . . , �} \ S(R) be the set of

indices of terms not yet represented in R. By definition, Wi ⊆ N(R), and for every
x ∈Wi we have S(x) ⊆ S(R).

Given a string x0 ∈ Wi, we shall try to “remove” terms from S(x0) until we are
left with a single term. More precisely, we produce a sequence of strings x0, . . . , xr,
where x0 ∈ Wi, such that ∅ �= S(xj+1) ⊆ S(xj), and in particular |S(xr)| = 1. The
aim is to decrease the size of S(xj) by a constant factor for most j’s. This will ensure
that for r = Θ(log �) the final string xr is a single-term representative as desired.

How is such a sequence obtained? Given a string yj ∈ N(xj), define xj+1 = xj∧yj .
Then f(xj+1) = 1 (i.e., S(xj+1) �= ∅), and S(xj+1) = S(xj) ∩ S(yj) ⊆ S(xj). The
string yj is acquired by uniformly selecting a sufficiently large sample from {0, 1}n,
and picking the first string in the sample that belongs to N(xj), if one exists. The
exact procedure follows.

Procedure for finding a new representative, given Wi ⊆ N(R).
1. Let the strings in Wi be denoted w1, . . . , w|Wi|.
2. Uniformly and independently select r = Θ(log �) samples, Y0, . . . , Yr−1, each
consisting of m2 = O(� log �/ε) strings from {0, 1}n.

3. found← FALSE; t← 0;
4. While found �= TRUE and t < |Wi| do:

(a) t← t+ 1; x0 ← wt.
(b) For j = 1 to r

(i) If Yj−1∩N(xj−1) = ∅, then exit the “for” loop and go to Step 4(a).
(ii) Otherwise, pick the first string yj−1 ∈ Yj−1 ∩ N(xj−1), and let

xj = xj−1 ∧ yj−1.
(c) If j = r, then found← TRUE.

5. If found = TRUE, then return xr. Otherwise, return an arbitrary string.
We first prove that if Yj intersects N(xj), then the probability that the size

of S(xj+1) is significantly smaller than that of S(xj) is at least 1/3. Observe that
since the sample Yj is uniformly distributed in {0, 1}n, then Yj ∩N(xj) is uniformly
distributed in N(xj).

Claim 24. Let xj be a fixed string. With probability of at least 1/3 over the
uniform choice of a string yj ∈ N(xj), |S(xj ∧ yj)| ≤ 1 + 3

4 · (|S(xj)| − 1).
Proof. Without loss of generality, let S(xj) = {1, . . . , t}. We partition the set of

neighbors N(xj) into disjoint subsets Ni(xj), for 1 ≤ i ≤ t, where

Ni(xj) = {y ∈ N(xj) : i ∈ S(y) and for every i′ < i, i′ /∈ S(y)}.
Since yj is uniformly distributed in N(xj), we can view it as being selected by first

choosing i with probability
|Ni(xj)|
|N(xj)| and then selecting y uniformly in Ni(xj).

Consider the case yj ∈ N1(xj). In order to select a string uniformly in N1(xj),
we first set to 1 all the bits corresponding to the variables in T1 and then set the
remaining bits to 0 or 1 with equal probability. Since for every i �= 1 there is at least
one variable that appears in Ti and not in T1, we have that

Pr [Ti(yj) = 0 | yj ∈ N1(xj)] ≥ 1

2
.

It follows that the expected number of indices i ∈ S(xj), i �= 1, for which Ti(yj) =
1 is at most (t−1)/2. By Markov’s inequality, the probability that there are more than
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(1−α)(t− 1) terms Ti, i �= 1, satisfied by a uniformly selected yj ∈ N1(xj) is at most
1

2(1−α) . Setting α = 1/4, we get that, with probability of at least 1
3 , over the choice

of a uniformly selected yj ∈ N1(xj), we have that |S(xj+1)| ≤ 1 + 3
4 · (|S(xj)| − 1).

It is easy to see that for any Ni(xj), i > 1, this probability is at least as large. In
particular, note that for i = t, for any yj ∈ Nt(xj), |S(xj+1)| = 1.

The next corollary follows directly from Claim 24 and the fact that |S(x0)| ≤ �.
Corollary 25. Let r = c · log �, where c is a sufficiently large constant, and

let x0 be a fixed string in Wi. Consider the following process, consisting of r steps,
where in the j’s step we uniformly and independently select a string yj−1 ∈ N(xj−1)
and set xj = xj−1 ∧ yj−1. Then, with probability of at least 1− 1

18� over the choice of
y0, . . . , yr−1, we obtain |S(xr)| = 1.

Finally, we bound the size of a sample Yj sufficient for acquiring a string yj ∈
N(xj) with high probability. We first define a “good initial string” x0. This is a string
that satisfies only relatively “large” terms.

Definition 12. A string x0 will be called a good initial string if for every i ∈
S(x0), Pr[Ti = 1] ≥ ε

16� .

Recall that N(R) = F1 \N(R) and define the set

Good
def
=
{
x ∈ N(R) | x is a good initial string

}
.

Claim 26. Suppose that Pr[x ∈ N(R)] ≥ ε
8 . Then the probability, taken over the

choices of Ui, that Wi does not contain any good initial strings is at most
1

18� .

Proof. Recall that p̄(R)
def
= Pr[x ∈ N(R)] and that S(R)

def
= {1, . . . , �}\S(R). For

any i ∈ S(R), consider the event

Ei
def
=
{
x ∈ N(R) and Ti(x) = 1

}
.

By definition, p̄(R) = Pr[
⋃

i∈S(R) Ei]. Let

Ssmall(R) =

{
i ∈ S(R) and Pr[Ei] ≤ p̄(R)

2�

}
.

Clearly, for any term i, Pr[Ti = 1] ≥ Pr[Ei]. Therefore, if x ∈ (
⋃

i∈S(R) Ei) \
(
⋃

i∈Ssmall(R) Ei), then S(x) ⊆ S(R) \ Ssmall(R), and therefore for all i ∈ S(x) we

have that Pr[Ti(x) = 1] ≥ Pr[Ei] ≥ p̄(R)
2� ≥ ε

16� . Thus, x ∈ Good. Therefore,

Pr[Good] ≥ Pr








⋃

i∈S(R)

Ei



 \



⋃

i∈Ssmall(R)

Ei









≥ Pr




⋃

i∈S(R)

Ei



− Pr




⋃

i∈Ssmall(R)

Ei





≥ p̄(R)− � · p̄(R)
2�

=
p̄(R)

2
.

Since p̄(R) ≥ ε
8 and the size of the sample Ui is Θ(� log �/ε), then the probability that

Wi does not contain any good initial string is, for a sufficiently large constant in the
Θ(·) notation, smaller than 1

18� .
The next claim follows from the definition of a good initial string.
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Claim 27. Let m2 = c1 · � log �/ε and r = c2 · log �, where c1, c2 are sufficiently
large constants. Let Y1, . . . , Yr be samples of m2 strings each, and suppose that x0 is
a good initial string. Then, for each 1 ≤ j ≤ r, the probability that Yj ∩N(xj) �= ∅ is
at least 1− 1

18�2 .
We can now complete the proof of Lemma 23, and hence the correctness of The-

orem 3.
Proof of Lemma 23. By the premise of the lemma, Pr[x ∈ N(R)] ≥ ε/8. By

Claim 26, the set Wi contains a good initial string with probability at least 1− 1
18� .

Conditioned on this event, let us fix such a string x0, and consider the execution of
Step 4(a) in the procedure. By Claim 27, the probability that there exists a j ≤ r
for which the sample Yj does not contain a string in N(xj) is at most 1

18� . Since
the strings in Yj are uniformly selected from {0, 1}n, the strings in Yj ∩ N(xj) are
uniformly distributed in N(xj). Hence, conditioned on each Yj containing a string
from N(xj), we can apply Corollary 25 and get that with probability of at least 1− 1

18� ,

|S(xr)| = 1. Since x0 ∈ N(R), necessarily xr ∈ N(R). Therefore, with probability
of at least 1 − 3 · 1

18� = 1 − 1
6� , taken over the choices of Ui and the samples Yj , the

procedure returns a string xr that is a single-term representative for f of a term not
yet represented in f .

The number of queries performed by the procedure is r · m2 = O(� log2 �/ε) as
promised.

6. Testing singletons without testing linearity. Recall that by Claim 1 an
alternative characterization of singletons is that Pr[f = 1] = 1/2, and furthermore
that there are no violating pairs x, y ∈ {0, 1}n. That is, there are no x, y such
that f(x∧ y) �= f(x)∧ f(y). We show that the following simple algorithm that checks
these properties is a testing algorithm for singletons if f is not too far from a singleton
function. Let Fsing denote the class of singletons. The algorithm will receive a value
γ0 such that ming∈Fsing

dist(f, g) ≤ 1
2 − γ0. That is, γ0 is a lower bound on the

difference between 1/2 and the distance of f to the closest singleton. We shall think
of γ0 as a constant.

Algorithm 4. Test for singletons with lower bound γ0.
1. Size Test: Uniformly select a sample of m = Θ(1/ε2) strings in {0, 1}n. For
each x in the sample, obtain f(x). Let α be the fraction of sample strings x
such that f(x) = 1. If |α− 1/2| > ε/4, then reject; otherwise, continue.

2. Closure-Under-Intersection Test: Repeat the following Θ(ε−1γ−1
0 ) times: Uni-

formly select x, y ∈ {0, 1}n. If x and y are a violating pair, then reject.
3. If no step caused rejection, then accept.
Theorem 4. If f is a singleton, then Algorithm 4 accepts with probability of at

least 2/3. If f is ε-far from any singleton where ε is bounded away from 1/2, then
the algorithm rejects with probability of at least 2/3. The query complexity of the
algorithm is O(1/ε2).

Proof. If f is a singleton, then Pr[f = 1] = 1/2. By an additive Chernoff bound,
and for the appropriate constant in the Θ(·) notation, the probability that it is rejected
in the first step of Algorithm 4 is less than 1/3. By the definition of singletons, f
always passes the closure-under-intersection test.

Suppose that f is ε-far from any singleton, and let δ be its distance to the closest
singleton. Thus ε < δ ≤ 1/2−γ0. We show that f is rejected with probability greater
than 2/3.

1. If |Pr[f = 1] − 1/2| > ε
2 , then f is rejected in the first step of Algorithm 4

with probability of at least 5/6.
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2. Otherwise, |Pr[f = 1] − 1/2| ≤ ε
2 < δ

2 . In this case, as we show shortly in

Lemma 28, the probability of obtaining a violating pair is at least δ
4 (

1
2 − δ) ≥

ε
4 · γ0. Therefore, f will be rejected with probability of at least 5/6 in the
second step of the algorithm (the closure-under-intersection test).

Thus, the probability that f is accepted by the algorithm is at most a 1/3, as
required.

Lemma 28. Let δ be the distance of f to the closest singleton. If Pr[f(x) = 1] ≥
1
2 − δ

2 , then the probability of obtaining a violating pair is at least
δ
4 (

1
2 − δ).

Proof. Let xi be the closest singleton to f , so that Pr[f(x) �= xi] = δ. Define

G1 = {x|f(x) = 1, xi = 1}, B1 = F1 \G1,

G0 = {x|f(x) = 0, xi = 0}, B0 = F0 \G0.

A simple counting argument shows that there are (1
2 − δ)2n disjoint pairs x, x′,

such that (1) x ∈ G1, x
′ ∈ G0; (2) x and x′ differ only on the ith bit. To see why

this is true, simply match each x ∈ G1 to a point x′, which differs with x only on the
ith bit. Thus, there are at least |G1| − |B1| points x ∈ G1 that must be matched to
points x′ ∈ G0. However, |G1| + |B0| = 2n−1, and |B1| + |B0| = δ2n, and therefore
|G1| − |B1| = ( 1

2 − δ)2n.
Now consider any point y ∈ B1, and let x ∈ G1, x

′ ∈ G0 be a matched pair as
defined above. Then x ∧ y = x′ ∧ y, but f(x) ∧ f(y) = 1 while f(x′) ∧ f(y) = 0.
Therefore, either f(x ∧ y) �= f(x) ∧ f(y) or f(x′ ∧ y) �= f(x′) ∧ f(y), and so either y
and x are a violating pair, or y and x′ are a violating pair.

Since Pr[f(x) = 1] ≥ 1
2 − δ

2 , then |G1| + |B1| ≥ 2n( 1
2 − δ

2 ). Using again the fact
that |G1|− |B1| = ( 1

2 − δ)2n, we get that |B1| ≥ δ2n−2. It follows that the probability

of obtaining a violating pair is at least δ
4 (

1
2 − δ).

The above analysis breaks when f is actually almost 1/2 − far from every sin-
gleton, since in this case δ is close to 1/2, and the probability δ

4 (
1
2 − δ) of obtaining a

violating pair is not bounded from below. Another disadvantage of Algorithm 4 is the
two-sided error probability for testing singletons, as opposed to the one-sided error
we achieved in Algorithm 1 when we added the parity test.

Algorithm 4 can be generalized to testing k-monomials, with a query complexity
of O(1/ε2). The probability of choosing a violating pair can be shown to be at least
δ
4 (2
−k − δ). Thus the requirement here is that δ will be strictly smaller than 2−k.

Notice that requiring that δ = O(1/2k) is not really a restriction: every function f
for which Pr[f(x) = 1] is approximately 2−k is O(2−k)-close to being a monomial,
and our algorithm first verifies that in fact Pr[f(x) = 1] is approximately 2−k. The
restriction is in requiring that it be strictly smaller than 2−k.

Another alternative test for singletons is to replace the relatively expensive test
of checking whether Pr[f(x) = 1] is approximately 1/2, by extending the notion of
a violating pair. We will say that x, y ∈ {0, 1}n are a violating pair if f(x ∧ y) �=
f(x) ∧ f(y) or if f(x ∨ y) �= f(x) ∨ f(y). Then in a similar way to the proof of
Lemma 28, it can be shown that the probability of obtaining a violating pair is at
least δ

2 (
1
2 − δ). (In this case the size of either B0 or B1 is at least δ2n−1. Therefore

choosing y ∈ B1 or y ∈ B0 and x, x′ as before will result in a violating pair either
to the ∧ test or to the ∨ test.) The query complexity of this algorithm will be only
O(1/ε), and it will have a one-sided error. Unfortunately, this algorithm does not
extend to testing monomials.
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Further research. Our results raise several questions that we believe may be
interesting to study.

• Our algorithms for testing singletons and, more generally, monomials, apply
two tests. The role of the first test is essentially to facilitate the analysis of
the second, natural test (the closure-under-intersection test). The question is
whether the first test is necessary.
• The query complexity of our algorithm for testing �-term monotone DNF has
a quadratic dependence in �. While some dependence on � seems necessary,
we conjecture that a lower dependence is achievable. In particular, suppose
we slightly relax the requirements of the testing algorithm and ask only that it
rejects functions that are ε-far from any monotone DNF with at most c · � (or
possibly �c) terms for some constant c. Is it possible, under this relaxation,
to devise an algorithm that has only polylogarithmic dependence on �?
• Finally, can our algorithm for testing monotone DNF functions be extended
to testing general DNF functions?

Acknowledgments. We would like to thank Luca Trevisan for bringing to our
attention the relation between testing the long code and testing singletons. We would
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[3] Y. Aumann, J. Håstad, M. Rabin, and M. Sudan, Linear consistency testing, in Proceedings

of the 3rd International Workshop on Randomization and Approximation Techniques in
Computer Science, Berkeley, CA, 1999, Springer-Verlag, Berlin, 1999, pp. 109–120.
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ENUMERATION OF MATCHINGS IN THE INCIDENCE GRAPHS
OF COMPLETE AND COMPLETE BIPARTITE GRAPHS∗
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Abstract. If G = (V,E) is a graph, the incidence graph I(G) is the graph with vertices V ∪ E
and an edge joining v ∈ V and e ∈ E when and only when v is incident with e in G. For G equal to
Kn (the complete graph on n vertices) or Kn,n (the complete bipartite graph on n+ n vertices), we
enumerate the matchings (sets of edges, no two having a vertex in common) in I(G), both exactly
(in terms of generating functions) and asymptotically. We also enumerate the equivalence classes of
matchings (where two matchings are considered equivalent if there is an automorphism of G that
induces an automorphism of I(G) that takes one to the other).

Key words. generating functions, asymptotic enumeration

AMS subject classifications. 05A15, 05A16, 05C05

PII. S0895480101395695

1. Introduction. One goal of this paper is the enumeration of matchings in the
incidence graphs of certain graphs. There are of course many standard combinato-
rial results that can be interpreted as counting matchings in a graph. Indeed, for
the graphs we consider, the method of inclusion-exclusion yields a summation from
which the asymptotic behavior can be obtained by elementary means. We shall also
be interested, however, in enumerating equivalence classes of matchings (where two
matchings are considered equivalent if there is an automorphism of the underlying
graph that induces an automorphism of the incidence graph that takes one matching
into the other). For this problem, these standard methods do not serve, and we have
had to adopt a different strategy, using Pólya’s theory of enumeration [P2, P3] to
derive generating functions, and in the bipartite case an analytic method for diago-
nalizing a bivariate power series introduced by Pippenger [P1]. This new strategy,
however, works only for certain highly symmetric graphs. For reasons we will explain
later, we are particularly interested in the incidence graphs of complete graphs and
of complete bipartite graphs.

We shall denote by Kn the complete graph on n vertices, and by Kn,m the com-
plete bipartite graph on n+m vertices. If G = (V,E) is a graph, the incidence graph
I(G) is the graph with edges V ∪ E and an edge joining v ∈ V and e ∈ E when and
only when v is incident with e in G. If G is a graph, we shall denote by M(G) the set
of matchings in G. (These matchings need not be maximum, or even maximal. Thus
M(G) is never empty, since G always has an empty matching. All of the enumerations
we present can easily be extended to enumerate matchings by cardinality, simply by
inserting an additional indeterminate into the generating functions.)

In section 2 we shall enumerate the matchings M
(
I(Kn)

)
in the incidence graph

I(Kn) of the complete graph Kn. We first do this by inclusion-exclusion, then (as
background to what will follow) in a more cumbersome way by Pólya’s method.

In section 3 we shall enumerate the equivalence classes M̃
(
I(Kn)

)
of matchings
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in the incidence graph I(Kn) of the complete graph Kn. Here, only Pólya’s method is
applicable. The result is closely related to the enumeration of “functional digraphs”
by Harary [H] and Read [R].

In section 4 we shall enumerate the matchings M
(
I(Kn,n)

)
in the incidence graph

I(Kn,n) of the complete bipartite graph Kn,n. Again we use both inclusion-exclusion
and Pólya’s method. To obtain the asymptotic behavior from the generating function,
we use the method of Pippenger [P1].

In section 5 we shall enumerate the equivalence classes M̃
(
I(Kn,n)

)
of matchings

in the incidence graph I(Kn,n) of the complete bipartite graph Kn,n. This result
requires combining almost all the techniques introduced in earlier sections.

Most of the methods used in this paper were also used by Pippenger [P1], and
many of the calculations done here are along lines similar to ones in that paper.
Accordingly, we shall give fewer details for such calculations, referring the reader to
that paper when appropriate.

The problems considered in this paper originally arose from the study of “con-
centrators” for communication switching (see Beneš [B1, B2]). Here, the vertices of
I(G) representing edges of G model “clients,” while those representing vertices of G
model “servers.” A “state” of the system, in which some clients are connected in a
one-to-one fashion to some servers, then corresponds to a matching in I(G). Enumer-
ation of the matchings thus gives information about the amount of storage required to
keep track of the state of the system, while enumeration of the equivalence classes of
matchings gives information about the number of essentially different situations that
must be considered in formulating a control policy for the system. The 12 elements
of M̃

(
I(K4)

)
are listed by Beneš [B1, B2].

2. Enumerating M
(
I(Kn)

)
. Let An denote the cardinality of M

(
I(Kn)

)
.

Theorem 2.1. We have

An =
∑

j≥0

(n)2j
2j j!

(−1)jnn−2j .

(Here (n)k = n(n− 1) · · · (n− k + 1).)
Proof. Consider a matching X ∈ M

(
I(Kn)

)
. For each edge {e, v} ∈ X (where

e ∈ E is an edge of Kn = (V,E) and v ∈ V is a vertex incident with e), we shall direct
the edge e = {v, w} out of v and into w. In this way we direct some of the edges of Kn.
These directed edges form the graph of a map σ : D → V from a subset D of V to V .
Furthermore, this map does not have any fixed points (σ(v) = v) or exchanged pairs
of points (σ(v) = w and σ(w) = v). Conversely, every map σ : D → V with D ⊆ V
having no fixed points or exchanged pairs arises in this way from unique matching in
M
(
I(Kn)

)
.

The number of maps from a subset of V to V is (n + 1)n. We can count the
number of these having no fixed points or exchanged pairs by using the principle of
inclusion-exclusion. There are n possible fixed points, and the fraction of maps having
k of them is

(
n
k

)
(n + 1)−k. There are

(
n
2

)
possible exchanged pairs, and the fraction

of maps having j of them is

1

j!

(
n

2

)(
n− 2

2

)
· · ·
(
n− 2j + 2

2

)
=

(n)2j
2j j!

.

Thus, by inclusion-exclusion, we have
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An =
∑

j≥0

∑

k≥0

(n)2j
2j j!

(
n− 2j

k

)
(−1)j+k(n+ 1)n−2j−k.

By the binomial theorem,
∑
k≥0

(
n−2j
k

)
(−1)k(n+ 1)n−2j−k = nn−2j . Thus

An =
∑

j≥0

(n)2j
2j j!

(−1)jnn−2j .

This last formula can be interpreted by considering vertices of Kn unmatched in X
to be represented by fixed points, rather than undefined points, of f , so that An is
the number of maps from V to V with no exchanged pairs.

Corollary 2.2. As n→∞,

An ∼ nn

e1/2
.

Proof. The result of Theorem 2.1 can be rewritten as

An = nn
∑

j≥0

(n)2j
n2j

(−1)j
2j j!

.

Thus it will suffice to show that

∑

j≥0

(n)2j
n2j

(−1)j
2j j!

→ 1

e1/2

as n→∞. Using

(n)2j
n2j

=
∏

0≤i<2j

(
1− i

n

)

=

{
1 +O

(
j2

n

)}

for j ≤ log2 n and

∣∣∣∣
(n)2j
n2j

(−1)j
2j j!

∣∣∣∣ = O

(
1

n2

)

for j > log2 n, we obtain

∑

j≥0

(n)2j
n2j

(−1)j
2j j!

=
1

e1/2

{
1 +O

(
(log n)2

n

)}
,

since
∑
j≥0(−1)j/2j j! = e−1/2.

Let

A(z) =
∑

n≥1

An zn

n!

be the exponential generating function for the sequence {An}n≥1. Let Rn denote the
number of rooted labelled trees on n vertices. Cayley [C] showed that Rn = nn−1.
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Let

R(z) =
∑

n≥1

Rn zn

n!

=
∑

n≥1

nn−1 zn

n!

be the exponential generating function for rooted labelled trees. Pólya [P2] and Pólya
and Read [P3] showed that R(z) satisfies the functional equation

R(z) = z expR(z).

Theorem 2.3. We have

A(z) =
exp
(− 1

2R(z)
2
)

1−R(z)
.

Proof. Using the interpretation at the end of the proof of Theorem 2.1, we enu-
merate maps from V (the vertices of Kn) to V having no exchanged pairs. The graph
of such a map comprises a number of components. Each component contains a di-
rected cycle, where each vertex of the cycle is the root of a tree in which all edges are
directed toward the root. If R(z) is the exponential generating function for labelled
rooted trees, then R(z)m/m is the exponential generating function for components
containing a cycle of length m. Since exchanged pairs correspond to cycles of length
2, the exponential generating function for components is

C(z) =
∑

m≥1

R(z)m

m
− 1

2R(z)
2

= log
1

1−R(z)
− 1

2R(z)
2.

Applying Pólya’s component principle (if the exponential generating function U(z)
enumerates labelled components, then the exponential generating function expU(z)
enumerates labelled structures comprising zero or more components), we obtain

A(z) = expC(z)

=
exp
(− 1

2R(z)
2
)

1−R(z)
,

which completes the proof of the theorem.
We note that Theorem 2.3 can be used to provide an alternative derivation of

Corollary 2.2. The singularity of R(z) closest to the origin is at z = 1/e, and R(z)
has a branch point of order 2 with the expansion

R(z) = 1− 21/2(1− ez)1/2 +O(1− ez)

about this point (see Pippenger [P1, p. 96]). Furthermore, we have

|R(z)| ≤
∑

n≥1

Rn |z|n
n!

<
∑

n≥1

Rn e−n

n!
= R(1/e) = 1
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for |z| < 1/e. Thus A(z) also has z = 1/e as its singularity closest to the origin, with
the expansion

A(z) =
(e
2

)1/2 1

(1− ez)1/2
+O(1)

about this point. Applying Darboux’s lemma (see Darboux [D] or Knuth and Wilf
[K]), we obtain

An
n!
∼
(e
2

)1/2

(−1)n
(− 1

2

n

)
en.

Since n! ∼ (2πn)1/2e−nnn and (−1)n(− 1
2
n

)
=
(
2n
n

)
/4n ∼ 1/(πn)1/2, we obtain Corol-

lary 2.2.

3. Enumerating M̃
(
I(Kn)

)
. Let an denote the cardinality of M̃

(
I(Kn)

)
. Let

a(z) =
∑

n≥1

an zn

be the ordinary generating function for the sequence {an}n≥1. Let rn denote the
number of rooted unlabelled trees on n vertices. Let

r(z) =
∑

n≥1

rn zn

be the ordinary generating function for rooted unlabelled trees. Otter [O] showed
that r(z) satisfies the functional equation

r(z) = z exp
∑

h≥1

r(zh)

h
.

Theorem 3.1. We have

a(z) =
∏

m≥1

exp
(− 1

2m

(
r(zm)2 + r(z2m)

))

1− r(zm)
.

Proof. We proceed as in the proof of Theorem 2.3, with three differences. First,
we are enumerating unlabelled, rather than labelled, structures, so we use the ordinary
generating function r(z), rather than the exponential generating function R(z), for
trees. Second, we use the cycle index 1

m

∑
ij=m φ(j) r(zj)i (where φ(j) is Euler’s

function, the number of elements of {0, 1, . . . , j − 1} relatively prime to j), rather
than R(z)m/m, to enumerate unlabelled cycles of length m. This gives

c(z) =
∑

m≥1

1

m

∑

ij=m

φ(j) r(zj)i − 1
2

(
r(z)2 + r(z2)

)

=
∑

j≥1

φ(j)

j

∑

i≥1

r(zj)i

i
− 1

2

(
r(z)2 + r(z2)

)

=
∑

j≥1

φ(j)

j
log

1

1− r(zj)
− 1

2

(
r(z)2 + r(z2)

)
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for the ordinary generating function enumerating unlabelled components. Third, we
use Pólya’s component principle for unlabelled, rather than labelled, structures. (If
the ordinary generating function u(z) enumerates unlabelled components, then the
ordinary generating function exp

∑
h≥1

1
hu(z

h) enumerates unlabelled structures com-
prising zero or more components.) Using

∑
j|m φ(j) = m we obtain

a(z) = exp




∑

h≥1

1

h




∑

j≥1

φ(j)

j
log

1

1− r(zhj)



− 1
2

(
r(zh)2 + r(z2h)

)




= exp




∑

m≥1

log
1

1− r(zm)
− 1

2

(
r(zm)2 + r(z2m)

)




=
∏

m≥1

exp
(− 1

2m

(
r(zm)2 + r(z2m)

))

1− r(zm)
,

which completes the proof of the theorem.
We note that the generating function given in Theorem 3.1 differs merely by the

factor of
∏
m≥1 exp

(− 1
2m

(
r(zm)2 + r(z2m)

))
from the generating function

v(z) =
∏

m≥1

1

1− r(zm)

derived by Read [R] for the number of unlabelled functional digraphs.
Our next result requires the definition of some constants associated with the

generating function r(z) =
∑
n≥1 rn zn for rooted unlabelled trees. We define the

function

Ψ(z) =
∑

h≥2

r(zh)

h

=
∑

n≥1

rn

(
log

1

1− zn
− zn

)
.

The singularity of r(z) closest to the origin is at z = z0, where z0 is the unique
positive real solution of the equation z = exp−(1 + Ψ(z)

)
. Numerical computation

yields z0 = 0.3383 . . . . We also define the constant A = 1 + znΨ
′(z0). Using the

expansion

zΨ(z) =
∑

n≥1

nrn

(
zn

1− zn
− zn

)
,

numerical computation yields A = 1.215 . . . .
Corollary 3.2. As n→∞,

an ∼ c

n1/2

(
1

z0

)n
,

where

c =
exp
(− 1

2r(z
2
0)
)

(2Aπe)1/2

∏

h≥2

exp
(

1
2h

(
r(zh0 )

2 + r(z2h
0 )
))

1− r(zh0 )
.
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Proof. The singularity of r(z) closest to the origin is at z = z0, and r(z) has a
branch point of order 2 with the expansion

r(z) = 1− (2A)1/2(1− z/z0)
1/2 +O(1− z/z0)

about this point (see Pippenger [P1, p. 104]). Furthermore, we have

|r(z)| ≤
∑

n≥1

rn |z|n <
∑

n≥1

rn z−n0 = r(z0) = 1

for |z| < z0. Thus a(z) also has z = z0 as its singularity closest to the origin, with
the expansion

a(z) =
exp
(− 1

2r(z
2
0)
)

(2Ae)1/2(1− z/z0)1/2

∏

h≥2

exp
(

1
2h

(
r(zh0 )

2 + r(z2h
0 )
))

1− r(zh0 )
+O(1)

about this point. Applying Darboux’s lemma, we obtain

an ∼ (−1)n
zn0

(− 1
2

n

)
exp
(− 1

2r(z
2
0)
)

(2Ae)1/2

∏

h≥2

exp
(

1
2h

(
r(zh0 )

2 + r(z2h
0 )
))

1− r(zh0 )
.

Since (−1)n(− 1
2
n

) ∼ 1/(πn)1/2, we obtain Corollary 3.2.
The argument used to prove this corollary can also be used to derive the asymp-

totic behavior of the number vn of unlabelled functional digraphs on n vertices:

vn ∼ 1

(2Aπen)1/2zn0

∏

h≥2

1

1− r(zh0 )
.

4. Enumerating M
(
I(Kn,n)

)
. Let Bn denote the cardinality of M

(
I(Kn,n)

)
.

Theorem 4.1. We have

Bn =
∑

j≥0

(−1)j j!
(
n

j

)2

(n+ 1)2n−2j .

Proof. Consider a matching X ∈ M
(
I(Kn,n)

)
. For each edge {e, v} ∈ X (where

e = {v, w} ∈ E is an edge of Kn,n = (V,W,E) and v ∈ V ∪W is a vertex incident with
e), we shall direct the edge e = {v, w} out of v and into w. In this way we direct some
of the edges of Kn,n. These directed edges form the graph of a map σ : D → V ∪W
from a subset D of the vertices of V ∪W to V ∪W . This map exchanges V and W .
(That is, it takes vertices in V to vertices in W , and vertices in W to vertices in V .)
Furthermore, this map does not have any exchanged pairs of points (σ(v) = w and
σ(w) = v). Conversely, every map σ : D → V ∪W with D ⊆ V ∪W that exchanges
V and W and has no exchanged pairs arises in this way from unique matching in
M
(
I(Kn,n)

)
.

The number of maps from a subset of V ∪W to V ∪W that take vertices in V
to vertices in W , and vertices in W to vertices in V , is (n + 1)2n. We can count
the number of these having no exchanged pairs by using the principle of inclusion-
exclusion. There are n2 possible exchanged pairs, and the fraction of maps having j
of them is

j!

(n+ 1)2j

(
n

j

)2

.
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Thus, by inclusion-exclusion, we have

Bn =
∑

j≥0

(−1)j j!
(
n

j

)2

(n+ 1)2n−2j ,

which completes the proof of the theorem.
Corollary 4.2. As n→∞,

Bn ∼ e n2n.

Proof. The result of Theorem 4.1 can be rewritten as

Bn = (n+ 1)2n
∑

j≥0

(−1)j
j!

(n)2j
(n+ 1)2j

.

As in the proof of Corollary 2.2, we have

(−1)j
j!

(n)2j
(n+ 1)2j

=
(−1)j
j!

{
1 +O

(
j2

n

)}
,

so that

∑

j≥0

(−1)j
j!

(n)2j
(n+ 1)2j

=
1

e

{
1 +O

(
(log n)2

n

)}
.

Using (n+ 1)2n ∼ e2 n2n, we obtain the result of the corollary.
Let

B(z) =
∑

n≥1

Bn zn

n!

be the exponential generating function for the sequence {Bn}n≥1. Let Bn,m denote
the cardinality of M

(
I(Kn,m)

)
. Let

B(x, y) =
∑

n,m≥1

Bn,m xn ym

n!m!

be the exponential generating function for the sequence {Bn,m}n,m≥1. Our strategy
will be to derive the bivariate generating function B(x, y) and then obtain B(z) from
it by a method of diagonalization.

Let Rn,m denote the number of bicolored rooted labelled trees (that is, the number
of rooted labelled trees that, when bicolored, have n vertices with the color of the root
and m vertices with the other color). Austin [A] showed that Rn,m = nmmn−1. Let

R(x, y) =
∑

n≥1,m≥0

Rn,m xn ym

n!m!

=
∑

n≥1,m≥0

nmmn−1 xn ym

n!m!

be the exponential generating function for the sequence {Rn,m}n,m≥1. Austin [A]
showed that R(x, y) satisfies the functional equation

R(x, y) = x expR(y, x).
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Proposition 4.3. We have

B(x, y) =
exp
(
R(x, y) +R(y, x)−R(x, y)R(y, x)

)

1−R(x, y)R(y, x)
.

Proof. Using the interpretation in the proof of Theorem 4.1, we enumerate maps
σ from subsets D ⊆ V ∪ W to V ∪ W that exchange V and W and have no ex-
changed pairs. The graph of such a map comprises a number of components. Each
component either is a rooted tree (where the root is a vertex in (V ∪ W ) \ D at
which σ is undefined) or contains a directed cycle of even length, where each vertex
of the cycle is the root of a tree in which all edges are directed toward the roots. If
R(x, y) is the exponential generating function for bicolored rooted labelled trees, then
R(x, y)+R(y, x) is the exponential generating function for components that are trees,
and R(x, y)mR(y, x)m/m is the exponential generating function for components that
contain a cycle of length 2m. Since exchanged pairs correspond to cycles of length 2,
the exponential generating function for components is

C(x, y) =
∑

m≥1

R(x, y)mR(y, x)m

m
+R(x, y) +R(y, x)− 1

2R(x, y)R(y, x)

= log
1

1−R(x, y)R(y, x)
+R(x, y) +R(y, x)− 1

2R(x, y)R(y, x).

Applying Pólya’s component principle (if the exponential generating function U(x, y)
enumerates labelled components, then the exponential generating function expU(x, y)
enumerates labelled structures comprising zero or more components), we obtain

B(x, y) = expC(x, y)

=
exp
(
R(x, y) +R(y, x)−R(x, y)R(y, x)

)

1−R(x, y)R(y, x)
,

which completes the proof of the theorem.
Theorem 4.4. We have

B(z) =
1

2π

∫ 3π/2

−π/2

exp
(
Rϑ(z) +R−ϑ(z)−Rϑ(z)R−ϑ(z)

)

1−Rϑ(z)R−ϑ(z)
dϑ,

where

Rϑ(z) = R(zeiϑ, ze−iϑ).

Proof. Each term of the form xn yn in B(x, y) contributes a term of the form z2n

to B(z), whereas each term of the form xn ym (with n �= m) in B(x, y) contributes
nothing to B(z).

We note that Theorem 4.4 can be used to provide an alternative derivation of
Corollary 4.2. Following Pippenger [P1, pp. 97–102], we define

Cϑ(z) =
Rϑ(z) +R−ϑ(z)

2
.

From the functional equation

Rϑ(z) = z exp
(
iϑ+R−ϑ(z)

)
,
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we have

Rϑ(z)R−ϑ(z) = z2 exp
(
2Cϑ(z)

)
.

This allows the integrand in Theorem 4.4 to be written as

Tϑ(z) =
exp
(
2Cϑ(z)− z2 exp

(
2Cϑ(z)

))

1− z2 exp
(
2Cϑ(z)

) .

As before, the singularities of the integrand are those of Cϑ(z). There are two such
singularities. One of these, at

Z+
ϑ = exp−cyc ϑ,

is closest to the origin when ϑ is near 0, and we have the expansion

Cϑ(z) = cyc ϑ− (1 + cyc ϑ)1/2(1− z/Z+
ϑ )

1/2 +O(z − Z+
ϑ )

about this point. Here cyc ϑ denotes a cycloid function having the expansion cyc ϑ =
1− ϑ2/8 +O(ϑ4) for ϑ near 0. The other singularity, at

Z−ϑ = − exp−cyc(ϑ− π),

is closest to the origin when ϑ is near π, and we have the expansion

Cϑ(z) = cyc(ϑ− π)− (1 + cyc(ϑ− π)
)1/2

(1− z/Z−ϑ )
1/2 +O(z − Z−ϑ )

about this point. From Theorem 4.4 we have

Bn
n!2

=
1

2π

∫ 3π/2

−π/2
[z2n]Tϑ(z) dϑ.

We set

ε(n) =

(
48 log n

n

)1/2

and break the interval I = [−π/2, 3π/2) into three parts: J+ = [−ε(n), ε(n)],
J− = [π − ε(n), π + ε(n)], and K = I \ (J+ ∪ J−). For ϑ in K, Cauchy’s theo-
rem yields

[z2n]Tϑ(z) = O

(
e2n

n3

)
,

and the integral over K satisfies the same estimate. For ϑ in J+, Darboux’s lemma
yields

[z2n]Tϑ(z) =
e2n+1

4(πn)1/2

{
1 +O

(
(log n)2

n

)}{
1 +O

(
ϑ2
)}

exp−(nϑ2/4).

Thus for the integral over J+ we have

1

2π

∫

J+

[z2n]Tϑ(z) dϑ =
e2n+1

4πn

{
1 +O

(
(log n)2

n

)}
.

The integral over J− satisfies the same estimate, and thus we obtain

Bn
n!2

=
e2n+1

2πn

{
1 +O

(
(log n)2

n

)}
.

Since n! ∼ (2πn)1/2e−nnn, we obtain Corollary 4.2.
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5. Enumerating M̃
(
I(Kn,n)

)
. Let bn denote the cardinality of M̃

(
I(Kn,n)

)
.

Let

b(z) =
∑

n≥1

bn zn

be the ordinary generating function for the sequence {bn}n≥1. Let bn,m denote the

cardinality of M̃
(
I(Kn,m)

)
. Let

b(x, y) =
∑

n,m≥1

bn,m xn ym

be the ordinary generating function for the sequence {bn,m}n,m≥1. Our strategy will
be to derive the bivariate generating function b(x, y) and then obtain b(z) from it by
a method of diagonalization.

Let rn,m denote the number of bicolored rooted unlabelled trees (that is, the
number of rooted unlabelled trees that, when bicolored, have n vertices with the color
of the root and m vertices with the other color). Let

r(x, y) =
∑

n≥1,m≥0

rn,m xn ym

be the ordinary generating function for the sequence {rn,m}n,m≥1. Pippenger [P1]
showed that r(x, y) satisfies the functional equation

r(x, y) = x exp
∑

h≥1

r(yh, xh)

h
.

A positive integer m can be factorized as m = v(m) · w(m), where v(m) is an
integral power of 2 and w(m) is an odd integer.

Proposition 5.1. We have

b(x, y) =
f(x, y) + g(x, y)

2
,

where

f(x, y) =
∏

m≥1

exp
(

1
m

(
r(xm, ym) + r(ym, xm)− r(xm, ym) r(ym, xm)

))

1− r(xm, ym) r(ym, xm)

and

g(x, y) =
∏

m≥1

exp
(

1
2m

(
r(x2m y2m)− r(xm ym)2

))

1− r(xm ym)
.

Proof. Using the interpretation in the proof of Theorem 4.1, we enumerate equiv-
alence classes of maps σ from subsets D ⊆ V ∪W to V ∪W that exchange V and W
and have no exchanged pairs, where now two maps σ and τ are considered equivalent
if there is permutation π of V ∪W that is (1) either part-preserving (that is, such
that π(V ) = V and π(W ) = W ) or part-exchanging (that is, such that π(V ) = W
and π(W ) = V ), and (2) such that π

(
τ(v)

)
= σ

(
π(v)

)
for all v ∈ V ∪ W (which
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means, in particular, that τ(v) is defined if and only if σ
(
π(v)

)
is defined). We shall

start by considering only part-preserving permutations. Let fn,m denote the number
of equivalence classes of matchings in I(Kn,m) under part-preserving automorphisms
of Kn,m and I(Kn,m). Let

f(x, y) =
∑

n,m≥1

fn,m xn ym

be the ordinary generating function for the sequence {fn,m}n,m≥1. We shall show
first that f(x, y) is as given in the statement of the theorem.

Next we shall consider part-exchanging permutations. If a matching has no part-
exchanging automorphism, then it, together with its mate obtained by exchanging V
and W , are counted twice in f(x, y). If, on the other hand, it has a part-exchanging
automorphism (which can happen only when n = m), then it is counted just once. Let
gn,m denote the number of equivalence classes (under part-preserving automorphisms)
of matchings in I(Kn,m) that have at least one part-exchanging automorphism. Let

g(x, y) =
∑

n,m≥1

gn,m xn ym

be the ordinary generating function for the sequence {fn,m}n,m≥1. (We have gn,m = 0
whenever n �= m, so g(x, y) is actually a power series in the product xy.) We shall
show that g(x, y) is as given in the statement of the theorem.

Finally, it follows that b(x, y) = f(x, y)/2+ g(x, y)/2, since a matching without a
part-exchanging automorphism is counted with weight 1 by the first term, while one
with a part-exchanging automorphism is counted with weight 1/2 by the first term,
and again with weight 1/2 by the second term.

To derive f(x, y), we proceed as in the proof of Proposition 4.3, with three differ-
ences. First, we are enumerating unlabelled, rather than labelled, structures, so we
use the ordinary generating function r(x, y), rather than the exponential generating
function R(x, y), for trees. Second, we use the cycle index

1

m

∑

ij=m

φ(j) r(xj , yj)i r(yj , xj)i,

rather than R(x, y)mR(y, x)m/m, to enumerate unlabelled cycles of length 2m. This
gives

c(x, y) =
∑

m≥1

1

m

∑

ij=m

φ(j) r(xj , yj)i r(yj , xj)i + r(x, y) + r(y, x)− r(x, y) r(y, x)

=
∑

j≥1

φ(j)

j

∑

i≥1

r(xj , yj)i r(yj , xj)i

i
+ r(x, y) + r(y, x)− r(x, y) r(y, x)

=
∑

j≥1

φ(j)

j
log

1

1− r(xj , yj) r(yj , xj)
+ r(x, y) + r(y, x)− r(x, y) r(y, x)

(where we have added the terms r(x, y) + r(y, x) for the components that are trees)
for the ordinary generating function enumerating unlabelled components. Third, we
use Pólya’s component principle for unlabelled, rather than labelled, structures. (If
the ordinary generating function u(x, y) enumerates unlabelled components, then the
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ordinary generating function exp
∑
h≥1

1
hu(x

h, yh) enumerates unlabelled structures
comprising zero or more components.) We obtain

f(x, y) = exp
∑

h≥1

1

h




∑

j≥1

φ(j)

j
log

1

1− r(xhj , yhj) r(yhj , xhj)





+
r(xh, yh) + r(yh, xh)− r(xh, yh) r(yh, xh)

h
= exp



∑

m≥1

log
1

1− r(xm, ym)
+

r(xm, ym) + r(ym, xm)− r(xm, ym)r(ym, xm)

m





=
∏

m≥1

exp
(

1
m

(
r(xm, ym) + r(ym, xm)− r(xm, ym) r(ym, xm)

))

1− r(xm, ym) r(ym, xm)
,

which completes the derivation of f(x, y).
To derive g(x, y) we proceed as for f(x, y), but we observe that components that

do not themselves have a part-exchanging automorphism must come in pairs, along
with their mate obtained by exchanging V and W . Our goal then is to derive an
ordinary generating function for components that have a part-exchanging automor-
phism. Such a component cannot be a tree, since a tree has its root in one part or
the other. Thus it must contain a cycle of even length 2m, and its part-exchanging
automorphism must rotate this cycle by an odd number of vertices. This odd number
of vertices is relatively prime to v(2m), so the component must comprise w(m) sets of
trees, each of which contains v(m) trees along with their v(m) mates. The ordinary
generating function for a tree along with its mate is r(xy, xy) = r(xy). Thus the
ordinary generating function for such components is

1

w(m)

∑

ij=w(m)

φ(j) r(xjv(m) yjv(m))i.

Thus the ordinary generating function for all such components (except those associ-
ated with exchanged pairs) is

d(x, y) =




∑

m≥1

1

w(m)

∑

ij=w(m)

φ(j) r(xjv(m) yjv(m))i



− r(xy)

=




∑

v=2t≥1

∑

odd w≥1

1

w

∑

ij=w

φ(j) r(xjv yjv)i



− r(xy)

=




∑

v=2t≥1

∑

odd j≥1

φ(j)

j

∑

odd i≥1

1

i
r(xjv yjv)i



− r(xy)

=




∑

v=2t≥1

∑

odd j≥1

φ(j)

2j
log

(
1 + r(xjv yjv)

1− r(xjv yjv)

)

− r(xy).

The ordinary generating function for components that do not have a part-exchanging
automorphism is thus c(x, y)− d(x, y), and for pairs of these components along with
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their mates is
(
c(xy, xy)− d(xy, xy)

)
/2. Thus we obtain g(x, y) by applying Pólya’s

component principle to
(
c(xy, xy)−d(xy, xy)

)
/2+d(x, y). For the first term, we have

∑

h≥1

c(xhyh, xhyh)

2h
=
∑

h≥1

1

2h

∑

j≥1

φ(j)

j
log

1

1− r(xjh yjh)2

+
r(xh yh)

h
− r(xh yh)2

2h

=
∑

m≥1

1

2m

∑

j|m
φ(j) log

1

1− r(xm ym)2

+
r(xm ym)

m
− r(xm ym)2

2m

=
∑

m≥1

1

2
log

1

1− r(xm ym)2

+
r(xm ym)

m
− r(xm ym)2

2m
.

For the last two terms, we have

∑

h≥1

d(xm, ym)

h
− d(xhyh, xhyh)

2h

=
∑

h≥1

1

h

∑

u=2t≥1

∑

odd j≥1

φ(j)

2j
log

1 + r(xhuj yhuj)

1− r(xhuj yhuj)
− r(xh yh)

h

−
∑

h≥1

1

2h

∑

u=2t≥1

∑

odd j≥1

φ(j)

2j
log

1 + r(x2huj y2huj)

1− r(x2huj y2huj)
+

r(x2h y2h)

2h

=
∑

m≥1

1

m

∑

u=2t≥1

∑

odd j|m

φ(j)

2
log

1 + r(xmu ymu)

1− r(xmu ymu)

−
∑

m≥1

1

2m

∑

u=2t≥1

∑

odd j|m

φ(j)

2
log

1 + r(x2mu y2mu)

1− r(x2mu y2mu)
−

∑

odd k≥1

r(xk yk)

k

=
∑

m≥1

1

v(m)

∑

u=2t≥1

1

2
log

1 + r(xmu ymu)

1− r(xmu ymu)

−
∑

m≥1

1

v(vm)

∑

u=2t≥1

1

2
log

1 + r(x2mu y2mu)

1− r(x2mu y2mu)
−

∑

odd k≥1

r(xk yk)

k

=
∑

odd k≥1

∑

u=2t≥1

1

2
log

1 + r(xku yku)

1− r(xku yku)
−

∑

odd k≥1

r(xk yk)

k

=
∑

m≥1

1

2
log

1 + r(xm ym)

1− r(xm ym)
−

∑

odd k≥1

r(xk yk)

k
,
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since
∑

odd j|m φ(j) = w(m). Combining these results, we obtain

g(x, y) = exp
∑

h≥1

c(xh yh, xh yh)− d(xh yh, xh yh) + 2d(xh, yh)

2h

=
∏

m≥1

exp
(

1
2m

(
r(x2m y2m)− r(xm ym)2

))

1− r(xm ym)
,

which completes the derivation of g(x, y), and thus the proof of the proposition.
Theorem 5.2. We have

b(z) =
1

2π

∫ 3π/2

−π/2
b(zeiϑ, ze−iϑ) dϑ.

Proof. Each term of the form xn yn in b(x, y) contributes a term of the form z2n

to b(z), whereas each term of the form xn ym (with n �= m) in b(x, y) contributes
nothing to b(z).

Our next result requires the definition of some constants associated with the
generating function r(x, y) =

∑
n≥1,m≥0 rn,m xn ym for bicolored rooted unlabelled

trees. Define the power series q(z) =
∑
n≥1 qn zn by

q(z) =
∑

n≥1,m≥0

(n−m) rn,m zn+m

and then define

B = 1−
∑

n≥1

qn

(
zn0

1− zn0
− zn0

)
.

Numerical computation yields B = 0.8269 . . . . Next define the power series p(z) =∑
n≥1 pn zn by

p(z) =
∑

n≥1,m≥0

(n−m)2 rn,m zn+m

and then define

C = −
∑

n≥1

pn

(
zn0

(1− zn0 )
2
− zn0

)
.

Numerical computation yields C = −0.4450 . . . .
Corollary 5.3. As n→∞,

bn ∼ d

n

(
1

z0

)2n

,

where

d =
e

4π(B2 − 4C)1/2

∏

m≥2

exp
(

1
m

(
2r(zm0 ) + r(zm0 )2

))

1− r(zm0 )2
.
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Proof. As before, we shall apply Darboux’s lemma to the integrand in Theorem
5.2, and thus we shall be concerned with singularities closest to the origin. Following
Pippenger [P1, pp. 104–114], we define

cϑ(z) =
cϑ(z) + c−ϑ(z)

2
.

From the functional equation

rϑ(z) = z exp



iϑ+
∑

h≥1

r−hϑ(zh)
h



 ,

we have

rϑ(z) r−ϑ(z) = z2 exp



2
∑

h≥1

chϑ(z
h)

h



 .

As before, the singularities of

tϑ(z) =
1

1− rϑ(z) r−ϑ(z)

are those of cϑ(z). One of these, at

z+
ϑ = z0

(
1 +

B2 − 4C

8A
ϑ2 +O(ϑ4)

)
,

is closest to the origin when ϑ is near 0, and we have the expansion

cϑ(z) =
(
1 +O(ϑ2)

)− (2A)1/2
(
1 +O(ϑ2)

)
(1− z/z+

ϑ )
1/2 +O(z − z+

ϑ )

about this point. Another singularity, at

z−ϑ = −z0

(
1 +

B2 − 4C

8A
ϑ2 +O(ϑ4)

)
,

is closest to the origin when ϑ is near π, and we have the expansion

cϑ(z) =
(
1 +O(ϑ2)

)− (2A)1/2
(
1 +O(ϑ2)

)
(1− z/z−ϑ )

1/2 +O(z − z−ϑ )

about this point.
Let us now estimate

tn =
1

2π

∫ 3π/2

−π/2
[z2n] tϑ(z) dϑ.

We set

ε(n) =

(
48 log n

n

)1/2

and break the interval I = [−π/2, 3π/2) into three parts: J+ = [−ε(n), ε(n)],
J− = [π − ε(n), π + ε(n)], and K = I \ (J+ ∪ J−). For ϑ in K, Cauchy’s theo-
rem yields

[z2n] tϑ(z) = O

(
z−2n
0

n3

)
,
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and the integral over K satisfies the same estimate. For ϑ in J+, Darboux’s lemma
yields

[z2n] tϑ(z) =
z−2n
0

4(Aπn)1/2

{
1 +O

(
(log n)2

n

)}{
1 +O

(
ϑ2
)}

exp−
(
nϑ2(B2 − 4C)

4A

)
.

Thus for the integral over J+ we have

1

2π

∫

J+

[z2n] tϑ(z) dϑ =
z−2n
0

4πn(B2 − 4C)1/2

{
1 +O

(
(log n)2

n

)}
.

The integral over J− satisfies the same estimate, and thus we obtain

tn =
z−2n
0

2πn(B2 − 4C)1/2

{
1 +O

(
(log n)2

n

)}
.

Let us now estimate

fn =
1

2π

∫ 3π/2

−π/2
f(zeiϑ, ze−iϑ) dϑ.

Writing f(x, y) as

f(x, y) =
exp
((

r(x, y) + r(y, x)− r(x, y) r(y, x)
))

1− r(x, y) r(y, x)

×
∏

m≥2

exp
(

1
m

(
r(xm, ym) + r(ym, xm)− r(xm, ym) r(ym, xm)

))

1− r(xm, ym) r(ym, xm)
,

we see that the asymptotic behavior of fn is determined by that of the denominator
of the first factor, which we have already analyzed as tn, whereas the numerator of
the first factor and all of the remaining factors merely contribute constant factors to
the result. Thus we have

fn ∼ etn
∏

m≥2

exp
(

1
m

(
2r(zm0 ) + r(zm0 )2

))

1− r(zm0 )2

∼ e z−2n
0

2πn(B2 − 4C)1/2

∏

m≥2

exp
(

1
m

(
2r(zm0 ) + r(zm0 )2

))

1− r(zm0 )2
.

Let us now estimate

gn =
1

2π

∫ 3π/2

−π/2
g(zeiϑ, ze−iϑ) dϑ.

Every term of g(x, y) is of the form xn ym, so that we have g(zeiϑ, ze−iϑ) = g(z, z), so
that no integration is necessary. Furthermore, g(z, z) has no singularity closer to the

origin than z
1/2
0 > z0, so that we have gn = O(z−n0 ), which is negligible as compared

with fn.
Thus we have

bn =
fn + gn

2

∼ e z−2n
0

4πn(B2 − 4C)1/2

∏

m≥2

exp
(

1
m

(
2r(zm0 ) + r(zm0 )2

))

1− r(zm0 )2

,

which completes the proof of the theorem.
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Abstract. Let Hn be the number of claw-free cubic graphs on 2n labeled nodes. Combinatorial
reductions are used to derive a second order, linear homogeneous differential equation with polyno-
mial coefficients whose power series solution is the exponential generating function for {Hn}. This
leads to a recurrence relation for Hn which shows {Hn} to be P -recursive and which enables the
sequence to be computed efficiently. Thus the enumeration of labeled claw-free cubic graphs can be
added to the handful of known counting problems for regular graphs with restrictions which have
been proved P -recursive.

Key words. labeled graph counting, claw-free graph, cubic graph, exponential generating
function, P -recursive sequence
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1. Introduction. The problem of generating cubic graphs, i.e., 3-regular graphs,
has been studied for over 100 years using combinatorial reductions [6]. Read applied
combinatorial reductions to the derivation of an efficient recurrence relation for count-
ing the number of labeled connected cubic graphs on 2n nodes [12], in which the nodes
are labeled but not the edges. He observed that expressing the recurrence relations
in terms of an exponential generating function (EGF) resulted in substantial simpli-
fications. This allowed him to derive a second order linear differential equation for
the EGF of all labeled cubic graphs (not necessarily connected). Later, Wormald [16]
incorporated EGFs directly into the reduction approach in order to obtain differential
equations for the EGFs of cubic graphs of given k-connectivity (k = 0, 1, 2, and 3).
He derived recurrence relations only at the end of the process. In the present paper
we will follow this pattern in deriving a recurrence relation for the exact number Hn

of labeled claw-free cubic graphs on 2n nodes. A graph is claw-free if and only if it
contains no induced subgraph isomorphic to K1,3. In a cubic graph, this is equivalent
to the condition that every vertex lies on a triangle, i.e., on a 3-cycle.

Claw-free graphs have been studied in relation to independent sets, perfect graphs,
Hamiltonicity, reconstruction, and matchings. References may be found in the intro-
duction of [10]. In particular, claw-free graphs which are 3-regular or 4-regular have
been amenable to analysis of extendibility of matchings [9]. Related questions and
conjectures on Hamiltonicity arising from this work are presented in [11]. For cu-
bic claw-free graphs, Plummer asks for the probabilistic behavior of Hamiltonicity in
cubic claw-free graphs, in the planar case, and in general. The latter question was
answered in [13] where it was determined that almost all claw-free cubic graphs are
Hamiltonian. For 4-connected 4-regular claw-free graphs, Plummer conjectures that
all are Hamiltonian [11, Conjecture 3.8]. The asymptotic behavior of the sequence
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{Hn} was determined in [8], the results of which were essential for the Hamiltonic-
ity result of [13] cited above. The enumeration of claw-free cubic graphs with given
connectivity is treated in [1]. The method requires enumeration results for labeled
general cubic graphs [2].

The recurrence relation obtained in section 3 for Hn allows the n numbers H1, . . . ,
Hn to be calculated with O(n) arithmetic operations. It is a linear homogeneous re-
currence of order 12 in which the coefficients are polynomials in n. These polynomials
range in degree up to 23 and all have integer coefficients. This recurrence shows that
{Hn} belongs to the class of P -recursive sequences, first defined by Stanley [14]. It was
later shown that a number of labeled graph enumeration problems, including cubic
graphs, are P -recursive [5]. Gessel generalized those results considerably and showed
that for any fixed r the number of labeled r-regular graphs is P -recursive [4]. How-
ever, Gessell commented on the lack of general methods for proving P -recursiveness
of the number of r-regular graphs subject to restrictions on connectivity, girth, and
the like. For restricted labeled cubic graphs there are two examples of P -recursive
counting problems provided by Wormald; those rooted at a triangle [15], and those
containing no triangle [17]. To these we can now add the enumeration of labeled
claw-free cubic graphs. However, for labeled cubic and claw-free cubic graphs which
are k-connected for k = 1, 2, or 3 the question of P -recursiveness is open, as the
enumerations provided in [16] and [1] do not provide linear recurrences.

For general graph theoretic terminology and notation we follow [7], except for
adopting the more modern names nodes and edges in place of points and lines. In
particular, we assume a basic knowledge of labeled enumeration techniques using
EGFs, such as is provided by Chapter 1 of [7].

2. Structural properties. All graphs to be considered will have nodes labeled
but not edges. A claw-free graph is one with no induced subgraph isomorphic to K1,3.
We will deal exclusively with cubic graphs, i.e., 3-regular graphs. For cubic graphs,
the claw-free condition is equivalent to requiring that every node should belong to a
triangle. We will count the number Hn of labeled claw-free cubic graphs on 2n nodes.

In any cubic graph, the maximum number of triangles in which a node may lie
is 3, and this can occur only in a component isomorphic to K4. In our counting, we
will account for such components at the end. A node may lie in exactly two triangles
precisely if it is one of the nodes of degree 3 in an induced subgraph isomorphic to
K4 − e; we call such a subgraph a diamond. A maximal set of diamonds which are
adjacent in series is called a string of diamonds. A connected graph in which every
node is contained in a diamond is called a ring of diamonds. For the purposes of
counting, we consider a single edge to be a trivial string of diamonds, provided it is
not incident to a diamond. However, a ring of diamonds must contain at least two
diamonds. Like copies of K4, rings of diamonds will be accounted for explicitly at the
end of the process.

Denote by reduction the operation of replacing each string of diamonds by a
single edge. For any claw-free cubic graph with no component isomorphic to K4 or
a ring of diamonds, the reduced graph must be a cubic multigraph in which every
node is contained in exactly one triangle (defined as a set of three mutually adjacent
nodes). Clearly, none of the edges in these remaining disjoint triangles resulted from
the reduction of a nontrivial string of diamonds unless it belongs to a double edge,
the nodes of which are mutually adjacent to a third node. Such a configuration is
termed a trumpet. In the double edge of a trumpet, exactly one of the two edges must
have resulted from the reduction of a nontrivial string of diamonds. Since our edges
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are not labeled, for counting purposes it does not matter which edge is which in the
double. Denote by expansion the operation which is inverse to reduction.

Now, in a reduced graph we can contract each of the disjoint triangles to a single
node; denote this operation by contraction and its inverse by dilation. The contraction
of a trumpet will be a loop. The contraction of a reduced graph is an arbitrary cubic
general graph. We could, if we wished, contract an unreduced graph by contracting
just those triangles which do not overlap any other triangle. Then reduction and
contraction are easily seen to be commutative operations.

The approach that we will take to counting claw-free cubic graphs is to start
with cubic general graphs, dilate and expand them, and then add in components
isomorphic to K4 or a ring of diamonds.

3. Labeled cubic general graphs. Let gs,d,l be the number of labeled cubic
general graphs without triple edges having exactly s single edges, d double edges, and
l loops. Note that the number 2n of nodes is just

2n =
2s+ 4d+ 2l

3
.

It is the nodes that are labeled. Also, trumpets are not distinguished from other
double edges in this treatment. The graphs are not necessarily connected, so we let
g0,0,0 = 1.

Now let G(x, y, w) be the exponential generating function

G(x, y, w) =
∑

s,d,l

gs,d,lx
sydwl/(2n)! .

The partial derivations with respect to x, y, and w will be denoted Gx, Gy, and Gw,
and similarly for higher order derivatives. Clearly Gx is the exponential generating
function for labeled cubic general graphs without triple edges which are rooted at
a single edge, except that the root edge is not represented by a factor of x. The
other first order partial derivatives have like interpretations, as do the higher order
derivatives. To derive an expression for Gx, we can imagine removing a single edge
from a general cubic graph, leaving two nodes of degree 2. These are then smoothed
over, leaving edges which we think of as root edges. The possibilities for the latter are
counted by appropriate partial derivatives of G, in general, depending upon whether
the root edges are singles, doubles, triples, ordinary loops, or nodeless loops. The
latter occurs when an edge incident to a loop is removed. One must also multiply by
a monomial which accounts for the various edges which were deleted after the original
root edge was removed.

If a cubic graph is originally rooted at a single edge, then after deleting the root
we have 17 possibilities for the two new root edges, as shown in Table 1 along with
the corresponding exponential generating function.

Hence we have

Gx =

(
w2

2
+
x5

4
+
x2yw

2
+
x4y2

8

)
G+

(
x2w +

x4y

2

)
Gx

+

(
x4

2
+ x3w +

x5y

2

)
Gy +

(
yw +

x2y2

2

)
Gw(1)

+
x4

2
Gxx + x

5Gxy + x
2yGxw +

x6

2
Gyy + x

3yGyw +
y2

2
Gww .
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Table 1
Terms contributing to Gx.

EGF Root edges

w2

2
G two nodeless loops

x5

4
G belong to same triple edge

x2yw
2

G triple edge and nodeless loop

x4y2

8
G two triple edges

x2wGx single edge and nodeless loop

x4y
2

Gx single edge and triple edge

x4

2
Gy belong to same double edge

x3wGy double edge and nodeless loop

x5y
2

Gy double edge and triple edge

ywGw ordinary loop and nodeless loop
x2y2

2
Gw ordinary loop and triple edge

x4

2
Gxx two single edges

x5Gxy single edge and double edge

x2yGxw single edge and ordinary loop
x6

2
Gyy two double edges

x3yGyw ordinary loop and double edge
y2

2
Gww two ordinary loops

If we wished a recurrence relation capable of determining all of the numbers gs,d,l
starting with the initial condition g0,0,0 = 1, we would need only extract the coefficient
of xs−1ydwl from both sides of (1) and set the values equal. This is because every
nonempty cubic general graph without triple edges must contain at least one single
edge. However, to compute the numbers corresponding to all such graphs on up to
2n nodes by way of this recurrence would require O(n3) arithmetic operations. As we
shall see, the number of claw-free cubic graphs is P -recursive as a function of n and
can therefore be calculated in O(n) operations. This will require the use of separate
equations for Gy, Gw, and each of the second order partial derivatives except for Gxx.

To obtain an equation for Gy similar to (1) for Gx, consider a cubic general graph
rooted at a double edge. We then remove the double edge and splice the two edges
which were adjacent to the root together into a new edge which we designate as the
root for the reduced graph. The latter cannot form a nodeless loop, since the original
root was not part of a triple edge. However, it can belong to a triple edge, be a single
edge, belong to a double edge, or be an ordinary loop. These possibilities give, in
order, the four terms on the right side of the next equation:

Gy =
x2y

2
G+ x2Gx + x

3Gy +
x2

2
Gw .(2)

Finally, a cubic general graph rooted at a loop can be reduced by removing the
loop and its adjacent edge. This leaves a vertex of degree 2, which we remove and
splice the two incident edges into a new edge. The latter becomes the root of the
reduced graph; the root can be a nodeless loop, belong to a triple edge, be a single
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edge, belong to a double edge, or be a loop. These possibilities correspond in that
order to the five terms on the right side of this equation:

Gw =

(
xw +

x3y

2

)
G+ x3Gx + x

4Gy + xyGw .(3)

Finally, the differentiation of (2) and (3) with respect to x, y, and w is straight-
forward. Making use of the fact that the order of differentiation is immaterial, we
obtain the following equations for the second order partial derivatives:

Gyw =
x2y

2
Gw + x

2Gxw + x
3Gyw +

x2

2
Gww ,(4)

Gxy = xyG+

(
2x+

x2y

2

)
Gx + 3x

2Gy + xGw + x
2Gxx + x

3Gxy +
x2

2
Gxw ,(5)

Gxw =

(
w +

3x2y

2

)
G+

(
3x2 + xw +

x3y

2

)
Gx + 4x

3Gy + yGw(6)

+ x3Gxx + x
4Gxy + xyGxw ,

Gyy =
x2

2
G+

x2y

2
Gy + x

2Gxy + x
3Gyy +

x2

2
Gyw ,(7)

Gww = xG+

(
xw +

x3y

2

)
Gw + x

3Gxw + x
4Gyw + xyGww .(8)

4. Claw-free cubic graphs. Let H(z2) be the exponential generating function
for counting all labeled claw-free cubic graphs so that

H(z) =
∞∑

n=0

Hnz
n

(2n)!
.

Our objective is to derive a linear, homogeneous differential equation with coefficients
rational in z which is satisfied by H(z). This will imply that the coefficients form a
P -recursive sequence, and hence that the n numbers H1, . . . , Hn can be calculated in
O(n) operations.

The major portion of H(z) is accounted for by the expansion and dilation of the
triple-edge-free general cubic graphs counted by G(x, y, w). The strings of diamonds
which can reduce to a single edge are counted by

b(z) = (1− z2/2)−1 .(9)

We leave b = b(z) unexpanded as long as possible in order to simplify our equations.
Then to count the graphs resulting from expansion and dilation we simply perform
the substitutions

x = zb ,

y =
z2b2

2
,(10)

w =
z3b

4
.

Note that after substitution of z2 for z in the formula for w, the very first term is

180 z
6

6! . The exponent of z counts the two vertices of the trumpet horn and the four



70 E. M. PALMER, R. C. READ, AND R. W. ROBINSON

of the mandatory diamond. Since there are four automorphisms, the coefficient is
6!
4 = 180.
Now G(z2) counts everything inH(z2) except for components isomorphic toK4 or

a ring of diamonds, or which reduce to a triangular prism (since that contracts to a
triple edge). These are counted, respectively, by z2/24, −z2/4+ ln(

√
b), and z3b3/12.

The second of these may require explanation; a ring of m diamonds has 2m2m auto-
morphisms, so the counting series for these components is

∞∑

m=2

z2m

2m2m
= −z

2

4
− 1
2
ln(1− z2/2) .

We then exponentiate to count all graphs consisting entirely of components of these
three types. Let ϕ(z2) be the resulting exponential generating function. Then

ϕ(z) =
√
b exp

(
−5z

2

24
+
z3b3

12

)
(11)

and

H(z) = ϕ(z)G(z) .(12)

The differential equation satisfied by H(z) is now determined by the set of equa-
tions (1)–(12). From (11) and (12) we have

H ′(z) =
ϕ′(z)
ϕ(z)

· ϕ(z)G(z) + x′(z) · ϕ(z)Gx(z)
+ y′(z) · ϕ(z)Gy(z) + w′(z) · ϕ(z)Gw(z) .(13)

Differentiating again with respect to z we find

H ′′(z) =
ϕ′′(z)
ϕ(z)

· ϕ(z)G(z) + 2x′(z)ϕ
′(z)
ϕ(z)

· ϕ(z)Gx(z)

+ 2y′(z)
ϕ′(z)
ϕ(z)

· ϕ(z)Gy(z) + 2w′(z)ϕ
′(z)
ϕ(z)

· ϕ(z)Gw(z)
+ x′′(z) · ϕ(z)Gx(z) + y′′(z) · ϕ(z)Gy(z) + w′′(z) · ϕ(z)Gw(z)(14)

+ x′(z)2 · ϕ(z)Gxx(z) + 2x′(z)y′(z) · ϕ(z)Gxy(z)
+ 2x′(z)w′(z) · ϕ(z)Gxw(z) + y′(z)2 · ϕ(z)Gyy(z)
+ 2y′(z)w′(z) · ϕ(z)Gyw(z) + w′(z)2 · ϕ(z)Gww(z) .

We now consider (13) and (14) as linear equations in the 12 unknown quantities
H ′′(z), H ′(z), H(z) = ϕ(z)G(z), ϕ(z)Gx(z), ϕ(z)Gy(z), ϕ(z)Gw(z), ϕ(z)Gxx(z),
ϕ(z)Gxy(z), ϕ(z)Gxw(z), ϕ(z)Gyy(z), ϕ(z)Gyw(z), and ϕ(z)Gww(z). The coefficients
are polynomials in z and b. To see this, note that b′(z) = zb2(z). Thus all derivatives
of x, y, and w can be expressed as polynomials in z and b. Moreover the ratios
ϕ′(z)/ϕ(z) and ϕ′′(z)/ϕ(z) are also polynomials in z and b. Equations (1)–(8) can all
be converted to the same format by applying the substitutions in (10) and multiplying
through by ϕ(z). Thus we have 10 linear equations in these 12 unknowns. With the
help of the symbolic Gaussian elimination procedure in Maple [3], we can eliminate
all of the unknown quantities except for H(z), H ′(z), and H ′′(z). This leads to the
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linear differential equation

0 = (144z8 + 288z7 − 576z4)H ′′(z)
+ (−36z10 − 96z9 + 24z8 + 144z7 + 576z6 + 384z5

− 576z4 − 2880z3 − 576z2 + 1152)H ′(z)(15)

+ (−15z11 − 74z10 − 130z9 − 96z8 + 144z7 + 368z6 + 336z5 − 288z4

− 240z3 − 288z2 − 96z)H(z) .

Here the substitution (9) has been applied to express the coefficients as rational func-
tions of z, common factors have been removed from the three coefficients, and they
have been multiplied by a suitable polynomial so that the three coefficients have all
become polynomials in z with integer coefficients.

The power series H(z) is the Taylor series about z = 0 of the unique solution
to (15) which satisfies the initial conditions H(0) = 1 and H

′
(0) = 0.

A recurrence relation for the coefficients of H(z) is obtained by extracting the
coefficient of zn/(2n)! in (15); this must be equal to 0. The term 1152H ′(z) con-
tributes Hn+1/(4n + 2). This has the maximum index in H, so we solve for Hn+1

by equating it to −(2n + 1)/576 times the sum of the other terms. In general, the
term contributed by 2kH(z) is

(
2n
2k

)
(2k)!Hn−k, which upon multiplying by (2n + 1)

becomes
(
2n+1
2k+1

)
(2k + 1)!Hn−k. For k ≥ 1, the term contributed by (2n + 1)zkH ′(z)

is (n − k + 1)
(
2n+1
2k+1

)
(2k + 1)!Hn−k+1. Finally, for k ≥ 2 the term contributed by

(2n+1)zkH ′′(z) is (n− k+2)(n− k+1)(2n+1
2k+1

)
(2k+1)!Hn−k+2. In this way we find

the following relation, which is valid for n ≥ 1:

Hn+1 = (6n− 5)
(
2n+ 1
3

)
Hn−1 + 60(2n

2 − 7)
(
2n+ 1
5

)
Hn−2

+ 420(12n− 31)
(
2n+ 1
7

)
Hn−3 − 60480(4n− 19)

(
2n+ 1
9

)
Hn−4

− 3326400(6n2 − 54n+ 127)
(
2n+ 1
11

)
Hn−5

− 172972800(9n2 − 108n+ 347)
(
2n+ 1
13

)
Hn−6

− 54486432000(n− 1)
(
2n+ 1
15

)
Hn−7(16)

+ 59281238016000(n− 7)
(
2n+ 1
17

)
Hn−8

+ 422378820864000(18n− 97)
(
2n+ 1
19

)
Hn−9

+ 6563766876226560000

(
2n+ 1
21

)
Hn−10

+ 673229602575129600000

(
2n+ 1
23

)
Hn−11 .

Of course Hn−j is zero whenever j > n. With the initial conditions H0 = 1
and H1 = 0, (16) can be used to compute the values of H2, . . . , Hn+1 using just
O(n) arithmetic operations. In this way we computed the values shown in Table 2.
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Table 2
Numbers of labeled cubic claw-free graphs.

Hn n
1 2
60 3

2555 4
466200 5

62791575 6
14536021500 7

8381453705625 8
3284480337138000 9

1942832950684250625 10
2143745512307546647500 11

1743194710893176557891875 12
2022583790860881671548125000 13

3687297941048128552947911484375 14
5250396961636474882113432240187500 15

10270576798318031167485848746426640625 16
28247581137945084450497132391551830500000 17

63409618548369444745423852264233423897890625 18
189787893059957073451746036716319750214365937500 19

739731302424534941124199455315845613980976141796875 20
2436293022465856848407798760164672100623479345846875000 21

10433013033263780019056740194457690414996014419582021484375 22
55053013693844064927863480169144644331902982938883731835937500 23

252448493699621454815261719991354533831171674212674184547416015625 24
1472749695048011678818262827491781703308289147738221578121708593750000 25

10160314924243373000701474995668144304893902876648285295864422890087890625 26
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Abstract. A finite graph G is a core if every endomorphism of G is an automorphism. The
only 2-colorable core is K2. Let G be a core with chromatic number at least 3. We construct an
operation on G which yields a 3-colorable subdivision C(G) of G, where C(G) is also a core, and
may have arbitrarily large girth. In addition, there is a homomorphism from C(G) to G, in which
every vertex of G is covered by two vertices of C(G), and every edge of G is covered by three edges
of C(G). Thus, for every core G �= K2, there is a 3-colorable core C(G) such that (a) C(G) maps
homomorphically onto G, (b) C(G) is a topological subdivision of G, and (c) G is a minor of C(G).

Let χc(G) be the circular chromatic number of G. Graphs which are χc-critical are cores. We
show that G is χc-critical if and only if C(G) is χc-critical.

Key words. core, 3-colorable, retract, homomorphism, minor, subdivision, circular chromatic
number

AMS subject classification. 05C

PII. S0895480101390898

1. Introduction. The inspiration for graph homomorphisms originally comes
from topology. Let G,H be finite, simple graphs, with vertex sets V (G), V (H) and
edge sets E(G), E(H). A graph homomorphism from G to H is a map from the
vertex set of G to the vertex set of H, say φ : V (G)→ V (H), such that whenever two
vertices u, v of G are connected by an edge in G, then φ(u), φ(v) are connected by an
edge in H. We often write this as G → H. An excellent beginning survey of graph
homomorphisms appears in [4]; see [11] for a more advanced survey.
The core of a graph G is defined to be its smallest subgraph H such that G→ H.

Every finite graph has a unique core up to isomorphism; in this paper we consider
only finite graphs. A graph G is said to be a core if the core of G is G. Hence, G is a
core if the only subgraph H such that G→ H is G itself. Alternatively, a finite graph
is a core if every endomorphism of G is an automorphism.
Another common name for a core is a retract-rigid graph, since a retract in

topology is a subspace A of space B for which there is a topological map from B to A
that fixes A. Let H be the core of G, where φ : G→ H. Since H is a subgraph of G,
there is an inclusion map i : H → G. The restriction of φ to H, say ψ, is a map from
H to H. Since H is the core of G, it must be its own core, so ψ is an automorphism
of H. Thus the map φ′ = ψ(−1) ◦ φ : G→ H is a homomorphism from G to H whose
restriction to H is the identity. For the basic properties of cores, see Hell and Nešetřil
[5]. Imrich and Klavžar [8] show that the finite product of finitely many triangle-free
graphs is a core if and only if every factor is a core. See [2] for results on infinite
directed graphs.
There is a strong connection between graph coloring and graph homomorphism.

A k-coloring of a graph G is an assignment of colors from {1, 2, 3, . . . , k} to the vertices
of G so that whenever two vertices are connected by an edge they receive different
colors. Let Kn be the complete graph on n vertices, that is, the graph where every

∗Received by the editors June 14, 2001; accepted for publication (in revised form) July 24, 2002;
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pair of vertices is connected. Then a graph is n-colorable if and only if G→ Kn. We
can think of homomorphisms to a fixed graph T as a generalization of graph coloring.
See, for example, [1, 7, 10, 12, 13, 15]. Let χ(G) be the chromatic number of G, that
is, the smallest integer k such that G has a k-coloring. If G→ H, then χ(G) ≤ χ(H).
A graph G is said to be χ-critical if all of the vertex-induced proper subgraphs of
G have chromatic number less than χ(G). Thus, G �→ Kχ(G)−1, but G − {v} →
Kχ(G)−1 for any vertex v in V (G). Thus, any χ-critical graph is a core. Three simple
examples of such cores are the complete graphs, the odd cycles, and the odd wheels.
A generalization of the chromatic number is the circular chromatic number, or star
chromatic number. Let Gtk, with t ≤ k/2, be the abelian Cayley graph on the vertex
set {0, 1, 2, . . . , k − 1} where i, j are connected if |i − j| ∈ {t, t + 1, t + 2, . . . , k − t}.
Then the circular chromatic number of G, called χc(G), is equal to inf{kt |G→ Gtk}.
Bondy and Hell [3] have shown that the infimum is, in fact, a minimum. See also
Zhu’s alternative definition [16] and his survey [14]. A graph G is said to be χc-critical
if any of the vertex-induced subgraphs of G have circular chromatic number less than
χc(G). Thus, once again, if G is χc-critical, then G is a core.
Since a 2-chromatic graph G is a core if and only if G ∼= K2, a natural question to

ask is, What are the 3-chromatic cores? In this paper, we present a graph operation
which transforms any core G �∼= K2 into a 3-chromatic graph C(G). Moreover, we
show that the graph C(G) has the following properties:

1. C(G) is a 3-chromatic core,
2. C(G) maps homomorphically onto G,
3. C(G) is a topological subdivision of G, hence
4. G is a minor of C(G), and
5. G is χc-critical if and only if C(G) is χc-critical.
The smallest core of G is the natural representative of G in the lattice of equiva-

lence classes of graphs under homomorphism, where G and H are equivalent if G→ H
and H → G. These equivalence classes form a lattice under the partial order given
by the relation G < H if G → H. Thus, our main result shows that when we are
interested in the topological embedding properties of cores in this lattice we need
consider only cores with chromatic number less than or equal to 3.

2. The construction. Let C(G) be G with each edge replaced by a path with
three edges. Let D(G) be the graph on the same vertex set as G, where u ∼ v in D(G)
if there is a homomorphism from the path with three edges to G such that one end of
the path is vertex u and the other is vertex v; that is, there is a path u ∼ w1 ∼ w2 ∼ v
in G, where w2 may equal u and w1 may equal v, if u ∼ v in G. These definitions
are a special case of the ones given in the proof of Lemma 1 in Hell and Nešetřil’s
landmark paper [6].

Lemma 2.1 (Hell and Nešetřil). C(G)→ H if and only if G→ D(H).
In the full lemma, the edges of G may be replaced by any graph I with fixed

vertices i and j such that there is an automorphism of I which takes i to j.
Now C(G) preserves cycles of G but multiplies their length by 3. Thus odd cycles

remain odd and even cycles remain even. Hence if G is bipartite, then C(G) will also
be bipartite. If G is k-chromatic, where k ≥ 3, then C(G) will be 3-chromatic. We
see this by observing that we can color all the vertices that correspond to vertices of
G with 1, then color the new vertices, in pairs, with 2 and 3. For each vertex v of
G let the corresponding vertex in C(G) be c(v). Label the two vertices between c(v)
and c(u) as c(v, u) and c(u, v), where c(v, u) is adjacent to c(v) and c(u, v) and c(u, v)
is adjacent to c(u) and c(v, u). We define the natural homomorphism φ : C(G)→ G
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by

φ(w) =






u if w = c(u),
v if w = c(v),
u if w = c(v, u),
v if w = c(u, v).

(2.1)

For any two adjacent vertices u, v in G, this map identifies c(u, v) and c(v), and also
identifies c(v, u) and c(u). Thus any two adjacent vertices in C(G) have adjacent
images under φ in G.

Lemma 2.2. G→ H if and only if C(G)→ C(H).
Proof. In the first case, suppose that G→ H. Then it is straightforward to show

that C(G)→ C(H).
Conversely, suppose that f : C(G)→ C(H). Let u be a vertex in V (G) and define

g : G → H by g(u) = φ(f(c(u)). We will show that g is a graph homomorphism.
Clearly g is a map from the vertices of G to the vertices of H. Therefore we want
to show that if u ∼ v in G, then g(u) ∼ g(v) in H. Now f and φ are both graph
homomorphisms, but c(u) �∼ c(v) in C(G); instead in C(G) we have the path c(u) ∼
c(u, v) ∼ c(v, u) ∼ c(v). Consider what happens when f acts on this path.

Case 1. f does not act injectively on the path. Then f cannot identify c(u)
and c(v), because C(H) contains no triangles. Therefore any identification done by f
causes f(c(u)) and f(c(v)) to be adjacent. Since φ is a homomorphism, φ(f(c(u))) ∼
φ(f(c(v))).

Case 2. f acts injectively on the path so that the image under f of this path
with three edges is a path with three edges in C(H): namely, f(c(u)) ∼ f(c(u, v)) ∼
f(c(v, u)) ∼ f(c(v)). Now any path of length 3 in C(H) must contain at least one
vertex corresponding to a vertex in H and can contain at most two such vertices.
If the path in C(H) contains two vertices corresponding to vertices in H, they

must be the two end vertices, f(c(u)) and f(c(v)), because the distance between any
two such vertices is at least 3 in C(H). Thus, φ identifies f(c(u)) and f(c(v, u)); since
f(c(v, u)) is adjacent to f(c(v)), and φ is a homomorphism, we have that φ(f(c(u)))
is adjacent to φ(f(c(v))).
If only one vertex in the path corresponds to a vertex w in H, then w corresponds

to either f(c(u, v)) or f(c(v, u)). Without loss of generality, suppose w = f(c(u, v).
Then φ identifies f(c(u, v)) and f(c(v)), and since f(c(u, v)) is adjacent to f(c(u)),
we have that φ(f(c(u))) is adjacent to φ(f(c(v))).
We point out that Lemmas 2.1 and 2.2 are not the same statement in disguise.

In Lemma 2.1, the graphs H and D(H) have the same number of vertices, but, in
Lemma 2.2, C(H) has three times as many vertices as H.

Theorem 2.3. Let G be a connected graph on three or more vertices. Then G is
a core if and only if C(G) is a core.

Proof. Suppose first that C(G) is a core. If G→ X, where X is a proper subgraph
of G, then, by Lemma 2.2, C(G) → C(X) and clearly C(X) is a proper subgraph of
C(G). This contradicts the fact that C(G) is a core, so G must be a core.
Conversely, suppose that G is a core. Let f : C(G) → Y , where Y is a proper

subgraph of C(G). We may assume that f fixes Y in C(G) and that Y is the core of
C(G). Let X be the induced graph in G on {u ∈ G | f(c(u)) ∈ Y }. We show that X
must be a proper subgraph of G, and that C(G)→ C(X), hence G→ X by Lemma
2.2.
First, if Y is a proper subgraph of C(G), then Y must be missing some vertex

w ∈ C(G). If w = c(u) for some u ∈ G, then X is also missing u, so X is a proper
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subgraph of G. Suppose that X contains c(u) for all u ∈ G so that f fixes c(u) for
all u ∈ G. Now, for any u ∼ v, f must act injectively on the path c(u) ∼ c(u, v) ∼
c(v, u) ∼ c(v), because any identification will mean that c(u) ∼ c(v), and these are
not adjacent in Y . Since G is simple, there is only one path from c(u) to c(v) with
three edges in C(G), and hence in Y , so f fixes c(u, v) and c(v, u) as well as c(u) and
c(v). Thus if Y contains c(v) for every v in G, then Y ∼= C(G).
Next we show that C(G) → C(X), hence G → X. We have seen that if u ∼ v

in G and Y contains both c(u) and c(v), then Y contains c(u, v) and c(v, u) as well.
If, in contrast, for u ∼ v in G, Y contains c(u) but not c(v), then c(v, u) can be
identified with c(u), and c(u, v) can be identified with any neighbor of c(u). If c(u)
has no neighbors in Y, then Y is not connected, but if G is connected, then C(G)
is connected, so its core Y must also be connected. Thus, since Y is the smallest
subgraph that C(G) maps to, Y must be C(X).
It is worthwhile to observe that the same proofs for Lemma 2.2 and Theorem 2.3

will work if all edges of G are replaced by paths of any fixed odd length.
Theorem 2.4. Let G be a connected graph, and let Ci(G) be G with each edge

replaced by a path with 2i+1 edges. Then G is a core if and only if Ci(G) is a core.

3. χc-criticality. In this section we show that if G is χc-critical, then C(G) is
χc-critical. It is not true that if G is χ-critical, then C(G) is also χ-critical. Take,
for example, the 5-wheel, W5. We know C(W5) is 3-colorable and contains, but does
not equal, an odd cycle, which are the only 3-critical graphs. Thus C(G) is χ-critical
only if G is an odd cycle.
Recall that Gtk, with t ≤ k/2, is the abelian Cayley graph on the vertex set

{0, 1, 2, . . . , k − 1} where i, j are connected if |i − j| ∈ {t, t + 1, t + 2, . . . , k − t}.
The circular chromatic number of G, χc(G), is equal to min{kt | G → Gtk}. It is a
well-known fact that χ(G) − 1 < χc(G) ≤ χ(G). Thus, if G �∼= K2 is a core, then
2 < χc(C(G)) ≤ 3.

Lemma 3.1. Let 3t > k. Then D(Gtk)
∼= G3t−k

k .
Proof. Let the vertices of D(Gtk) be {0, 1, 2, . . . , (k − 1)}. Suppose that i ∼ j in

D(Gtk); this is equivalent to the fact that there exists a path i ∼ w1 ∼ w2 ∼ j in
Gtk. For fixed i, the set of vertices j such that j can be reached from i by a path
with three edges is the set {i + 3t, i + 3t + 1, i + 3t + 2, . . . , i + 3k − 3t}, reduced
modulo k. Without loss of generality, since Gtk is vertex-transitive, we may choose
i to be 0. Now 3t > k > 2t, hence 2k > 3t > k, so 0 < 3t−k < k and 0 < 2k−3t < k.
Thus the neighbors of 0 in D(Gtk) are {3t−k, 3t−k+1, . . . , 2k−3t}; hence D(Gtk) ∼=
G3t−k
k .

Theorem 3.2. Let 3t > k. Then C(G)→ Gtk if and only if G→ G3t−k
k .

Proof. Apply Lemmas 2.1 and 3.1.
Corollary 3.3. Let 3t > k. Then χc(C(G)) =

k
t if and only if χc(G) =

k
(3t−k) .

Proof. The proof follows immediately from Theorem 3.2 and the definition of the
circular chromatic number.

Theorem 3.4. G is χc-critical if and only if C(G) is χc-critical.
Proof. First, in order to apply Corollary 3.3, we prove that χc(C(G)) < 3 for any

G. Let χc(G) =
a
b , hence G → Gab . It is easy to check that Gab → G3a

3b by the map i

in Gab goes to 3i in G
3a
3b . Now, by Theorem 3.2, since 3(a + b) > 3b, C(G) → Ga+b3b .

Hence χc(C(G)) ≤ 3b
a+b < 3.

Second, the following numerical fact follows from algebraic manipulation of the
ratios. Let a, b, c, d be positive integers. Then

a

b
<
c

d
if and only if

a

3b− a <
c

3d− c .
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Fig. 4.1.

The theorem follows from Corollary 3.3 and the observation that if e is an edge in G
and f1, f2, f3 are the edges in C(G) that replaced e, then

C(G)− fi∗ ←→ C(G− e) for i = 1, 2, 3.
These results generalize to the case when all edges of G are replaced by paths

of any fixed odd length, say 2i + 1. Then χc(Ci(G)) =
k
t if and only if χc(G) =

k
((2i+1)t−ik) .

Corollary 3.5. Let G be a connected graph, and let Ci(G) be G with each edge
replaced by a path with 2i + 1 edges. Then Ci(G) is χc-critical if and only if G is
χc-critical.

4. Contrasting constructions. Our construction C(G) is not the only way to
create a subdivision of a graph which is a core. In C(G), we replace every edge by
a path of fixed odd length. In Theorem 4.1 we show that we can create a core by
replacing all the edges in the outside edge orbit of an odd wheel by a path of odd
length. If these edges are replaced by paths of varying lengths, or even lengths, the
result is not a core. Also, if we replace the spoke edges of the odd wheel by a path of
odd length, we sometimes get a core, and sometimes we do not. In particular, Figure
4.1(a) is a core, but Figure 4.1(b) is bipartite and hence not a core; Figure 4.1(c) is a
core, but Figure 4.1(d) is not a core.
Define W (s,m) as a cycle C with s (1+m) vertices, labeled as { 1, 2, 3, . . . , s (1+

m)}, plus an extra center vertex v which is connected to s evenly spaced vertices on
C, say {1, 2+m, 1+2(1+m), . . . , 1+(s−1)(1+m)}. Thus W (s,m) has s (1+m)+1
vertices and s (2 + m) edges. The large cycle is odd when s is odd and m is even;
the small cycles from the center vertex to consecutive neighbors on C are odd when
m is even and even when m is odd. Figure 4.1(a) shows W (5, 4) and Figure 4.1(b) is
W (5, 3).

Theorem 4.1. W (s,m) is a core if and only if s is odd and m is even. Further,
any graph G which is a cycle C plus an extra vertex v is a core if and only if G ∼=
W (2k + 1, 2j) for some positive integers k and j.

Proof. Let G =W (s,m). Suppose that m is odd. Then C is even, and the small
cycles are even, so G is bipartite, and not a core. Suppose that m is even and s is
even. Then C is even and the small cycles are odd. In this case, G maps to one of the
small cycles. Then the set {v, 1, 2, 3, . . . , 1+m, 1+ (1+m)} is a small cycle. We map
the neighbors of v to 1 and 1+(1+m), and let the small cycles follow in the natural
way. Send 1+ j(m+1) to 1 if j is even and to 1+(1+m) if j is odd for 2 ≤ j ≤ s−1.
Suppose that m is even and s is odd. Then C is odd, and the small cycles are

odd. The girth of G is the same as the size of a small cycle. In any map of G to
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itself, the center vertex v cannot be identified with any vertex on the cycle, because
the resulting graph has smaller girth than G. Thus the vertices in C must map within
C, but C is an odd cycle and hence a core itself. Therefore G is a core.
Now suppose that G is a cycle C plus an extra vertex v. Let the neighbors of v

in consecutive order relative to C be w1, w2, . . . , wt. Then w2 ∼ v ∼ w1 and the path
from w1 to w2 is a cycle. If this cycle is even, we can map it to the path w1 ∼ v ∼ w2.
Therefore, assume that all small cycles in G are odd. Suppose that the small cycle
formed by v and w1, w2 and the path from w1 to w2 is a smallest cycle of G such
that the adjacent small cycle composed of w3 ∼ v ∼ w2 and the path from w2 to w3

is not a smallest cycle of G. Since both cycles are odd, the larger one has at least
two more vertices than the smaller one. Let the vertices in the path from w1 to w2,
excluding w1, w2, be x1 ∼ x2 ∼ · · · ∼ xm and let the vertices in the path from w2 to
w3, excluding w2, w3, be y1 ∼ y2 ∼ · · · ∼ yn. We fix w3 and map yn to the center
vertex v, yn−1 to w1, and the rest of the path from yn−2 to y1 onto the path from
x1 to xm, ending with y1 maps to xm. Since n is odd and n ≥ m+ 2, the path from
yn−2 to y1 has the same parity and at least as many vertices as the path from x1 to
xm. Since xm is adjacent to w2, so is the image of y1. Thus G maps to a subgraph of
itself and is not a core.
Note that it matters which edges we choose to replace by paths. If we replace

only the spoke edges of W5 by paths of length 2, shown in Figure 4.1(c), the resulting
graph is a core, because the outside 5-cycle is the unique smallest cycle of the graph
and hence remains fixed, and the center vertex cannot be identified with any vertex
in that cycle without making a triangle. If we replace the spoke edges of W5 by
paths of length 4 (Figure 4.1(d)), however, the resulting graph maps to the 5-cycle
by sending the center vertex to a vertex in the outside cycle and wrapping all the
resulting 5-cycles around the outside 5-cycle. Thus this graph is not a core.
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[12] J. Nešetřil and A. Raspaud, Colored homomorphisms of colored mixed graphs, J. Combin.
Theory Ser. B, 80 (2000), pp. 147–155.
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Abstract. Let p be a prime number and n a positive integer, and let q = pn. Adleman
and Huang [Inform. and Comput., 151 (1999), pp. 5–16] have described a version of the function
field sieve which is conjectured to compute a logarithm in the field of q elements in expected time
Lq [1/3; (32/9)1/3 + o(1)], where Lq [s; c] = exp(c(log q)s(log log q)1−s) and the o(1) is for q → ∞
under the constraint that p6 ≤ n. In this paper, we present a modification of their method which
runs conjecturally in expected time Lq [1/3; (32/9)1/3+o(1)] so long as q → ∞ with p ≤ no(

√
n). The

technique we use can also be applied to the special number field sieve and results in an algorithm
which, in expected time Lp[1/3; (32/9)1/3 + o(1)], is conjectured to compute a logarithm in a prime
field whose cardinality p is of the form re − s, with r and s small in absolute value.
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1. Introduction. Let q = pn, where p is prime and n is a positive integer. Let
Fq denote the field of q elements, and let F

∗
q denote the multiplicative group of Fq. The

discrete logarithm problem in Fq is to compute, upon input of t, u ∈ F
∗
q with u ∈ 〈t〉,

the least nonnegative integer x such that tx = u. In this case, we write x = log tu. In
addition to being of intrinsic interest as a fundamental computational problem, the
discrete logarithm problem has become important in cryptography as various schemes
depend on its intractability for their security. In recent years, the methods used to
compute discrete logarithms have improved significantly, both in theory and practice.
Some of these developments are discussed in [18] and [23]. Particularly noteworthy
is the application of the number field sieve to the discrete logarithm problem [7], [8],
[20], [21], [22], [29], [30] and the development of the analogous function field sieve [1],
[2], [9], [22], [28], whose asymptotic complexity is the subject of the present paper.

Adleman and Huang [2] describe a version of the function field sieve algorithm for
computing discrete logarithms in finite fields which is conjectured to run in expected
time

Lq[1/3; (32/9)
1/3 + o(1)],(1.1)

where q is the cardinality of the field, Lq[s; c] = exp(c(log q)s(log log q)1−s), and the
o(1) is for q → ∞ subject to the restriction that p ≤ n1/6. This running time is
an improvement over the time Lq[1/3; (64/9)

1/3 + o(1)] conjectured for Adleman’s
original function field sieve [1]. The reader who is familiar with the history of the
number field sieve will recognize (1.1) as the running time of the special number field
sieve factoring algorithm designed to factor integers of the form re − s, where r and
s are small in absolute value [11]. The appearance here of the same quantity is not
a coincidence. Following Coppersmith’s lead in [6], Adleman and Huang represent
the finite field Fq as the quotient of Fp[X] by an ideal generated by an element of
the form re − s, where r and s are polynomials of small degree. As a result they are
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able to make use of a “small” extension of Fp(X) in much the same way that the
special number field sieve takes advantage of a “small” number field. Because of this
similarity, we refer to their version of the function field sieve as the special function
field sieve.

The small extension of Fp(X) which is at the heart of the special function field
sieve is only well-suited to the computation of the logarithm of an element which is
small in the sense that it is represented by a polynomial in Fp[X] of small degree.
To compute the logarithm of a general element in time (1.1), Adleman and Huang
employ a reduction algorithm which produces a representation of this element as a
product of powers of small elements. It is in the design of this reduction, however,
that they encounter the obstruction which forces them to restrict the values of q for
which (1.1) is valid. The contribution we make in this paper is an improved reduction
technique. With it, the special function field sieve conjecturally runs in expected time
(1.1) for q →∞ with

p ≤ no(
√
n).(1.2)

This constraint on q is only slightly stronger than what is necessary to obtain the
primary constant of 1/3 in (1.1).

The reduction method we provide can also be used in conjunction with the special
number field sieve. In [7], Gordon describes a version of the special number field sieve
for discrete logarithms which is of practical interest but is asymptotically slower than
the general number field sieve because of the lack of a sufficiently fast reduction
method. With the technique of this paper, however, the special number field sieve
computes a discrete logarithm in a prime field of size p = re − s in expected time
Lp[1/3; (32/9)

1/3 + o(1)] for p → ∞ subject to the restriction that |r| and |s| do not
grow too quickly. In particular, this running time is valid for |r| and |s| bounded. We
note that Semaev has provided a description of a special number field sieve discrete
logarithm algorithm which achieves the same conjectural running time as ours [24].
Presumably, his ideas can be used to design an alternative special function field sieve
as well.

We begin in the next section with the description of our reduction algorithm.
We then analyze its running time in section 3. Finally, in section 4, we show how
to compute the logarithms of the small elements in Fq and provide a running time
analysis of the entire special function field sieve, not only under the assumption that
(1.2) holds but for q → ∞ in general. Since descriptions of the special number field
sieve, both for factoring and discrete logarithms, can be found elsewhere [7], [11], [12],
[22], [30], and since we anticipate that the reader will have little trouble translating
the methods of this paper into the number field setting, we do not do so here.

We do not expect our reduction technique to be of practical significance at this
time, and in what follows we do not consider issues of implementation. However,
it should be noted that both the number field sieve for discrete logarithms and the
function field sieve are practical. Indeed, the number field sieve has been used to
compute logarithms in the field whose cardinality is the special 129-digit prime (739 ·
7149 − 736)/3 [30], as well as in a field whose cardinality is a “general” prime of
120 digits [8]. The function field sieve, in a special form somewhat different from
that in [2], has been used to compute logarithms in F2521 [9], and in the form of
Coppersmith’s algorithm, has succeeded in computing logarithms in F2607 [28]. All of
these implementations, regardless of the algorithm, compute the logarithms of small
elements first and then employ a reduction step to find the logarithm of an arbitrary
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element. We refer the reader to [22] for a survey of the various reduction techniques
in use and note that these methods work well for fields which are currently tractable.

2. Reduction method. Let p be a prime and n a positive integer, and let q =
pn. Following Adleman and Huang [2], let s ∈ Fp[X] be a polynomial of small degree
such that Xn − s is irreducible and such that at least one of the roots of s is nonzero
and simple. We adopt as a model for the finite field Fq the set {f ∈ Fp[X] |deg f < n}
with addition and multiplication taken modulo Xn−s. Since we think of the elements
in Fq as polynomials, we do not hesitate to speak of the degree of an element in Fq.
Our goal in this section is to describe an algorithm which reduces the computation of
a general logarithm in Fq to the computation of the logarithms of many polynomials
in Fq of small degree. In what follows, we assume that n > 1.

Our reduction algorithm proceeds in stages indexed by a variable j. For j ≥ 0,
let

aj =
1

3
− 1

3 · 2j ,

and for j > 0, let Bj be the positive integer closest to Mq[2/3− aj−1; 3/4], where

Mq[s; c] = log p(Lq[s; c]) = cn
s

(
log log q

log p

)1−s
.

In addition, let B be the positive integer closest toMq[1/3; (4/9)
1/3]. For any constant

β, let Sβ denote the set of elements in Fq which are monic and of degree ≤ β and
which, when considered as elements in Fp[X], are irreducible.

Algorithm 2.1. Let j be a fixed, positive integer. This algorithm takes as input
a set W of elements in SBj and three parameters E1, E2, and E3. It is designed to
output, for each w ∈W , a multiplicative relation of the form

w = η
∏
ycii ,(2.1)

where η is in F
∗
p, the yi are in SBj+1 , and the ci are integers.

Let e be the integer closest to

(
7

8

)(
log q

log log q

)aj

,(2.2)

let µ = n/e�, and let

H(X,Y ) = Y e −Xµe−ns.

By Eisenstein’s criterion and our assumption that s has a root of multiplicity one,
H(X,Y ) is absolutely irreducible. Let

O = Fp[X,Y ]/(H(X,Y )),

denote by y the image of Y in O, and let F be the field of fractions of O. Observe
that H(X,Xµ) ≡ 0 mod Xn − s. We set m = Xµ and let φ : O → Fq be the ring
homomorphism which is the canonical surjection on Fp[X] and which sends y �→ m.
For an element γ ∈ F , let N(γ) be the norm of γ in Fp(X). Finally, recall that an
element in Fp[X] is said to be β-smooth if it factors into a product of polynomials of
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degree ≤ β and that an element in F with norm in Fp[X] is said to be β-smooth if
its norm is β-smooth.

Step 1. Let C be the positive integer closest to Mq[1/3; 1/2]. Let T be the union of
the set of places of F at infinity and the set of places Q of F for which there exists a
place P of Fp(X) of degree ≤ C such that Q lies over P . Use sieving techniques to find
all pairs of relatively prime polynomials c, d ∈ Fp[X] such that c − dy is C-smooth,
c− dm is Bj+1-smooth, and the degrees of c and d are less than E1. If the number of
pairs found is less than |T |, the algorithm terminates.

Step 2. For Q ∈ T , let vQ denote the discrete valuation associated to Q. For each
of the elements c− dy found in Step 1, construct a valuation vector Vc,d of length |T |
containing the values vQ(c−dy), with Q ranging over all the places in T . Since c−dy
has no zeros or poles outside of T , the vector Vc,d is simply a representation of the
divisor div(c− dy).
Step 3. Let L = Fp[X]× Fp[X] and define the length of a vector v = (v1, v2) ∈ L by
the equation |v| = max{deg(v1),deg(v2)}. For each w ∈W , proceed as follows.

(i) Let

L′ = {(v1, v2) ∈ L | v1 − v2m ≡ 0 mod w},

and note that L′ contains the vectors (w, 0) and (m, 1). Apply the extended Euclidean
algorithm to w and m. As shown in [17], doing so produces a sequence

(α1, β1), . . . , (αN , βN )

of pairs of polynomials in Fp[X] with the property that for every pair of integers ψ
and ζ satisfying ψ + ζ = deg(w)− 1 there exists a pair (αi, βi) such that

deg(βi) ≤ ψ,
deg(αiw + βim) ≤ ζ.

It follows that the vector αi(w, 0) + βi(m, 1) has length at most max{ψ, ζ}. Setting
ψ = �deg(w)/2�, we then see that the extended Euclidean algorithm produces a vector
θ = (θ1, θ2) ∈ L′ of length at most deg(w)/2. Setting ψ = |θ| − 1, we find that it also
yields a vector τ = (τ1, τ2) ∈ L′ such that |τ | ≤ deg(w)− |θ|. Since the pairs (αi, βi)
produced by the extended Euclidean algorithm are pairwise linearly independent over
Fp[X] [17], the vectors θ and τ are also linearly independent.

We proceed to use a sieve to look for a pair of polynomials r and s such that

rθ1 + sτ1 − (rθ2 + sτ2)m

w

and

rθ1 + sτ1 − (rθ2 + sτ2)y

are both Bj+1-smooth. We consider two cases. If E2 ≤ |τ | − |θ|, let s = 1 and test all
polynomials r of degree less than E2. Otherwise, let δ and ε be integers such that

δ + ε = E2,∣∣∣(δ + |τ |)− (ε+ |θ|)
∣∣∣ ≤ 1,
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and test pairs r, s such that deg(r) < δ and deg(s) < ε. If no pairs satisfying the
smoothness conditions are found, the algorithm terminates. Otherwise, fix a pair r, s
that does satisfy the conditions, let a = rθ1 + sτ1 and b = rθ2 + sτ2, and write

N(a− by) =
l∏

i=1

gεii ,

where the gi are distinct irreducible polynomials in Fp[X] of degree ≤ Bj+1.

(ii) For each irreducible factor gi of N(a− by), let qi be the ideal in O generated
by gi and the element a− by, and let

Li = {(v1, v2) ∈ L
∣∣ v1 − v2y ≡ 0 mod qi}.

Then Li contains the vectors (gi, 0) and (ab̄, 1)}, where b̄ is the inverse of b modulo
gi. Apply the extended Euclidean algorithm to the pair gi, ab̄ to find two vectors
θi = (θi,1, θi,2) and τi = (τi,1, τi,2), which are linearly independent over Fp[X] and
such that

|θi| ≤ deg(gi)

2
,

|τi| ≤ deg(gi)− |θi|.
Next sieve for ri and si such that

riθi,1 + siτi,1 − (riθi,2 + siτi,2)m

is Bj+1-smooth and

N(riθi,1 + siτi,1 − (riθi,2 + siτi,2)y)

gi

is C-smooth. Choose which elements to test in the same way as was done in substep (i),
with E2 replaced by E3. The algorithm terminates if no pairs are found. Otherwise,
let ri and si be a pair satisfying the required smoothness conditions, and let ai =
riθi,1 + siτi,1 and bi = riθi,2 + siτi,2.

(iii) Let

σ =

∏l
i=1(ai − biy)εi
a− by

and observe that σ is C-smooth. Construct a valuation vector Vσ of the same sort
described in Step 2, containing the values vQ(σ) for all places Q in T .

(iv) Use the algorithm of [31] to solve the matrix congruence

Ax ≡ −Vσ mod (q − 1)/(p− 1),(2.3)

where A is given as follows. If w is the first member ofW input into Step 3, let A be a
square matrix whose columns are chosen from among the vectors Vc,d. Otherwise, let
A be the matrix used to solve (2.3) in the previous run of Step 3. If no solution to (2.3)
is found for the w at hand and there exists a vector from Step 2 which does not appear
as a column in A, enlarge A by including an unused vector as an additional column
and try to solve (2.3) again. If no vectors Vc,d remain, the algorithm terminates.
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In the case that (2.3) is solved, observe that the coordinates of a solution can be
indexed by the pairs (c, d) used to form the column vectors Vc,d, and let (. . . , xc,d, . . .)
be one such solution. Then for each place Q of F , we have

vQ

(
σ
∏

(c− dy)xc,d

)
≡ 0 mod (q − 1)/(p− 1).

Equivalently, there is a divisor D in the degree 0 part of the divisor group of F such
that

div
(
σ
∏

(c− dy)xc,d

)
=

(
q − 1

p− 1

)
D.(2.4)

Let h be the class number of F and assume that h is prime to (q − 1)/(p − 1). By
(2.4), the order of D in the class group of F divides (q − 1)/(p − 1). We conclude
that this order is 1 and that D is principal. Thus there exists an element λ ∈ F and
a constant η′ ∈ F

∗
p such that

σ
∏

(c− dy)xc,d = η′λ
q−1
p−1 .(2.5)

As explained in [2], the map φ can be extended to the localization of O at the kernel
of φ. Since the place associated to this kernel is not in the set T , we can, in particular,
apply φ to both sides of (2.5). We conclude that

∏l
i=1(ai − bim)εi

∏
(c− dm)xc,d

w[(a− bm)/w]η′
(2.6)

is a (q − 1)/(p− 1)th power in F
∗
q and hence is an element in F

∗
p. Since (a− bm)/w,

each ai − bim, and each c − dm is Bj+1-smooth, we have succeeded in expressing w
as a product of an element in F

∗
p and numerous polynomials in SBj+1 . This completes

the description of Algorithm 2.1.
In the next section, we choose values for E1, E2, and E3 so that the sieving in

Step 1 is likely to produce a matrix A of full rank and the sieving in Step 3 is likely to
yield the desired elements. If the algorithm terminates because (2.3) has no solution
or the sieving in Step 3 fails, one obvious modification is to increase the size of these
parameters. However, if (2.3) has no solution, it may also be the case that the class
number h has a factor in common with (q − 1)/(p − 1). Moreover, if h is not prime
to (q− 1)/(p− 1), the algorithm could run to the end but output an incorrect answer
because (2.6) is not in F

∗
p. One response to a suspicion that the class number is

obstructing the algorithm is to change the field F . This can be accomplished by
using a different representation of Fq and requires rerunning the algorithm from the
beginning. A second, less costly, alternative is to replace the modulus (q− 1)/(p− 1)
in (2.3) by (q − 1)/N , where N is a factor of q − 1 different than p− 1. For instance,
we might choose N to be the largest B′-smooth factor of q − 1 for some smoothness
bound B′. Indeed, since the Riemann hypothesis for curves over finite fields tells us
that

h ≤ (
√
p+ 1)2g,(2.7)

where g is the genus of the function field F , we can eliminate the interference of the
class group by taking B′ equal to this upper bound for h. Of course, doing so may
have its price. When (q−1)/(p−1) is replaced by (q−1)/N , the algorithm is no longer
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guaranteed to produce the promised relations, since the element η appearing in (2.1)
is in the subgroup of F

∗
q of cardinality N and may not be in F

∗
p. As a consequence,

it becomes necessary, in the general discrete logarithm algorithm of which Algorithm
2.1 is a part, to compute a logarithm in the subgroup of size N . The Pohlig–Silver–
Hellman (see [16]) algorithm can perform such a calculation without increasing the
complexity of the algorithm if and only if the largest prime factor of N is sufficiently
small. We leave the details to the reader.

Finally, a third approach, which is applicable in the case that a solution to (2.3) is
obtained but (2.6) is not in F

∗
p, is to solve (2.3) modulo h′(q−1)/(p−1), where h′ is any

multiple of the largest factor of h composed of primes dividing (q − 1)/(p− 1). With
this change, (2.4) is valid with D replaced by h′D, and (2.5) follows. In particular,
we can let h′ = ((q − 1)/(p − 1))�, where < is chosen so that < ≥ �log 2h�. Note that
such an < can be found using (2.7).

We present now the entire reduction algorithm.
Algorithm 2.9. This algorithm takes as input two elements t, u ∈ F

∗
q and three

parameters E1, E2, and E3. Its goal is to output a multiplicative relation of the form

tzu = η
∏
ycii ,(2.8)

where z and the ci are integers, η is in F
∗
p, and the yi are in SB .

Step 1. Randomly test integers z ∈ {0, . . . , q − 2} until one is found such that the
element tzu ∈ Fq is B1-smooth when considered as a polynomial in Fp[X] (see [22,
section 4] for a sieve-based alternative). Factor tzu into the product of an element in
F
∗
p and elements in SB1 .

Step 2. Let J be the smallest integer such that BJ+1 ≤ B. If J = 0, the algorithm
has fulfilled its purpose and terminates. Otherwise, let j = 1 and continue.

Step 3. We have tzu written as a product of an element in F
∗
p and powers of elements

in SBj . LetWj be the subset of SBj containing these elements and use Algorithm 2.1,
with parameters E1, E2, and E3, to obtain an expression for each member of Wj as
a product of an element in F

∗
p and powers of polynomials in SBj+1

. Substituting into
our earlier expression, we obtain a factorization of tzu as a product of an element in
F
∗
p and powers of elements in SBj+1

.

Step 4. If j = J , the algorithm terminates. Otherwise, increase j by one and repeat
Step 3. This concludes our description of Algorithm 2.9.

3. Analysis of reduction. In this section we consider particular values of
E1, E2, and E3 for which we believe Algorithm 2.9 succeeds in producing a relation
of the form (2.8) and compute the asymptotic complexity of the algorithm for this
choice of parameters. We emphasize at the outset that our analysis is heuristic and
that our results are conjectural. One of the many assumptions that we adopt is that
the polynomials which are tested for smoothness at various points in the algorithm
behave like random polynomials with respect to the property of being smooth. We
then determine the likelihood that they are smooth by means of the following result.
For a given prime p and positive integers δ and β with δ ≥ β, let Np(δ, β) be the
number of monic polynomials in Fp[X] which are of degree δ and are β-smooth.

Theorem 3.1. Assume δ ≥ β ≥ 2 log δ and let w = δ/β. Then, as β and w tend
to infinity,

Np(δ, β)

pβ
= w−w(1+o(1)),
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uniformly for all primes p.

Theorem 3.1 is a slightly weaker version of Theorem 2.1 in [3], which in turn
follows from a result in [26]. Since the author of [26] has withdrawn the article due
to the presence of [14], [15], and [19], it is to these three works that we refer the
reader interested in a proof of Theorem 3.1. Since we are interested in the behavior
of the various quantities in Algorithm 2.9 as functions of q, we provide the following
reformulation of Theorem 3.1. For the remainder of this section, all o(1)’s are for
q →∞.

Corollary 3.2. Let β be functions from the set of prime powers to the set of
positive integers, and let ω(q) = δ(q)/β(q). Assume that ω(q) → ∞ as q → ∞ and
that β(q) ≥ 2 log δ(q) for q sufficiently large. Let p denote the prime divisor of q.
Then

Np(δ(q), β(q))

pδ(q)
= ω(q)−ω(q)(1+o(1)).

We now consider the case that

δ(q) =Mq[s; c+ o(1)] and β(q) =Mq[s
′; c′ + o(1)],

where 0 ≤ s′ < s ≤ 1 and c′ is nonzero. Let ρ be the probability that a randomly
chosen polynomial in Fp[X] of degree δ(q) is β(q)-smooth. It follows from Corollary
3.2 that if β(q)→∞ as q →∞, then

ρ = Lq[s− s′; (s′ − s)c/c′ + o(1)].(3.1)

Writing q = pn, we observe that β(q) is unbounded as q → ∞ if and only if p and
n satisfy p ≤ o(ns′/(1−s′)log n). In the analysis that follows, we are concerned only
with the case that s′ ≥ 1/3 and thus ensure the applicability of (3.1) by imposing on
q the restriction that p ≤ o(n1/2log n). In section 4, we consider the case that this
inequality does not hold.

Turning to Algorithm 2.9, we see from Corollary 3.2 that the expected number
of trials needed to find z in Step 1 is equal to Lq[1/3; 4/9 + o(1)]. Since the expected
number of steps required to test a candidate using the algorithm in [4] is bounded by a
power of log q, we find that the expected running time of this step is Lq[1/3; 4/9+o(1)].
To analyze Steps 2–4 of Algorithm 2.9, we inspect each step of Algorithm 2.1. We
continue with all the notation introduced in the description of this method in the
previous section.

Step 1. Let E1 be the least integer greater than or equal toMq[1/3; 3/4]. The number
of pairs of polynomials tested in this step is p2E1 . Hence the running time of the step
is bounded by p2E1(1+o(1)) = Lq[1/3; 3/2 + o(1)], where the limit implicit in the o(1)
converges uniformly for all j.

We consider whether the number of pairs c, d produced by the sieve is at least
|T |. Observe that

N(c− dy) = deH(X, c/d) = ce −Xµe−nsde.

Relying on the fact that a random polynomial of degree n in Fp[X] is irreducible with
probability greater than (1− 2p−n/2)/n, we expect that s can be found in (1+ o(1))n
trials and therefore adopt the assumption that there exists a constant κ such that
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deg(s) ≤ κ log n for all q. Since µe− n ≤ e, we see that when deg(c) and deg(d) are
less than E1, the degree of N(c− dy) is bounded by

(E1 + 1)e+ κ log n.(3.2)

Let ρy be the probability that a random polynomial in Fp[X] of degree at most
(3.2) is C-smooth. Using (7/8)(log q/log log q)1/3 as a bound for e, we find that
(3.2) is bounded by Mq[2/3; 21/32 + o(1)]. Corollary 3.2 then implies that ρy ≥
Lq[1/3;−7/16 + o(1)]. Since deg(m) = n/e� we obtain

n/e�+ E1(3.3)

as a bound for the degree of the elements c − dm. Let ρm be the probability that a
random polynomial in Fp[X] of degree bounded by (3.3) is Bj+1-smooth, and let

ωj =
n/e�+ E1

Bj+1
=Mq[1/3; 32/21 + o(1)].

Then, by Corollary 3.2, we have

ρm = ω
ωj(1+o(1))
j = Lq[1/3;−32/63 + o(1)].(3.4)

Moreover, since, as q → ∞, both Bj and ωj tend to ∞ uniformly for all j, we find,
using Theorem 3.1, that the limit implicit in the o(1) in (3.4) converges uniformly for
all j. We now make the assumption that, uniformly for all j,

ρyρmE
2
1 = F

1+o(1)
j .

We find then that

Fj = Lq[1/3; 559/1008 + o(1)],(3.5)

uniformly for all j. Since |T | = Lq[1/3; 1/2+ o(1)], we see that for q sufficiently large
this step will produce enough pairs satisfying the smoothness conditions.

Step 2. For most of the places Q ∈ T , the value vQ(c − dy) can be read off of the
factorization of N(c − dy) in the same way as is done in the number field sieve (see
[5]). The places Q with the property that the localization of O at O ∩ Q is not a
discrete valuation ring require more work. In [2], the authors propose a method for
computing the valuations in this case which makes use of Newton polygons and which
runs in time bounded by (log q)O(1).

Step 3.
(i) Let E2 be the least integer greater than or equal to Mq[1/3; 1]. For each

w ∈ W , the running time of this substep is equal to pE2(1+o(1)) = Lq[1/3; 1 + o(1)],
where the o(1) converges uniformly for all j . What must be checked is whether the
search for r and s succeeds. We argue that for q sufficiently large it does.

Let θ and τ be the vectors obtained in this step by means of the Euclidean
algorithm. We first consider the case that E2 ≤ |τ | − |θ|. Let Fj be the number of
polynomials r of degree less than E2 such that both N(rθ1 + τ1 − (rθ2 + τ2)y) and
(rθ1 + τ1 − (rθ2 + τ2)m)/w are Bj+1-smooth. We find that when deg(r) < E2, the
degree of N(rθ1 + τ1 − (rθ2 + τ2)y) is bounded by

(|τ |+ 1)e+ κlog n ≤ (deg(w) + 1)e+ κ log n

≤ (Bj + 1)e+ κ log n(3.6)
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and the degree of (rθ1 + τ1 − (rθ2 + τ2)m)/w is bounded by

|τ |+ n/e� ≤ Bj + n/e�.(3.7)

Let ρ be the probability that a polynomial of degree less than the sum of the bounds
given in (3.6) and (3.7) is Bj+1-smooth. We determine, using Theorem 3.1 and
Corollary 3.2, that ρ = Lq[1/3;−403/504 + o(1)] uniformly for all j. We now adopt

the assumption that ρ pE2 = F
1+o(1)
j uniformly for all j. Since pE2 = Lq[1/3; 1+o(1)],

we see that Fj = Lq[1/3; 101/504 + o(1)] and hence conclude that, for q sufficiently
large, Fj ≥ 1.

We turn to the case that E2 > |τ | − |θ|. Recall that δ and ε are integers whose
sum is E2 and for which

∣∣∣(δ + |τ |)− (ε+ |θ|)
∣∣∣ ≤ 1.

Note that

max{δ + |τ |, ε+ |θ|} ≤ E2 + |τ |+ |θ|+ 1

2

=
E2 + deg(w) + 1

2

≤ E2 +Bj + 1

2
.

Let Fj be the number of pairs of polynomials r, s such that deg(r) < δ and deg(s) < ε
and such that N(rθ1 + sτ1 − (rθ2 + sτ2)y) and (rθ1 + sτ1 − (rθ2 + sτ2)m)/w are
Bj+1-smooth. We observe that when deg(r) < δ and deg(s) < ε, the polynomial
N(rθ1 + sτ1 − (rθ2 + sτ2)y) has degree bounded by

(max{(ε+ |θ|, δ + |τ |}+ 1)e+ κ log n ≤
(
E2 +Bj + 3

2

)
e+ κ log n(3.8)

and the polynomial (rθ1 + sτ1 − (rθ2 + sτ2)m)/w has degree bounded by

max{(ε+ |θ|, δ + |τ |}+ n/e� ≤ E2 +Bj + 1

2
+ n/e�.(3.9)

Let ρ be the probability that a polynomial of degree less than the sum of the bounds
in (3.8) and (3.9) is Bj+1 smooth. Using a bound of Mq[2/3; (7/8) + o(1)] for the
product of E2 and e in (3.8), we find, by Theorem 3.1 and Corollary 3.2, that ρ ≥
Lq[1/3;−95/112 + o(1)] uniformly for all j. We make the assumption that ρ pE2 =

F
1+o(1)
j uniformly for all j. It follows that Fj ≥ Lq[1/3; 17/112+o(1)] and in particular

that, for q sufficiently large, Fj ≥ 1.

(ii) Let E3 be the least integer greater than or equal to Mq[1/3; 1.026]. For each
w ∈W , the running time for this substep is equal to pE3(1+o(1)) = Lq[1/3; 1.026+o(1)].
We argue that, for q sufficiently large, the search for the elements ri and si is successful.
Our analysis proceeds in the same manner as the one given for substep (i). We leave
it to the reader to make the appropriate changes.

(iii) The time required to compute one valuation vector is certainly bounded by
the running time of Step 2.

(iv) The size of T , and hence the column length of the matrix A appearing in
(2.3), is equal to Lq[1/3; 1/2+ o(1)]. Ignoring the concerns about the class number of
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F addressed in section 2, we expect, and assume, that the number of columns required
in order that A have full rank modulo (q−1)/(p−1) is also Lq[1/3; 1/2+o(1)], where
the limit implicit in the o(1) converges uniformly for all j. Equation (3.5) then implies
that, for q sufficiently large, enough vectors are available to ensure that (2.3) is solved
for all w. Moreover, our assumption implies that, as we move through the elements
of W , the total number of times we fail to find a solution to (2.3) and must add an
additional vector to A is bounded by Lq[1/3; 1/2 + o(1)].

An upper bound for the running time of the method described in [31] is the
product of the maximum number of nonzero entries appearing in a column of the
matrix A, the square of the maximum dimension of A, and a factor which is aymp-
totically insignificant in the present case. Using the fact that the number of entries
in a column of A is asymptotically bounded by (ne)O(1), we obtain a running time of
Lq[1/3; 1 + o(1)], uniformly for all j, for each attempt to solve (2.3). Thus the total
time spent on linear algebra is

Lq[1/3; 3/2 + o(1)] + |W | · Lq[1/3; 1 + o(1)].

Combining steps, we conjecture that with parameters E1, E2, and E3 as given,
Algorithm 2.1 succeeds in time

Lq[1/3; 3/2 + o(1)] + |W | · Lq[1/3; 1.026 + o(1)].
Returning to Algorithm 2.9, we therefore conjecture that with the same choice of
parameters the algorithm succeeds and that Steps 2–4 require time at most

J(Lq[1/3; 3/2 + o(1)]) +

J∑

j=1

|Wj |Lq[1/3; 1.026 + o(1)],(3.10)

where J is the parameter appearing in Step 2. To compute the size of Wj , we note
that for a given value of j and for each w ∈Wj the number of Bj+1-smooth elements
appearing in expression (2.6) is at most l + 1 more than the number of c, d used to
form the matrix A in (2.3). According to our analysis of Steps 1 and 3 of Algorithm
2.1, both l and the number of factors of each smooth element appearing in (2.6) are
asymptotically less than n. Since the set of pairs c, d depends on j and not on w, and
since the number of such pairs is by assumption Lq[1/3; 1/2 + o(1)], we have

|Wj+1| ≤ nLq[1/3; 1/2 + o(1)] + nO(1)|Wj |.
Since |W1| is bounded by n, we find that |Wj | ≤ nO(j)Lq[1/3; 1/2 + o(1)] and that
(3.10) is equal to

nO(J)Lq[1/3; 1.526 + o(1)].

It remains to determine the size of J as a function of q. Recall that J is the
smallest integer such that BJ+1 ≤ B. Consequently, either J = 0 or we have BJ > B.
In the latter case,

Mq

[
1

3
+

1

3 · 2J−1
; 3/4

]
=

3

4

(
log q

log log q

) 1

3·2J−1

n
1
3

(
log log q

log p

) 2
3

>

(
4

9

) 1
3

n
1
3

(
log log q

log p

) 2
3

,
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and we conclude that
(

log q

log log q

) 1

2J−1

>
256

243
.

Solving for J , we find that J ≤ O(log log log q). We thus arrive at the following
conjecture.

Conjecture 3.13. There exist input parameters E1, E2, and E3 in Algorithm
2.9 so that in the case that the class numbers of the function fields encountered by
the algorithm are prime to (q − 1)/(p − 1), the algorithm succeeds in producing a
multiplicative relation of the form (2.8) in an expected running time of at most

Lq[1/3; 1.526 + o(1)]

for q →∞ with p ≤ no(
√
n).

We will see in the next section that the time needed to compute the logarithms
of the polynomials in Fq of degree ≤ B is Lq[1/3; (32/9)

1/3 + o(1)]. Since 1.526 <
(32/9)1/3, the choices we have made for the various quantities arising in the algorithms
in section 2 are good enough to render the conjectural running time of our reduction
inconsequential in the asymptotic running time of the discrete logarithm algorithm
as a whole. However, these choices are not the best possible. To begin with, the
values of E1, E2, and E3 given in our analysis of Algorithm 2.1 are not optimal. In
addition, replacing the 3/4 which appears as the secondary constant in the definition
of Bj in Algorithm 2.1 with a value closer to (4/9)1/3 reduces the optimized running
time of the algorithm, though not dramatically. The interested reader can verify
that it is possible through this modification to achieve a time arbitrarily close to
Lq[1/3; c + o(1)], where c is the real root of x3 − (9/4)1/3x − 3/2 and has a value
approximately equal to 1.516. Finally, we have not investigated whether it is possible
to lower the running time by using smoothness bounds Bj that are not taken to be
the closest integers to numbers of the form

Mq

[
1

3
+

1

3 · 2j ; c
]

for fixed c. In this context, we note that in [6] Coppersmith uses a sequence of bounds
that are not given in this manner, but which instead are defined recursively by the
formula Bj+1 =

√
BBj , where B is, as in our case, the target bound of the entire

reduction.
We conclude by observing that in the event that more than one logarithm in Fq

is desired, the sieving in Step 1 of Algorithm 2.1 needs to be performed only once for
a given value of j. In this case, it may be beneficial to lower the smoothness bound
C, and hence the running time of the linear algebra in Step 3, at the expense of a
more time consuming precomputation.

4. Logarithms of small elements. Let q = pn, with p prime, and let t and u
be elements in F

∗
q such that u is in the subgroup generated by t. To compute log tu,

we first use Algorithm 2.9 to produce a relation of the form (2.8). It then suffices
to compute the logarithm of an element in F

∗
p, which can be accomplished with the

number field sieve, and the logarithms of a collection of elements in the smoothness
base SB . In this section, we describe a method to compute the logarithms in the
smoothness base. It is due to Adleman and Huang and can be found in [2]. Through-
out this section we adopt the model for Fq, as well as all the notation, introduced
prior to Algorithm 2.1.
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Algorithm 4.1. This algorithm takes as input two positive integers e, β ≤ n,
a third parameter E, and a primitive element t ∈ F

∗
q which, when considered as a

polynomial in Fp[X], is β-smooth. Its purpose is to compute log tu for all u ∈ Sβ .
Let µ = n/e�, and H(X,Y ) = Y e − Xµe−ns. As in section 2, H(X,Y ) is ab-

solutely irreducible by Eisenstein’s criterion. Let O = Fp[X,Y ]/(H(X,Y )), let y be
the image of Y in O, and denote by F the field of fractions of O. Set m = Xµ, in
which case H(X,m) ≡ 0 mod Xn− s, and let φ : O → Fq be the ring homomorphism
which extends the usual projection map by sending y �→ m. Finally, let S be the set
of finite places of Fp(X) of degree ≤ β, and let T be the union of the set of places of
F at infinity and the set of places Q of F with the property that there exists P ∈ S
such that Q lies over P .

Step 1. Use a sieve to collect all pairs of relatively prime elements c, d ∈ Fp[X] such
that c− dy and c− dm are both β-smooth, and deg(c) and deg(d) are less than E. If
the number of pairs found is less than |S|+ |T | − 1, the algorithm terminates.

Step 2. For P ∈ S, let vP denote the discrete valuation associated to P , and similarly,
for Q ∈ T , let vQ denote the discrete valuation associated to Q. For each pair c, d
found in Step 1, compute an exponent vector Vc,d containing the values vP (c− dm),
where P runs through the places in S, and the values −vQ(c − dy), where Q runs
through the places in T . In addition, compute a vector Vt containing vP (t) for all
P ∈ S and 0’s at the coordinates corresponding to the places of T .

Step 3. Let A be a square matrix whose first row is Vt and whose remaining rows are
chosen from among the vectors Vc,d. Let V be the column vector of length |S| + |T |
whose first entry is 1 and whose remaining entries are 0. Use the method given in [31]
to solve the matrix equation

Ax ≡ V mod (q − 1)/(p− 1).(4.1)

If no solution is found, the algorithm terminates. If a solution is obtained, then it
is likely to contain the logarithms we seek. To be more precise, for each P ∈ S, let
xP be the entry in the solution to (4.1) corresponding to the column of A containing
the values of the discrete valuation associated to the place P . Let uP be the monic,
irreducible polynomial in Fp[X] of degree ≤ β with the property that P is the place
of the localization of Fp[X] at uP . To simplify notation, we also use uP to denote the
element in Fq represented by uP . With this convention, we see that Sβ = {uP |P ∈ S}.
Finally, let h be the class number of F and assume that h is prime to (q− 1)/(p− 1).
We claim that in this case xP ≡ log t(uP ) mod (q − 1)/(p− 1) for all P ∈ S.

In support of this assertion, we give the following argument from [2]. Choose a
place R of F of degree 1. Let Q be a place in T , and let fQ be the degree of Q. Then
the divisor Q−fQR has degree 0, and so the divisor hQ−hfQR is principal. In other
words, there exists an element γQ ∈ F , determined up to a constant in F

∗
p, such that

div(γQ) = hQ− hfQR. We then see that for each c, d found in Step 1

div




∏

Q∈T
γ
vQ(c−dy)
Q



 =
∑

Q∈T
vQ(c− dy)(hQ− hfQR)

=
∑

Q∈T
vQ(c− dy)hQ−




∑

Q∈T
vQ(c− dy)fQ



hR.

The quantity
∑

Q∈T vQ(c− dy)fQ is the degree of the divisor of c− dy and is conse-

quently equal to 0. Since div(c−dy) =∑Q∈T vQ(c−dy)Q, we conclude that (c−dy)h
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and
∏

Q∈T γ
vQ(c−dy)
Q have the same divisor and therefore that there exists some η ∈ F

∗
p

such that

(c− dy)h = η
∏

Q∈T
γ
vQ(c−dy)
Q .(4.2)

The element c− dm is β-smooth, and so, for some η′ ∈ F
∗
p,

c− dm = η′
∏

P∈S
u
vP (c−dm)
P .(4.3)

Since φ(c− dy) = φ(c− dm), we see from (4.2) and (4.3) that

(
η′
∏

P∈S
u
vP (c−dm)
P

)h

= η
∏

Q∈T
φ(γQ)

vQ(c−dy).

Taking the logarithm of both sides yields the linear relation

∑

P∈S
vP (c− dm)log t(uP ) ≡

∑

Q∈T
vQ(c− dy)h−1log t(φ(γQ)) mod (q − 1)/(p− 1),

where h−1 is the inverse of h modulo (q−1)/(p−1). Thus, by solving (4.1) we obtain
for all P ∈ S the residue class of log t(uP ) modulo (q− 1)/(p− 1). As a side product,
we also find, for all Q ∈ T the residue class of h−1log t(φ(γQ)). Note that we have
relied on the fact that φ can be extended multiplicatively to a subset of F containing
the elements γQ for all Q ∈ T (see [2]).

Step 4. For each P ∈ S, compute

ηP = uP t
−xP .

We expect that ηP ∈ F
∗
p. If it is not, the algorithm terminates, Otherwise, we use the

number field sieve to compute log t′ηP , where t
′ = t(q−1/(p−1). We then obtain the

logarithm of uP by means of the formula

log t(uP ) = xP +

(
q − 1

p− 1

)
log t′(ηP ).

This concludes the description of Algorithm 4.1.
Though Algorithm 4.1 terminates, it may do so without producing the desired

logarithms. If Step 3 reveals that A is singular, one option is to change A by replacing
one or more rows with valuation vectors Vc,d from Step 2 which do not appear in A.
If the problem persists or in Step 4, if ηP is not in F

∗
p, it is likely that the difficulty

is due to the existence of a nontrivial common divisor of h and (q − 1)/(p − 1). For
more on this obstruction, we refer the reader to the discussion following Algorithm
2.1 in section 2.

In the analysis of Algorithm 4.1 that follows, we rely on the assumption that
the elements we check for smoothness in Step 1 behave like random polynomials with
respect to smoothness and hence that we can use Corollary 3.2, as well as Theorem 4.7
stated below, to determine how many tests are needed in this step. In what follows,
all o(1)’s are for q →∞.
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Our results depend greatly on the behavior of p and n as q → ∞. We begin
by assuming that Mq[1/3; (4/9)

1/3] is unbounded as q → ∞ or, equivalently, that

p ≤ no(
√
n). In this case, we conjecture that e, β, and E can be chosen so that

e =

(
(3 + o(1))log q

2 log log q

)1/3

,

β =Mq[1/3; (4/9)
1/3 + o(1)],(4.4)

E =Mq[1/3; (32/9)
1/3 + o(1)]

and so that Step 1 of the algorithm produces at least |S|+ |T | − 1 pairs c, d satisfying
the smoothness conditions. Furthermore, we conjecture that the bound on E in (4.4)
cannot be improved and hence that the optimal running time of Step 1 of Algorithm
4.1 is

Lq[1/3; (32/9)
1/3 + o(1)].(4.5)

We refer the reader interested in the details to [2], where these values are established
for the present algorithm, and [11], where they are obtained for the analogous special
number field sieve. In Step 2, the entries in an exponent vector Vc,d corresponding
to the places in S and most of the places of T can be read off of the factorizations of
c−dm andN(c−dy) obtained during sieving. As explained in [2], the valuations at the
remaining places of T can be computed in time polynomial in log q using a method
involving Newton polygons. Since the matrix A in Step 3 is sparse, Wiedemann’s
algorithm [31] runs in time p2β(1+o(1)), which is equal to (4.5) when β satisfies the
equation in (4.4). Finally, in Step 4, the number field sieve for prime fields computes
the logarithm of each ηP in an expected running time of Lp[1/3; (64/9)

1/3 + o(1)].
Thus, we conjecture that so long as the class number of F is prime to (q− 1)/(p− 1),
we can choose parameters so that Algorithm 4.1 succeeds in a running time of (4.5).

We consider now the case thatMq[1/3; (4/9)
1/3] is bounded as q →∞. Then n

√
n

is bounded by a constant power of p. We take e to be the positive integer closest to√
n/2 and let β = 1. We observe immediately that computing the valuation vectors

in Step 2, solving (4.1) in Step 3, and determining the logarithms of the elements ηP
in Step 4 require at most time p2β(1+o(1)) = p2+o(1). To analyze Step 1, we rely on
the following result which appears as Theorem 2.2 in [3] and is proven there using
elementary techniques.

Theorem 4.7. Let δ and β be integers with δ ≥ β2 ≥ 1. Let ω = δ/β. Then, for
all primes p,

Np(δ, β)

pδ
≥ δ−ω.

By our choice of e, there exists a constant k such that the degree of the polynomials
being tested for smoothness is bounded by kE

√
n. According to Theorem 4.7, the

probability that a random polynomial in Fp[x] of degree ≤ kE
√
n is β-smooth is at

least (kE
√
n)−kE

√
n. We therefore conjecture that in order to find at least |S|+ |T |−1
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pairs c, d satisfying the given smoothness conditions, the number of pairs that need
to be tested is ≤ (|S| + |T | + 1)(kE

√
n)kE

√
n = p1+o(1)(kE

√
n)kE

√
n. Since n

√
n is

bounded by a constant power of p, so is
√
n
√
n
. We conclude that E can be taken to

be constant. That is, we can choose e, β, and E so that the sieving stage of Algorithm
4.1 produces enough pairs and so that the sieve runs in time bounded by a constant
power of p. We consider two cases. If p ≤ nO(

√
n) as q →∞, then any constant power

of p is bounded by Lq[1/3; c] for some constant c, and we conjecture that Algorithm
4.1 succeeds in a running time of this form. If for some constant k′ > k/2 we have

p ≥ nk′√n as q → ∞, then k
√
n
k
√
n
< p for sufficiently large q. Indeed, either n

is unbounded, in which case k
√
n
k
√
n
< nk

′√n ≤ p, for sufficiently large n, or n is

bounded, in which case k
√
n
k
√
n
< p for sufficiently large p. Therefore, we conjecture

that for q large we can restrict our search for pairs c, d to those which are linear and
that the number of pairs that need to be tested is at most p2+o(1). We summarize
our results in the following conjecture, which we organize to parallel the complexity
results given in [3] for a variation of the standard index calculus method.

Conjecture 4.8. There exist input parameters e, β, and E in Algorithm 4.1 and
a constant k′ so that in the case that the class number of the field F appearing in the
algorithm is prime to (q − 1)/(p − 1), the algorithm succeeds in computing log tu for
all u ∈ Sβ in time at most Lq[1/3; (32/9)

1/3 + o(1)] for q → ∞ with p ≤ no(
√
n), in

time at most Lq[1/3;O(1)] for q → ∞ with p ≤ nO(
√
n), and in time at most p2+o(1)

for q →∞ with p > nk
′√n.

Conjectures 4.8 and 3.13 together yield the conjecture that for q → ∞ with p ≤
no(
√
n) the special function field sieve requires expected time Lq[1/3; (32/9)

1/3 + o(1)]
to compute a logarithm in Fq, as long as it is with respect to a base t which is
represented by a smooth polynomial. This smoothness requirement can easily be
avoided by finding a primitive element τ which is represented by a smooth polynomial
and using the identity

log tu ≡ log τu

log τ t
mod q − 1.

According to Theorem 1.1 in [25], once q − 1 is factored, we can obtain such a τ
in time p(log q)O(1). We leave it to the reader to verify that using the special number
field sieve to factor q − 1 in the case that p ≤ no(

√
n) and the general number field

sieve otherwise, we can complete the search for τ in sufficiently little time so as not to
affect the asymptotic running times given in Conjecture 4.8. Unfortunately, the same
cannot be said of Algorithm 2.9. In the case that p ≤ nO(

√
n), the type of argument

made above for Algorithm 4.1 leads to the conjecture that we can choose parameters
for Algorithm 2.9 so that it succeeds in expected time at most Lq[1/3;O(1)]. However,

in the case that p > nk
′√n, the optimal parameter choices yield a lower bound of p3C

for the running time of Algorithm 2.9, where C is the smoothness bound appearing in
Step 1 of Algorithm 2.1. We conclude that in this range Adleman’s original function
field sieve [1] is a better choice than the special function field sieve since it runs
conjecturally in expected time at most p2+o(1).
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[28] E. Thomé, Computing discrete logarithms over GF(2607), in Advances in Cryptology – Asi-

acrypt 2001, Lecture Notes in Comput. Sci. 2248, C. Boyd, ed., Springer-Verlag, Berlin,
2001, pp. 107–124.



98 OLIVER SCHIROKAUER

[29] D. Weber, Computing discrete logarithms with the number field sieve, in Algorithmic Number
Theory, ANTS-II, Lecture Notes in Comput. Sci. 1123, H. Cohen, ed., Springer-Verlag,
Berlin, 1996, pp. 391–403.

[30] D. Weber and T. Denny, The solution of McCurley’s discrete log challenge, in Advances in
Cryptology – Crypto ’98, Lecture Notes in Comput. Sci. 1462, H. Krawczyk, ed., Springer-
Verlag, Berlin, 1998, pp. 458–471.

[31] D.H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans. Inform. The-
ory, 32 (1986), pp. 54–62.



ASYMPTOTIC SIZE RAMSEY RESULTS FOR BIPARTITE GRAPHS∗

OLEG PIKHURKO†

SIAM J. DISCRETE MATH. c© 2003 Society for Industrial and Applied Mathematics
Vol. 16, No. 1, pp. 99–113

Abstract. We show that limn→∞ r̂(F1,n, . . . , Fq,n, Fq+1, . . . , Fr)/n exists, where the bipartite
graphs Fq+1, . . . , Fr do not depend on n while, for 1 ≤ i ≤ q, Fi,n is obtained from some bipartite
graph Fi with parts V1 ∪ V2 = V (Fi) by duplicating each vertex v ∈ V2 (cv + o(1))n times for some
real cv > 0.

In fact, the limit is the minimum of a certain mixed integer program. Using the Farkas lemma
we show how to compute it when each forbidden graph is a complete bipartite graph, in particular
answering the question of Erdős, Faudree, Rousseau, and Schelp [Period. Math. Hungar., 9 (1978),
pp. 145–161], who asked for the asymptotics of r̂(Ks,n,Ks,n) for fixed s and large n. Also, we prove
(for all sufficiently large n) the conjecture of Faudree, Rousseau, and Sheehan in [Graph Theory and
Combinatorics, B. Bollobas, ed., Cambridge University Press, Cambridge, UK, 1984, pp. 273–281]
that r̂(K2,n,K2,n) = 18n− 15.

Key words. size Ramsey number, bipartite graphs, mixed integer programming, Farkas lemma
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1. Introduction. Let (F1, . . . , Fr) be an r-tuple of graphs which are called for-
bidden. We say that a graph G arrows (F1, . . . , Fr) if for any r-coloring of E(G), the
edge set of G, there is a copy of Fi of color i for some i ∈ [r] := {1, . . . , r}. We denote
this arrowing property by G→ (F1, . . . , Fr).

The (ordinary) Ramsey number asks for the minimum order of such G. Here,
however, we deal exclusively with the size Ramsey number

r̂(F1, . . . , Fr) = min{e(G) : G→ (F1, . . . , Fr)}

which is the smallest number of edges that an arrowing graph can have.
Size Ramsey numbers seem hard to compute, even for simple forbidden graphs.

For example, the old conjecture of Erdős [6] that r̂(K1,n,K3) = 3n(n+1)/2 has only
recently been disproved in [16], where it is shown that r̂(K1,n, F ) = (1 + o(1))n2 for
any fixed 3-chromatic graph F . (Here, Km,n is the complete bipartite graph with
parts of sizes m and n; Kn is the complete graph of order n.)

This research has been initiated as an attempt to find the asymptotics of r̂(K1,n, F )
for a fixed graph F . The case χ(F ) ≥ 4 is treated in [14] (and [16] deals with
χ(F ) = 3). What can be said if F is a bipartite graph?

Faudree, Rousseau, and Sheehan [10] proved that

r̂(K1,n,K2,m) = 4n+ 2m− 4

for everym ≥ 9 if n is sufficiently large (depending onm) and stated that their method
shows that r̂(K1,n,K2,2) = 4n, n ≥ 3. They also observed that Ks,2n arrows the pair
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(K1,n, C2s) for n ≥ s, where C2s is the cycle of order 2s; hence r̂(K1,n, C2s) ≤ 2sn
then.

Let Ps be the path with s vertices. Lortz and Mengersen [13] showed that
Kk,2n−1 → (K1,n, P2k+1) and Kk + K2n−k−1 → (K1,n, P2k) and conjectured that
this is sharp for any s ≥ 4 provided n is sufficiently large; that is,

r̂(K1,n, Ps) =

{
2kn− k if s = 2k + 1,
2kn− k(k + 3)/2 if s = 2k,

n ≥ n0(s).(1.1)

The conjecture was proved for 4 ≤ s ≤ 7 in [13].

Size Ramsey numbers r̂(F1, F2) for bipartite graphs F1 and F2 are also studied
in [8, 5, 2, 3, 7, 9, 12, 11], for example.

It is not hard to see that, for fixed s1, . . . , sr ∈ N and t1, . . . , tr ∈ R>0, we have

r̂(Ks1,�t1n�, . . . ,Ksr,�trn�) = O(n).(1.2)

This follows, for example, by assuming that s1 = · · · = sr = s, t1 = · · · = tr = t
and considering Kv1,v2 , where v1 = (s − 1)r + 1 and v2 = 	rtn(v1s

)
. The latter
graph has the required arrowing property. Indeed, for any r-coloring, each vertex
of V2 is incident to at least s edges of the same color; hence there are at least v2

monochromatic Ks,1-subgraphs and some S ∈ (V1

s

)
appears in at least v2/

(
v1
s

) ≥ rtn
such subgraphs of which at least tn have the same color.

Here we will show that the limit limn→∞ r̂(F1,n, . . . , Fr,n)/n exists if each forbid-
den graph is either a fixed bipartite graph or a subgraph of Ks,�tn� which “dilates”
uniformly with n. (The precise definition will be given in section 2.) In particular,
r̂(K1,n, F )/n tends to a limit for any fixed bipartite graph F .

The limit value can in fact be obtained as the minimum of a certain mixed integer
program (which does depend on n). We have been able to solve the MIP when
each Fi,n is a complete bipartite graph. In particular, we answer the question of
Erdős et al. [8, Problem B], who asked for the asymptotics of r̂(Ks,n,Ks,n). Working
harder on the case s = 2 we prove (for all sufficiently large n, n ≥ n0) the conjecture
of Faudree, Rousseau, and Sheehan [10, Conjecture 15] that

r̂(K2,n,K2,n) = 18n− 15,(1.3)

where the upper bound is obtained by considering K3,6n−5 → (K2,n,K2,n). The
identity (1.3) is not true for all n: for example, it is stated in [10] that r̂(K2,2,K2,2) =
15. The upper bound follows from K6 → (K2,2,K2,2), which is easy to verify. Our
method could produce a concrete value for n0 with extra tedious calculations, but
this would probably be rather large.

Unfortunately, our MIP is not well suited for practical calculations, and we were
not able to compute the asymptotics for any other nontrivial forbidden graphs; in
particular, we had no progress on (1.1). However, we hope that the introduced method
will produce more results: although the MIP is hard to solve, it may be possible that,
for example, some manageable relaxation of it gives good lower or upper bounds.

Our method does not work if we allow both vertex classes of forbidden graphs to
grow with n. In these settings, in fact, we do not know the asymptotics even in the
simplest cases. For example, the best known bounds on r = r̂(Kn,n,Kn,n) seem to
be r < 3

2n
32n for n ≥ 6 (Erdős et al. [8]) and r > 1

60n
22n for n ≥ n0 (Erdős and

Rousseau [9]).
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2. Main ideas and definitions. Let us briefly describe the main ideas behind
our approach and how they came into existence. As an illustration, suppose we want
to prove that r̂(K2,n,K2,n) ≥ (18 + o(1))n. Let n be large, and let G→ (K2,n,K2,n)
be any graph with e(G) ≤ (18+ o(1))n. We try to get as much information about the
structure of G as possible.

Let L = {x ∈ V (G) : d(x) ≥ n}. Clearly, |L| ≤ 18. As no edge disjoint from L
lies inside a K2,n-subgraph of G, we can harmlessly remove all such edges from G;
that is, we can assume that V (G) \ L is an independent set in G.

Also, if we remove all edges within L, the arrowing property is only slightly
impaired: the obtained graph G′ arrows (K2,n′ ,K2,n′), where we can take n′ = n−16
(or even larger). So, replacing G by G′ and n by n′, we can assume that G ⊂ K18,m

for some m = m(n).
Also, we can assume that every vertex of L has degree at least 2n − 1. (This is

not crucial here, but this illustrates Lemma 3.1.) Indeed, if we remove any x ∈ L
of degree at most 2n − 2, then the obtained graph G′ arrows (K2,n−1,K2,n−1): any
(K2,n−1,K2,n−1)-free coloring of G′ extends to a (K2,n,K2,n)-free coloring of G by
coloring the remaining edges without a monochromatic K1,n centered at x.

Thus, we can assume that G ⊂ K9,m. How can we economically describe such a
graph? This brings us to new definitions.

Let F be a bipartite graph. We assume that bipartite graphs come equipped
with a fixed bipartition V (F ) = V1(F )∪V2(F ), although graph embeddings need not
preserve it. We denote vi(F ) = |Vi(F )|, i = 1, 2; thus v(F ) = v1(F ) + v2(F ). Define

FA = {v ∈ V2(F ) : ΓF (v) = A}, A ⊂ V1(F ),

where ΓF (v) denotes the neighborhood of v in F . (We will write Γ(v), etc. when the
encompassing graph F is clear from the context.) Clearly, in order to determine F
(up to an isomorphism) it is enough to know V1(F ) and |FA| for all A ∈ 2V1(F ).

Now, instead of dealing with G→ (K2,n,K2,n) we prefer to work with the num-
bers |GA|. As e(G) = O(n), we can let n → ∞ over some sequence so that |GA|/n
tends to a limit gA for each A ∈ 2L. The how we call it “weight” g = (gA)A∈2L cannot
be arbitrary: the fact that G → (K2,n,K2,n) imposes some restrictions on g. The
question arises whether we can rephrase the arrowing property for weights without
appealing to the original graphs. This requires rewriting the notions of a subgraph,
coloring, etc. For the sake of generality, one would also wish to allow constant (i.e.,
not depending on n) forbidden subgraphs, which prompts one to define the mixed
relation “F ⊂ g” as well, where F is a graph and g is a weight. This is the first part
of the program, which culminates in Theorem 3.3, where it is shown that the “weight
size Ramsey number” indeed gives the asymptotics of the ordinary number. However,
the second part, to calculate the weight size Ramsey number, is not an easy task and
we are able to carry it out for complete bipartite graphs only.

Let us give formal definitions. A weight f on a set V (f) is a sequence (fA)A∈2V (f)

of nonnegative reals. A bipartite graph F agrees with f if V1(F ) = V (f) and FA = ∅
if and only if fA = 0, A ∈ 2V (f). A sequence of bipartite graphs (Fn)n∈N is a dilatation
of f (or dilates f) if each Fn agrees with f and

|FAn | = fAn+ o(n) ∀A ∈ 2V (f).

(Of course, the latter condition is automatically true for all A ∈ 2V (f) with fA = 0.)
Clearly, e(Fn) = (e(f)+ o(1))n, where e(f) =

∑
A∈2V (f) fA |A|, so we call e(f) the size
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of f . Also, the order of f is v(f) = |V (f)| and the degree of x ∈ V (f) is

d(x) =
∑

A∈2V (f)

A�x

fA.

Clearly, e(f) =
∑
x∈V (f) d(x).

For example, given t ∈ R>0, the sequence (Ks,
tn�)n∈N is the dilatation of ks,t,
where the symbol ks,t will be reserved for the weight on [s] which has value t on [s]
and zero otherwise. (We assume that V1(Ks,m) = [s].) It is not hard to see that any
sequence of bipartite graphs described in the abstract is in fact a dilatation of some
weight.

We write F ⊂ f if for some bipartition V (F ) = V1(F )∪V2(F ) there is an injection
h : V1(F )→ V (f) such that for any A ⊂ V1(F ) dominated by a vertex of V2(F ) there
is B ⊂ V (f) with B ⊃ h(A) and fB > 0. This notation is motivated by the following
easy lemma. In fact, we will implicitly prove a sharper version during the proof of
Theorem 3.3, so we give no proof here.

Lemma 2.1. Let (Fn)n∈N be a dilatation of f . If F ⊂ f , then F is a subgraph
of Fn for all sufficiently large n. Otherwise, which is denoted by F �⊂ f , no Fn
contains F .

Next, we define the “⊂”-relation between two weights f and g. Assume that v(f) ≤
v(g) by adding new vertices to V (g) and letting g be zero on all new sets. We write
f ⊂ g if there is an injection h : V (f)→ V (g) and numbers (wAB ≥ 0)A∈2V (f), B∈2V (g)

such that

∀A ∈ 2V (f), ∀B ∈ 2V (g) h(A) �⊂ B ⇒ wAB = 0,

∀A ∈ 2V (f)
∑

B∈2V (g)

B⊃h(A)

wAB ≥ fA,

∀B ∈ 2V (g)
∑

A∈2V (f)

h(A)⊂B

wAB ≤ gB .

This definition is a bit difficult to comprehend. In a sense, it corresponds to a graph
embedding F ⊂ G preserving the V1 ∪ V2-partition: h embeds V1(F ) into V1(G) and
wA,B says how much of FA ⊂ V2(F ) is mapped into GB . The motivation comes from
the following lemma which, like Lemma 2.1, is not used later and so is stated without
a proof.

Lemma 2.2. Let (Fn)n∈N and (Gn)n∈N be dilatations of f and g, respectively.
Then f ⊂ g implies that for any ε > 0 there is n0 such that Fn ⊂ Gm for any n ≥ n0

and m ≥ (1 + ε)n. Otherwise, which is denoted by f �⊂ g, there is ε > 0 and n0 such
that Fn �⊂ Gm for any n ≥ n0 and m ≤ (1 + ε)n.

The weight ⊂-relation enjoys many properties of the graph one. For example,
d(x) ≤ d(h(x)) for any x ∈ V (f):

d(x) =
∑

A∈2V (f)

A�x

fA ≤
∑

A∈2V (f)

A�x

∑

B∈2V (g)

B⊃h(A)

wA,B ≤
∑

B∈2V (g)

B�h(x)

∑

A∈2V (f)

h(A)⊂B

wA,B ≤
∑

B∈2V (g)

B�h(x)

gB = d(h(x)).

(2.1)
An r-coloring c of g is a sequence (cA1,...,Ar ) of nonnegative reals indexed by

r-tuples of pairwise disjoint subsets of V (g) such that
∑

A1∪···∪Ar=A

cA1,...,Ar > gA ∀A ∈ 2V (g).(2.2)
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The ith color subweight ci is defined by V (ci) = V (g) and

ci,A =
∑

A1,...,Ar
Ai=A

cA1,...,Ar
, A ∈ 2V (g).(2.3)

The analogy is as follows: to define an r-coloring of G, it is enough to define, for
all disjoint A1, . . . , Ar ⊂ V1(G), how many vertices of GA1∪···∪Ar are connected, for
all i ∈ [r], by color i precisely to Ai. We put the strict inequality in (2.2) so that
Lemma 3.2 is true.

3. Existence of limit. Let r ≥ q ≥ 1. Consider a sequence F = (F1, . . . ,Fr),
where Fi = fi is a weight for i ∈ [q] and Fi = Fi is a bipartite graph for i ∈ [q+ 1, r].
Assume that Fi does not have an isolated vertex (that is, x ∈ V (Fi) with d(x) = 0),
i ∈ [r]. We say that a weight g arrows F (denoted by g → F) if for any r-coloring c
of g we have Fi ⊂ ci for some i ∈ [r]. Define

r̂(F) = inf{e(g) : g→ F}.(3.1)

The definition (3.1) imitates that of the size Ramsey number, and we will show
that these are very closely related indeed. However, we need a few more preliminaries.

Observe that r̂(F) < ∞ by considering ka,b which arrows F if, for example,
a = 1 +

∑r
i=1(v(Fi) − 1) and b is sufficiently large; cf. (1.2). Let l be an integer

greater than r̂(F)/d0, where d0 =
∑q
i=1 di and

di = min{dfi(x) : x ∈ V (fi)} > 0, i ∈ [q].

Lemma 3.1. Let g → F have no isolated vertices. If dg(x) < d0 for some
x ∈ V (g) or if v(g) > l, then there is g′ → F with e(g′) < e(g) and v(g′) < v(g).

It follows that r̂(F) = r̂l(F), where r̂l(F) = min{e(g) : g→ F, v(g) ≤ l}.
Proof. Let d(x) < d0. Choose δ > 0 with δ + did(x)/d0 < di for any i ∈ [q].

Define the weight g′ on V (g) \ {x} by g′A = gA + gA∪{x}, A ∈ 2V (g′). Clearly,
e(g′) = e(g)− d(x) < e(g).

We claim that g′ arrows F. Suppose that this is not true, and let c′ be an F-free
r-coloring of g′. We can assume that

∑

A1∪···∪Ar=A

c′A1,...,Ar
≤ g′A + δ/2v(g

′) for any A ∈ 2V (g′).

Define c by

cA1,...,Ar =






λA\{x}di
d0

· c′A1,...,Ai−1,Ai\{x},Ai+1,...,Ar
, x ∈ Ai, i ∈ [q],

0, x ∈ Aq+1 ∪ · · · ∪Ar,
(1− λA) · c′A1,...,Ar

, x /∈ A,
where we denote A = A1 ∪ · · · ∪ Ar, λA = gA∪{x}/g′A if g′A > 0, and λA = 1/2 if
g′A = 0. The reader can check that c is an r-coloring of g.

By the assumption on g, we have Fi ⊂ ci for some i ∈ [r]. However, this
embedding cannot use x because for i ∈ [q + 1, r] we have dci

(x) = 0 while for i ∈ [q]

dci(x) =
∑

A1,...,Ar⊂V (g′)

cA1,...,Ai−1,Ai∪{x},Ai+1,...,Ar
=

∑

A∈2V (g′)

λAdi
d0

∑

A1∪···∪Ar=A

c′A1,...,Ar

≤
∑

A∈2V (g′)

λAdi
d0

(g′A + δ/2v(g
′)) ≤ diδ

d0
+

di
d0

∑

A∈2V (g′)

gA∪{x} ≤ δ + di
d(x)

d0
< di
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is too small; see (2.1). However, ci,A ≤ c′i,A for A ∈ 2V (g′); hence, Fi ⊂ c′i, which is
the desired contradiction proving the first claim.

Let v(g) > l. If e(g) ≥ r̂(F) + d0, replace g by any other arrowing weight with
e(g) < r̂(F) + d0. As e(g)/(l + 1) < d0, we can eventually ensure that v(g) ≤ l by
iterating the procedure which proved the first claim.

Hence, to compute r̂(F) it is enough to consider F-arrowing weights on L = [l]
only.

Lemma 3.2. There exists g→ F with V (g) ⊂ L and e(g) = r̂(F). (We call such
a weight extremal.)

Proof. Choose gn → F with V (gn) ⊂ L, n ∈ N, such that e(gn) approaches r̂(F).
By choosing a subsequence, assume that V (gn) is constant and gA = limn→∞ gn,A
exists for each A ∈ 2L. Clearly, e(g) = r̂(F) so it remains to show that g→ F.

Let c be an r-coloring of g. Let δ be the smallest slack in inequalities (2.2).
Choose sufficiently large n so that |gn,A − gA| < δ for all A ∈ 2L. We have

∑

A1∪···∪Ar=A

cA1,...,Ar
≥ gA + δ > gn,A, A ∈ 2L;

that is, c is a coloring of gn as well. Hence, Fi ⊂ ci for some i, as required.
Now we are ready to prove our general theorem. The proof essentially takes care of

itself. We just exploit the parallels between weights and graphs, which, unfortunately,
requires messing around with various constants.

Theorem 3.3. Let (Fi,n)n∈N be a dilatation of fi, i ∈ [q], and let Fi be a fixed
bipartite graph, i ∈ [q + 1, r]. Then, for all sufficiently large n,

r̂(F)n−M(1 + f0) ≤ r̂(F1,n, . . . , Fq,n, Fq+1, . . . , Fr) ≤ r̂(F)n+M(1 + f0),(3.2)

where f0 = max{ | |FAi,n| − fi,An | : i ∈ [q], A ∈ V (fi)} and M = M(F) is some
constant.

In particular, the limit limn→∞ r̂(F1,n, . . . , Fq,n, Fq+1, . . . , Fr)/n exists.
Proof. Let v0 = max{v(Fi) : i ∈ [r]}, m1 = 2v0(f0 + 1), and m2 = rlm1 + 1,

where, as before, l > r̂(F)/d0.
We prove that

r̂(F1,n, . . . , Fq,n, Fq+1, . . . , Fr) ≤ r̂(F)n+ 2ll(m2 + 1), n ≥ 1.(3.3)

By Lemma 3.2 choose an extremal weight g on L. Define a bipartite graph G
as follows. Choose disjoint from each other (and from L) sets GA with |GA| =
	gAn + m2
, A ∈ 2L. Let V (G) = L ∪ (∪A∈2LGA). In G we connect x ∈ L to
everything in GA if x ∈ A. These are all the edges. Clearly,

e(G) =
∑

A∈2L

|GA| |A| ≤ 2ll(m2 + 1) +
∑

A∈2L

gAn |A| ≤ 2ll(m2 + 1) + r̂(F)n,

as required. Hence, it is enough to show that G has the arrowing property.
Consider any r-coloring c : E(G) → [r]. For every r-tuple of disjoint sets

B1, . . . , Br ⊂ L, let

CB1,...,Br = {y ∈ GB : ∀i ∈ [r] ∀x ∈ Bi c({x, y}) = i},
cB1,...,Br

=

{
(|CB1,...,Br | −m1)/n if |CB1,...,Br | ≥ m1,
0 otherwise,
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where B = B1 ∪ · · · ∪Br. In any case, ncB1,...,Br
≥ |CB1,...,Br

| −m1; hence, for every
B ∈ 2L we have

n
∑

B1∪···∪Br=B

cB1,...,Br
≥ −r|B|m1 +

∑

B1∪···∪Br=B

|CB1,...,Br
| ≥ −rlm1 + |GB | > ngB ;

that is, c is an r-coloring of g. Hence, Fi ⊂ ci for some i ∈ [r]. Now we show that G
contains a forbidden subgraph in the ith color.

Suppose that i ∈ [q]. By definition, we find appropriate h : V (fi) → L and w.
We aim at proving that Fi,n ⊂ Gi, where Gi ⊂ G is the color-i subgraph. Partition
FAi,n = ∪B⊃h(A)WA,B so that WA,B = ∅ if wA,B = 0 and |WA,B | ≤ �wA,Bn+ f0 + 1�,
A ∈ 2V (fi), B ∈ 2L. This is possible for any A: if wA,B = 0 for all B ∈ 2L with
h(A) ⊂ B, then fi,A = 0 and FAi,n = ∅; if wA,B > 0 for at least one B, then

∑

B∈2L

wA,B>0

(wA,Bn+ f0) ≥ f0 + n
∑

B∈2L

wA,B>0

wA,B ≥ f0 + fi,An ≥ |FAi,n|.

Let B ∈ 2L. If ci,B = 0, then wAB = 0 and WA,B = ∅ for all A ∈ 2V (fi).
Otherwise,

nci,B = n
∑

B1,...,Br
Bi=B

cB1,...,Bi ≤ −m1 +
∑

B1,...,Br
Bi=B

|CB1,...,Bi | = |GBi | −m1,

and we have

∑

A∈2
V (Fi,n)

h(A)⊂B

|WA,B | ≤
∑

A∈2
V (Fi,n)

h(A)⊂B

(wA,Bn+ f0 + 1) ≤ ci,Bn+ 2v0(f0 + 1) ≤ |GBi |.

Hence, we can extend h : V1(Fi,n)→ L ⊂ V (Gi) to the whole of V (Fi,n) by mapping
∪h(A)⊂BWA,B injectively into GBi , which proves that Fi,n ⊂ Gi.

Suppose that i ∈ [q+1, r]. The relation Fi ⊂ ci means that there exist appropriate
V1(Fi)∪V2(Fi) = V (Fi) and h : V1(Fi)→ L. We view h as a partial embedding of Fi
into Gi and extend h to the whole of V (Fi).

Take consecutively y ∈ V2(Fi). There is Bi ⊂ L such that ci,Bi > 0 and h(Γ(y)) ⊂
Bi. The inequality ci,Bi > 0 implies that there are disjoint Bj ’s, j ∈ [r] \ {i}, such
that cB1,...,Br > 0. Each vertex in CB1,...,Br is connected by color i to the whole of
Bi ⊃ h(Γ(y)). The inequality cB1,...,Br > 0 means that |CB1,...,Br | ≥ m1 ≥ v(Fi), so
we can always extend h to y; that is, we find an Fi-subgraph of color i.

Thus the constructed graph G has the desired arrowing property, which proves
the upper bound.

Let d′ = mini∈[q] minx∈V (fi) dfi(x) > 0, l′ = 5ld0/d
′, m3 = max(rl

′
, 2v0(f0 + l′)).

As the lower bound, we show that, for all sufficiently large n,

r̂(F1,n, . . . , Fq,n, Fq+1, . . . , Fr) ≥ r̂(F)n− 2l
′
l′m3.(3.4)

Choose any asymptotically minimum graph G with the arrowing property. Let
L ⊂ V (G) be the set of vertices of degree at least d′n/2 in G. From d′n|L|/4 <
e(G) < (1 + o(1))ld0n, it follows that |L| ≤ l′ (assuming that n is sufficiently large).
For A ∈ 2L, define gA = (|GA|+m3)/n, where GA = {x ∈ V (G) \L : Γ(x)∩L = A}.
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Claim 1. g→ F.
Suppose, on the contrary, that there is an F-free r-coloring c of g. We are going

to exhibit a contradictory r-coloring of E(G).
For each B ∈ 2L choose any disjoint sets CB1,...,Br ⊂ GB (indexed by r-tuples of

disjoint sets partitioning B) such that they partition GB and

|CB1,...,Br | ≤ �cB1,...,Br
· n�.(3.5)

This is possible because

∑

B1∪···∪Br=B

�cB1,...,Br · n� ≥ gBn− rl
′ ≥ |GB |.

For j ∈ [r], x ∈ Bj , and y ∈ CB1,...,Br
, color the edge {x, y} ∈ E(G) with color j. All

the remaining edges of G (namely, those lying inside L or inside V (G)\L) are colored
with color 1.

There is i ∈ [r] such that Gi ⊂ G, the color-i subgraph, contains a forbidden
subgraph.

Suppose that i ∈ [q]. Let h : Fi,n → Gi be an embedding. If n is large, then

d(x) ≥ d′n+ o(n) > d′n/2, x ∈ V1(Fi,n),

which implies that h(V1(Fi,n)) ⊂ L. Define, for A ∈ 2V (fi) and B ∈ 2L with B ⊃ h(A)
and fi,A �= 0,

wA,B =
|h−1(GB) ∩ FAi,n|+ f0 + l′

n
.

All other wA,B ’s are set to zero. For A ∈ 2V (fi) with fi,A �= 0, we have

∑

B∈2L

B⊃h(A)

wA,B ≥
|FAi,n ∩ h−1(V (G) \ L)|+ f0 + l′

n
≥ |F

A
i,n|+ f0

n
≥ fi,A.

For B ∈ 2L we have

∑

A∈2V (fi)

h(A)⊂B

wA,B ≤ 2v0(f0 + l′)
n

+
∑

A∈2V (fi)

h(A)⊂B

|h−1(GB) ∩ FAi,n|
n

≤ 2v0(f0 + l′)
n

+
|GB |
n
≤ gB ;

that is, h (when restricted to V (fi)) and w demonstrate that fi ⊂ ci, which is a
contradiction.

Suppose that i ∈ [q+1, r]. Let V1(Fi) consist of those vertices which are mapped
by h : Fi → Gi into L, and let V2(Fi) = V (Fi)\V1(Fi). This is a legitimate bipartition
of Fi because any color-i edge of G connects L to V (G) \ L. Let y ∈ V2(Fi). The
sets CB1,...,Br partition V (G) \ L; let y ∈ CB1,...,Br . By (3.5) we have cB1,...,Br > 0.
However, h(Γ(y)) ⊂ Bi, which shows that Fi ⊂ gi. This contradiction proves Claim 1.

Hence, g→ F and we have

r̂(F) ≤
∑

A∈2L

gA |A| ≤ 2l
′
l′m3

n
+

1

n

∑

A∈2L

|GA| |A| ≤ 2l
′
l′m3 + e(G)

n
,

which implies the desired inequality (3.4).
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A moment’s thought on Claim 1 reveals the following “characterization” of ex-
tremal graphs.

Theorem 3.4. Let F and the F ’s be as in Theorem 3.3, and let

Gn → (F1,n, . . . , Fq,n, Fq+1, . . . , Fr), n ∈ N,

be any sequence of asymptotically minimum graphs. Then there is an extremal weight
g→ F and an increasing sequence (ni)i∈N such that, up to removing o(ni) edges and
relabelling vertices, Gni can be made into a bipartite graph with V1(Gni) = V (g) and
limi→∞ |GAni

|/ni = gA for each A ∈ 2V (G).
In particular, if g → F is the unique extremal weight, then we can take ni =

i.

4. Complete bipartite graphs. Here we will compute asymptotically the size
Ramsey number if each forbidden graph is a complete bipartite graph.

Theorem 4.1. Let r ≥ 2 and q ≥ 1. Suppose that we are given t1, . . . , tq ∈ R>0

and s1, . . . , sr, tq+1, . . . , tr ∈ N with ti ≥ si for i ∈ [q + 1, r]. Then there exist s ∈ N

and t ∈ R>0 such that ks,t → F and r̂(F) = e(ks,t) = st, where

F = (ks1,t1 , . . . ,ksq,tq ,Ksq+1,tq+1 , . . . ,Ksr,tr ).

Proof. Let us first describe an algorithm finding extremal s and t. Some by-
product information gathered by our algorithm will be used in the proof of the ex-
tremality of ks,t → F.

Choose l ∈ N bigger than r̂(F)/t0, where t0 =
∑q
i=1 ti, which is the same defini-

tion as that before Lemma 3.1.
We claim that l > σ, where σ =

∑r
i=1(si − 1). Indeed, take any extremal g→ F

without isolated vertices. Lemma 3.1 implies that d(x) ≥ t0 for any x ∈ V (g). Also,
it is easy to see that v(g) > σ. Hence, l ≥ r̂(F)/t0 ≥ v(g) > σ, as claimed.

For each integer s ∈ [σ+1, l] let t′s > 0 be the infimum of t ∈ R such that ks,t → F.
Also, let Πs be the set of all sequences a = (a1, . . . , ar) of nonnegative integers with
ai = si − 1 for i ∈ [q + 1, r] and

∑r
i=1 ai = s. For a sequence a = (a1, . . . , ar) and

a set A of size
∑r
i=1 ai, let

(
A
a

)
consist of all sequences A = (A1, . . . , Ar) of sets

partitioning A with |Ai| = ai, i ∈ [r].
We claim that t′s is sol(Ls), the extremal value of the following linear program Ls:

“Find sol(Ls) = max
∑

a∈Πs
ua over all sequences (ua)a∈Πs of nonnegative reals such

that

∑

a∈Πs

ua

(
ai
si

)
≤ ti

(
s

si

)
∀i ∈ [q].”(4.1)

Claim 1. The weight ks,t does not arrow F for t < sol(Ls).
To prove this, let

λ =
t+ sol(Ls)

2sol(Ls)
< 1 and ε =

1− λ

2s+1
min{ti : i ∈ [q]} > 0.

Let V (ks,t) = [s]. Define an r-coloring c of ks,t by

cA =
λu|A1|,...,|Ar|(

s
|A1|,...,|Ar|

) , a ∈ Πs, A ∈
(
[s]

a

)
,(4.2)
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cB,∅,...,∅ = ε, B � [s], while all other c’s are zero. It is indeed a coloring of ks,t:

∑

a∈Πs

∑

A∈([s]a )
cA =

∑

a∈Πs

λua = λ sol(Ls) > t.

We have ksi,ti �⊂ ci for i ∈ [q]: for example, for i = 1 and any S ∈ ([s]s1
)
, we have

∑

a∈Πs

∑

A∈([s]a )
A1⊃S

cA =
∑

a∈Πs
a1≥s1

(
s−s1

a1−s1,a2,...,ar

)
λua(

s
a1,...,ar

) = λ
∑

a∈Πs

(
a1

s1

)
ua(
s
s1

) ≤ λt1 < t1−
∑

B�[s]
B⊃S

cB,∅,...,∅.

Also, Ksi,ti �⊂ ci for i ∈ [q + 1, r] because cA1,...,Ar = 0 whenever |Ai| ≥ si for
some i ∈ [q + 1, r]. Claim 1 is proved.

Claim 2. ks,t → F for any t > sol(Ls).
Suppose that the claim is not true and we can find an F-free r-coloring c of

ks,t. By definition, cA1,...,Ar
= 0 whenever |Ai| ≥ si for some i ∈ [q + 1, r]. If some

cA1,...,Ar
= c > 0 with |Ai| ≤ si−2 for some i ∈ [q+1, r], then Aj �= ∅ for some j ∈ [q],

so we can pick x ∈ Aj and set cA1,...,Ar
= 0 while increasing c...,Aj\{x},...,Ai∪{x},... by c.

Clearly, c remains F-free. Thus, we can assume that all the c’s are zero except those
of the form cA, A ∈ ([s]a

)
for some a ∈ Πs. Now, tracing back our proof of Claim 1,

we obtain a feasible solution ua =
∑

A∈([s]a ) cA, a ∈ Πs, to Ls with a larger objective

function, which is a contradiction. The claim is proved.
Thus, t′s = sol(Ls) and mu = min{st′s : s ∈ [σ+1, l]} is an upper bound on r̂(F).

Let us show that in fact r̂(F) = mu.
We rewrite the definition of r̂(F) so that we can apply the Farkas lemma. The

verification of the following easy claim is left to the reader.
Claim 3. r̂(F) = inf e(g) over all weights g on L = [l] such that there do not

exist nonnegative reals (cA)A∈(Aa), a∈Π|A|, A∈2L with the following properties:

∑

a∈Π|A|

∑

A∈(Aa)
cA ≥ gA, A ∈ 2L,

∑

A∈2L

∑

a∈Π|A|

∑

A∈(Aa)
Ai⊃S

cA ≤ ti, i ∈ [q], S ∈
(
L

si

)
.

Let g be any feasible solution to the above problem. By the Farkas lemma there
exist xA ≥ 0, A ∈ 2L, and yi,S ≥ 0, i ∈ [q], S ∈ (Lsi

)
, such that

q∑

i=1

∑

S∈(Ai
si
)

yi,S ≥ xA, A ∈ 2L, a ∈ Π|A|, A ∈
(
A

a

)
,(4.3)

q∑

i=1

ti
∑

S∈(L
si
)

yi,S <
∑

A∈2L

gAxA.(4.4)

We deduce that xA ≤ 0 (and hence xA = 0) if |A| ≤ σ by considering (4.3) for
some A with |Ai| ≤ si − 1 for each i ∈ [r].
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For each A with a := |A| > σ repeat the following. Let (ua)a∈Πa
be an extremal

solution to La. For each a ∈ Πa, take the average of (4.3) over all A ∈ (Aa
)
, multiply

it by ua, and add all these inequalities together to obtain the following:

xAt
′
a =

∑

a∈Πa

uaxA ≤
∑

a∈Πa

ua(
a

a1,...,ar

)
∑

A∈(Aa)

q∑

i=1

∑

S∈(Ai
si
)

yi,S

=

q∑

i=1

∑

S∈(A
si
)

yi,S
∑

a∈Πa
ai≥si

ua

(
a−si

a1,...,ai−1,ai−si,ai+1,...,aq

)
(

a
a1,...,ar

)

=

q∑

i=1

∑

S∈(A
si
)

yi,S
∑

a∈Πa
ai≥si

ua

(
ai
si

)
(
a
si

) ≤
q∑

i=1

ti
∑

S∈(A
si
)

yi,S .

(In the last inequality we used (4.1).)
Substituting the obtained inequalities on the xA’s into (4.4) we obtain

q∑

i=1

ti
∑

S∈(L
si
)

yi,S <
∑

A∈2L

|A|>σ

gA
t′|A|

q∑

i=1

ti
∑

S∈(A
si
)

yi,S .

As the yi,S ’s are nonnegative, one of these variables has a larger coefficient on the
right-hand side. Let it be yi,S . We have

ti < ti
∑

A∈( L
>σ)

A⊃S

gA
t′|A|
≤ ti

mu

∑

A∈2L

gA|A|.(4.5)

The last inequality follows, by comparing coefficients at each gA, from the fact that
for any integer a > σ we have 1/t′a ≤ a/mu by the definition of mu. Hence, e(g) =∑
A∈2L aA|A| > mu, as required.
Corollary 4.2. Let r ≥ q ≥ 1, t1, . . . , tq ∈ R>0 and s1, . . . , sr, tq+1, . . . , tr ∈ N

with ti ≥ si for i ∈ [q + 1, r]. For i ∈ [q], let (ti,n)n∈N be an integer sequence with
ti,n = tin+ o(n). Define

Fn = (Ks1,t1,n , . . . ,Ksq,tq,n ,Ksq+1,tq+1 , . . . ,Ksr,tr ).

Let l ∈ N be larger than limn→∞ r̂(Fn)/(t0n), where t0 =
∑q
i=1 ti. Then

lim
n→∞

r̂(Fn)

n
= lim
n→∞

min{e(Ks,t) : s ≤ l, Ks,t → Fn}
n

.(4.6)

In other words, in order to compute the limit in Corollary 4.2, it is sufficient
to consider only complete bipartite graphs arrowing Fn. It seems that there is no
simple general formula, but the proof of Theorem 4.1 gives an algorithm for com-
puting r̂(F). The author has realized the algorithm as a C program which calls the
lp solve 3.2 library. (The latter is a freely available linear programming software,
currently maintained by Berkelaar [4]). Later, Avis rewrote the program to be linked
with his lrslib 4.1 library [1]. The latter library has the advantage that its arith-
metic is exact (while lp solve operates with reals), so that any computed limit can
be considered as proved. The reader is welcome to experiment with the program;
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Table 4.1
Values of limn→∞ r̂(Ks,n,Kt,n)/n obtained with the lrslib library of Avis.

1 2

2 6 18

3 12 40 98

4 20 75 182 14
19

363

5 30 118 10
17

310 19
62

638 44
47

1156

6 42 172 4
5

469 6
7

1023 23
87

1952 15
22

3350 1
3

7 56 241 7
23

678 4
11

1538 36
55

3030 1
2

5456 92
209

9120 42
55

8 72 320 4
7

938 2
5

2211 579
1573

4517 317
504

8426 176
221

14523 595
4693

23781 7
34

(s,t) 1 2 3 4 5 6 7 8

its source can be found in [15]. Here, in Table 4.1, we present the asymptotics of
r̂(Ks,n,Kt,n) for 1 ≤ s ≤ t ≤ 8. Unfortunately, the number of iterations (which is
approximately 1

2 lim r̂(Ks,n,Kt,n)/n) increases rapidly with s and t.
For certain series of parameters we can get a more explicit expression. First, let

us treat the case q = 1, that is, when only the first forbidden graph dilates with n.
We can assume that t1 = 1 by scaling n.

Theorem 4.3. Let q = 1 and r ≥ 2. Then for any s1, . . . , sr, t2, . . . , tr ∈ N with
ti ≥ si, i ∈ [2, r], we have

r̂(Ks1,n,Ks2,t2 , . . . ,Ksr,tr ) = n ·min

{
s

(s)s1
(s− s′)s1

: s ∈ N>σ

}
+O(1),

where s′ = σ − s1 + 1, σ =
∑r
i=1(si − 1), and (s)k = s(s− 1) . . . (s− k + 1).

Proof. The problem Ls has only one variable us−s′,s2−1,...,sr−1. Trivially, t′s =(
s
s1

)
/
(
s−s′
s1

)
= (s)s1/(s− s′)s1 , and the theorem follows.

In the case s1 = 1 we obtain the following formula.
Corollary 4.4. For any s2, . . . , sr, t2, . . . , tr ∈ N with ti ≥ si, i ∈ [2, r], we

have

r̂(K1,n,Ks2,t2 , . . . ,Ksr,tr ) = 4

(
1− r +

r∑

i=2

si

)
n+O(1).

Proof. By Theorem 4.3, we have to compute mins>s′
s2

s−s′ , where s
′ =

∑r
i=2(si−

1). The differentiation d
ds (

s2

s−s′ ) = s(s−2s′)
(s−s′)2 shows that the minimum is attained for

s = 2s′.
Another case with a simple formula for r̂(F) is q = 2, s1 = s2, and t1 = t2. Again,

without loss of generality we can assume that t1 = t2 = 1.
Theorem 4.5. Let q = 2 and r ≥ 2. Then for any s, s3, . . . , sr, t3, . . . , tr ∈ N

with ti ≥ si, i ∈ [3, r], we have

r̂(Ks,n,Ks,n,Ks3,t3 , . . . ,Ksr,tr ) = n ·min {a · f(a) : a ∈ N>σ}+O(1),(4.7)

where σ = 2s− r +
∑r
i=3 si and

f(a) =
2
(
a
s

)
(�a′/2�

s

)
+
(
a′/2�

s

) ,
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with a′ = a−∑r
i=3(si − 1).

Proof. Let a ∈ N>σ, and let (ua)a∈Πa be an extremal solution to La (where we
obviously define s1 = s2 = s and t1 = t2 = 1). Excluding the constant indices in ua,
we assume that the index set Πa consists of pairs of integers (a1, a2) with a1+a2 = a′.

Clearly, (u′a1,a2
)(a1,a2)∈Πa

is also an extremal solution, where u′a1,a2
= 1

2 (ua1,a2 +
ua2,a1

). Thus we can assume that ua1,a2
= ua2,a1

for all (a1, a2) ∈ Πa.
If ua1,a2

= c > 0 for some a1 < �a′/2�, then we can set ua1,a2
= ua2,a1 = 0 while

increasing u�a′/2�,
a′/2� and u
a′/2�,�a′/2� by c. The easy inequality

(
b+1
s

)
+
(
a′−b−1

s

)− (bs
)− (a′−bs

)
=
(
b
s−1

)− (a′−b−1
s−1

)
< 0, s− 1 ≤ b < �a′/2�,

implies inductively that the left-hand side of (4.1) strictly decreases while the objective
function

∑
a∈Πa

ua does not change, which clearly contradicts the minimality of u.
Now we deduce that, for any extremal solution (ua)a∈Πa , we have ua1,a2 = 0

unless {a1, a2} = {�a′/2�, 	a′/2
}; moreover, it follows that necessarily u�a′/2�,
a′/2� =
u
a′/2�,�a′/2�. Hence, t′a = f(a), which proves the theorem.

The special case r = 2 of Theorem 4.5 answers the question of Erdős et al. [8,
Problem B], who asked for the value of

rs = lim
n→∞

r̂(Ks,n,Ks,n)

n
.

The formula (4.7), which now reads rs = mina≥2s−1 af(a) with f(a) = 2
(
a
s

)
/(
(�a/2�

s

)
+(
a/2�

s

)
), can be further simplified in this case as follows.

Theorem 4.6. For s ≥ 4 we have rs = asf(as), where as = 2�s(s+ 3)/4� − 3.
Proof. For any b ≥ s we have f(2b) = f(2b− 1); hence, the minimum of af(a) is

attained for an odd a:

rs = min
b≥s

(2b− 1)f(2b− 1) = 2min
b≥s

(2b− 1)

(
2b− 1

s

)((
b− 1

s

)
+

(
b

s

))−1

.

We have
(
b−1
s

)
+
(
b
s

)
= (b−1)!(2b−s)

s!(b−s)! and, as it is routine to check,

(2b+ 1)f(2b+ 1)− (2b− 1)f(2b− 1) = cps(b),

where c = 2(2b−1)!(b−s)!
(2b−s+1)!(b−1)!(2b−s+2) and

ps(b) = 2(2b+1)2(b−s+1)−(2b−1)(2b−s+1)(2b−s+2) = 8b2−2bs2−6bs+12b+s2−5s+4.

The quadratic in b polymomial ps has two roots: one is less than 1 (because
ps(1) < 0) and the other is bigger than s (because ps(s) < 0). Thus, the function
(2b − 1)f(2b − 1), b ≥ s, first decreases and then increases; its minimum is attained
for bs, the smallest integer b ≥ s with ps(b) > 0. The value of bs can be computed
exactly:

bs =






4t2 + 3t− 1, s = 4t,
4t2 + 5t, s = 4t+ 1,
4t2 + 7t+ 1, s = 4t+ 2,
4t2 + 9t+ 3, s = 4t+ 3.

For example, let us check the case s ≡ 0 (mod 4):

ps(4t
2 + 3t− 2) = −32t+ 12 < 0 < ps(4t

2 + 3t− 1) = 32t2 − 8t.
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Also, 2bs − 1 = 2�s(s+ 3)/4� − 3 in each case, as required.
Remark. For 4 ≤ s ≤ 8, the values of rs given by Table 4.1 and Theorem 4.6

coincide, which is reassuring.
The natural question of how to characterize all extremal weights in Theorem 4.1

arises. We have a partial answer as follows. Let g → F be extremal. We know by
Lemma 3.1 that v(g) ≤ l, so assume that v(g) ⊂ [l]. It is easy to check that if we
increase each gA by some ε > 0, then the obtained weight is a feasible solution to the
system of Claim 3 from the proof of Theorem 4.1 and hence satisfies (4.5) for some
i and S. As ε > 0 is arbitrary and there are finitely many possible pairs (i, S), the
weight g satisfies the nonstrict inequality (4.5) for some (i, S). As g is extremal, we
have, in fact, an equality there. This implies that gA = 0 unless |A| · t′|A| = mu and
A ⊃ S.

However, in some cases we can get more precise information. As an example,
consider F = (k2,1,k2,1). Theorem 4.5 implies that r̂(F) = 18. However, we are able
to show more.

Theorem 4.7. k3,6 → (k2,1,k2,1) is the unique extremal weight. Also, there is
n0 such that, for all n > n0, we have r̂(K2,n,K2,n) = 18n − 15, and K3,6n−5 and
K3 +K6n−6 are the only extremal graphs (up to isolated vertices).

Proof. Let g→ (k2,1,k2,1) have size 18 and no isolated vertices.
By Lemma 3.1 we have v(g) ≤ 9. It is routine to check that at′a > 18 for any

a ∈ [4, 9]. Thus we know that, for some S = {x, y} ⊂ L, we have gA = 0 whenever
|A| �= 3 or A �⊃ S. Let J be the set of those j ∈ L with g{x,y,j} > 0. We have∑
j∈J g{x,y,j} = 6. Suppose, on the contrary to the claim, that g � k3,6. Then we

have |J | ≥ 2.
Consider the 2-coloring c of g obtained by letting cA1,A2 = 2−18/10 for all disjoint

A1, A2 ∈ 2L except

c{x,j},{y} = c{y,j},{x} = c{x},{y,j} = c{y},{x,j} = 0.9,

c{x,y},{j} = c{j},{x,y} = (g{x,y,j} − 3.5)+/2,
j ∈ J,

where f+ = f if f > 0 and f+ = 0 if f ≤ 0. This is a coloring of g: for example,
∑

A1∪A2={x,y,j}
cA1,A2

> 4× 0.9 + 2× (g{x,y,j} − 3.5)+/2 > g{x,y,j}.

Also, neither c1 nor c2 contains k2,1: for example,
∑

A∈2L

A⊃{x,y}

ci,A < (5− 3.5)/2 + 0.1 < 1, i = 1, 2,

as dg(j) ≥ 1, j ∈ J . This contradiction proves that g ∼= k3,6.
Let Gn be a minimum (K2,n,K2,n)-arrowing graph, and let Ln = {x ∈ V (Gn) :

d(x) ≥ n}. By Theorem 3.4 |Ln| = 3 for all large n. By the minimality of Gn,
V (Gn) \ Ln spans no edge and each x ∈ V (Gn) \ Ln sends three edges to Ln.

If L spans one or two edges in Gn, then these edges can be removed without
affecting the arrowing property. Thus e(Gn[Ln]) equals 0 or 3. Now the easy analysis
completes the proof.

Acknowledgments. The author is grateful to Martin Henk, Deryk Osthus, and
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Abstract. A linear threshold element computes a function that is a sign of a weighted sum of
the input variables. The best known lower bounds on the size of threshold circuits are for depth-2
circuits with small (polynomial-size) weights. However, in general, the weights are arbitrary integers
and can be of exponential size in the number of input variables. Namely, obtaining progress in
lower bounds for threshold circuits seems to be related to understanding the role of large weights.
In the present literature, a distinction is made between the two extreme cases of linear threshold
functions with polynomial-size weights, as opposed to those with exponential-size weights. Our main
contributions are in devising two novel methods for constructing threshold functions with minimal
weights and filling up the gap between polynomial and exponential weight growth by further refining
the separation. Namely, we prove that the class of linear threshold functions with polynomial-size
weights can be divided into subclasses according to the degree of the polynomial. In fact, we prove
a more general result—that there exists a minimal weight linear threshold function for any arbitrary
number of inputs and any weight size.

Key words. threshold functions, computational complexity, neural networks
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1. Introduction. The present paper focuses on the study of a single linear
threshold gate with binary inputs and output as well as integer weights. Such a
gate is mathematically described by a linear threshold function.

Definition 1.1 (linear threshold function). A linear threshold function of n
variables is a Boolean function f : {0, 1}n → {0, 1} that can be written, for any
x ∈ {0, 1}n and a fixed w ∈ Zn+1, as

f(x) = sgn(F (x)) =

{
1 for F (x) ≥ 0,
0 otherwise,

where F (x) = w · (−1,x) = −w0 +

n∑

i=1

wixi.

Although we could allow the weights, wi, to be real numbers, it is known [Muroga 71]
that one needs only O(n log n) bits per weight, where n is the number of inputs. So
in the rest of the paper, we will assume without loss of generality that all weights are
integers. Also, notice that a linear threshold function can be implemented as

f : {−1, 1}n → {0, 1}.
We will address both the {0, 1} and the {−1, 1} representations.

Note that, given a function f , the weight vector w is not unique (see Example 1
below).
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Definition 1.2 (weight space). Given a linear threshold function f we define
W as the set of all weights that satisfy Definition 1.1, that is,

W = {w ∈ Zn : ∀x ∈ {0, 1}n, sgn(w · (−1,x)) = f(x)}.
Here follows a measure of the size of the weights.

Definition 1.3 (minimal weight size). We define the size of a weight vector as
the sum of the absolute values of the weights. The minimal weight size of a linear
threshold function is defined as

S[f ] = min
w∈W

(
n∑

i=0

|wi|
)
.

The particular vector that achieves the minimum is called a minimal weight vector.
Naturally, S[f ] is a function of n.

1.1. Motivation. Why do we care about the size of the weights in threshold
circuits?

Threshold circuits have been shown to be surprisingly powerful. For example,
integer division can be implemented by a polynomial-size threshold circuit of constant
depth [Beame 84], [Siu 93]. It is also proved in [Allender 89] that any function in AC0

can be computed by depth-3 majority circuits of quasi-polynomial size; in fact, it is
true for all of ACC0 [Yao 90]. For a general survey about the representation of
Boolean functions by threshold functions, see [Saks 93].

Given the foregoing impressive upper bounds, it is not surprising that we face dif-
ficulties in obtaining lower bounds. In fact, the best general lower bound for threshold
circuits is the result that the inner-product mod 2 (IP2) requires exponential size for
depth 2 [Hajnal 93]. However, this lower bound assumes that the circuits involve small
weights, and it is not known whether IP2 can be computed by a depth-2 polynomial
size threshold circuit with arbitrary weights. Obtaining progress in lower bounds for
threshold circuits therefore seems to be related to understanding the role of large
weights.

Hence, it is natural to ask how limited the computational power of the circuit is
if one limits oneself to threshold elements with only “small” growth in the size of the
coefficients. It has been shown [Anthony 93], [Hampson 86], [Hastad 94], [Myhill 61],
[Muroga 71], [Siu 91] that there exist linear threshold functions that can be imple-
mented by a single threshold element with exponentially growing weights, S[f ] ∼ 2n,
but cannot be implemented by a threshold element with smaller polynomialy grow-
ing weights, S[f ] ∼ nd, d constant. In light of that result, the above question was
dealt with by defining a class within the set of linear threshold functions, the class
of functions with “small” (i.e., polynomialy growing) weights [Siu 91]. Most of the
recent research focused on the power of circuits with small weights, relative to circuits
with arbitrary weights [Goldmann 92], [Goldmann 98]. In particular, it showed that
increasing the depth of the circuit by one is sufficient to reduce all the weights to be
of polynomial size. However, these impressive upper bounds were still not helpful in
improving the lower bounds.

In this paper we take a different approach. Rather than dealing with circuits we
focus on the modest task of studying a single threshold gate. The main contribution of
the present paper is to further refine the division of small versus arbitrary weights. We
separate the set of functions with small weights into classes indexed by d, the degree of
polynomial growth, and show that all of them are nonempty. In particular, we develop
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a technique for proving that a weight vector is minimal. We use that technique to
construct a function of size S[f ] = s for an arbitrary s. The natural future direction
is to extend our techniques for constructing minimal weight threshold functions to
circuits of depth 2. This might help in defining explicit functions that cannot be
computed by depth-2, polynomial size threshold circuits with specific weight size.

1.2. Organization. Here follows a brief outline of the rest of the paper. In
section 2 we show some of the difficulties one faces when minimizing the weights as
well as how they are affected by the choice of input domain. In section 3 we consider
functions defined over {−1, 1}. We limit ourselves to functions with no threshold
(generalized majority function), and we show how to construct such functions with
minimal weights. In section 4 we present another way of constructing minimal func-
tions that allows us to deal with any threshold function defined over {0, 1}.

2. Preliminaries and examples. In this section we illustrate some of the dif-
ficulties one faces when trying to minimize the weights of a threshold function. We
also show how the input domain (i.e., {0, 1} versus {−1, 1}) affects the size of the
weights. See [Krause 95] for related results.

2.1. Minimizing the weights. The main difficulty in analyzing the size of the
weights of a threshold element is due to the fact that a single linear threshold function
can be implemented by different sets of weights as shown in the following example.

Example 1 (a threshold function with minimal weights). Let us consider the
following two sets of weights (weight vectors):

w1 = (4 1 2 5), F1(x) = −4 + x1 + 2x2 + 5x3,

w2 = (8 2 4 10), F2(x) = −8 + 2x1 + 4x2 + 10x3.

They both implement the same threshold function

f(x) = sgn(F2(x)) = sgn(2F1(x)) = sgn(F1(x)).

A closer look reveals that f(x) = sgn(−1+x3), implying that none of the above weight
vectors has minimal size. Indeed, the minimal one is w3 = (1 0 0 1) and S[f ] = 2.

To determine if a given set of weights is minimal is in general a difficult problem
[Willis 63]. Our technique consists of constructing weight vectors whose minimality is
easily established. We then show how to modify them, while keeping them minimal,
in order to get to a larger set of functions.

2.2. {0, 1} versus {−1, 1}. Suppose we implement the same function over
{0, 1} and over {−1, 1}. How are the weights affected? Let us look at an example.

Example 2 (the OR function).
1. Let xi ∈ {0, 1},

OR(x1, . . . , xn) = sgn(−1 + x1 + · · ·+ xn).

The size of the weights is s = n+ 1. Those weights are minimal.
Proof. The weights are integers. Reducing their size implies resetting one or

more of them to 0, which will violate the definition of OR.
2. Now let xi ∈ {−1, 1},

OR(x1, . . . , xn) = sgn(n− 2 + x1 + · · ·+ xn).

The size of the weights is s = 2n− 2. Those weights are minimal as well.
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Proof. Any weights that implement OR have to be positive. Suppose there exist
weights of size s′ < 2n − 2. No weight can be 0, so

∑n
1 w
′ ≥ n, implying that the

threshold −w0 < (2n− 2)−n = n− 2. Let w′i be the smallest weight. Set xi = 1 and
all other inputs to −1.

∑n
1 w
′ < −wi(n− 2) so that F (x) < 0 violating the definition

of OR.
It appears from this example that the {0, 1} implementation has smaller weight

size than the {−1, 1} representation. Is that true in general?
Example 3 (the majority (MAJ) function). Let the number of variables, n, be

odd. The majority function outputs true if more than half of its inputs are true.
1. Let xi ∈ {0, 1},

MAJ(x1, . . . , xn) = sgn

(
−n+ 1

2
+ x1 + · · ·+ xn

)
.

The size of the weights is s = 3n+1
2 . They can be shown to be minimal by a proof

similar to case 2 in Example 2.
2. Now let xi ∈ {−1, 1},

MAJ(x1, . . . , xn) = sgn(x1 + · · ·+ xn).

Those weights are minimal, since reducing them would imply resetting one or more of
them to 0, which will violate the definition of MAJ . The size of the weights is s = n.

Example 3 shows that in general we cannot tell which implementation {0, 1} or
{−1, 1} will produce a function with smaller weights. However, the weight sizes for
each of those functions are always within a constant factor of each other, since the
{0, 1} weights are related to a set of {−1, 1} weights by a simple linear transformation.

3. Generalized majority function over {−1, 1}. In this section we study
the following model:

f : {−1, 1} → {0, 1},

f(X) = sgn

(
n∑

1

wixi

)
.

Notice that there is no threshold; we are looking at a majority function with arbitrary
weights. We address the problem of constructing functions with minimal weights. In
particular, our goal is that for a given number of inputs n and size s we find a function.

3.1. Mathematical setting. We are interested in constructing functions for
which the minimal weight is easily determined. Finding the minimal weight involves
a search, and we are therefore interested in finding functions with constrained weight
spaces. The following tools allow us to put constraints on W.

Definition 3.1 (root space of a Boolean function). A vector v ∈ {−1, 1}n such
that f(v) = f(−v) is called a root of f . We define the root space, R, as the set of all
roots of f . Note that a vector v is a root if and only if

∑
wivi = 0.

Definition 3.2 (root generator matrix). For a given weight vector w ∈ W and
a root v ∈ R, the root generator matrix, G = (gij), is a (k×n)-matrix, with entries in
{−1, 0, 1}, whose rows g are orthogonal to w and equal to v at all nonzero coordinates,
namely,

1. GwT = 0;
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2. gij = 0 or gij = vj for all i and j.

The root generator matrix is used to generate linearly independent root vectors
for f . Each row of G corresponds to a new root vector.

Example 4 (root generator matrix). Suppose that we are given a linear thresh-
old function specified by a weight vector w = (1, 1, 2, 4, 1, 1, 2, 4). By inspection we
determine one root v = (1, 1, 1, 1,−1,−1,−1,−1). Notice that w1 + w2 − w7 = 0
which can be written as g ·w = 0, where g = (1, 1, 0, 0, 0, 0,−1, 0) is a row of G. Set
r = v−2g. Since g is equal to v at all nonzero coordinates, r ∈ {−1, 1}n. Also r·w =
v ·w − 2g ·w = 0. We have generated a new root: r = (−1,−1, 1, 1,−1,−1, 1,−1).

Lemma 3.3 (orthogonality of G and W). For a given weight vector w ∈ W and
a root v ∈ R, GuT = 0 holds for any weight vector u ∈ W.

Proof. For an arbitrary u ∈ W and an arbitrary row, gi, of G, let v′ = v − 2gi.
By definition of gi, v

′ ∈ {−1, 1}n and v′ ·w = 0. This implies f(v′) = f(−v′) : v′

is a root of f . For any weight vector u ∈ W, sgn(u · v′) = sgn(−u · v′). Therefore
u · (v − 2gi) = 0 and finally, since v · u = 0, we get u · gi = 0.

Lemma 3.4 (minimality). For a given weight vector w ∈ W and a root v ∈ R if
rank(G) = n − 1 (i.e., G has n − 1 independent rows) and |wi| = 1 for some i, then
w is the minimal weight vector.

Proof. From Lemma 3.3 any weight vector u satisfies GuT = 0. rank(G) = n− 1
implies that dim(W) = 1; i.e., all possible weight vectors are integer multiples of each
other. Since |wi| = 1, all vectors are of the form u = kw for k ≥ 1. Therefore w has
the smallest size.

We complete Example 4 with an application of Lemma 3.4.

Example 5 (minimality). Given the following weights w and a root v,

w = (1, 1, 2, 4, 1, 1, 2, 4), v = (1, 1, 1, 1,−1,−1,−1,−1),

we can construct G:

G =





1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1
1 0 0 0 0 −1 0 0
1 1 0 0 0 0 −1 0
1 1 1 0 0 0 0 −1





It is easy to verify that rank(G) = n − 1 = 7 and therefore, by Lemma 3.4, w is
minimal and S[f ] = 16.

3.2. Weight vectors. In Example 5 we saw how, given a weight vector, one can
show that it is minimal. In this section we present an example of a linear threshold
function with minimal weight size, with an arbitrary number of input variables.

We would like to construct a weight vector and show that it is minimal. Let the
number of inputs, n, be even. Let w consist of two identical blocks :

w = (w1, w2, . . . , wn/2, w1, w2, . . . , wn/2).

Clearly, v = (1, 1, . . . , 1,−1,−1, . . . ,−1) is a root and G is the corresponding genera-
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tor matrix.

G =





1 0 0 0 · · · 0 0 0 −1 0 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0 0 −1 0 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0 0 0 −1 0 · · · 0 0 0
...

...
0 0 0 0 · · · 0 1 0 0 0 0 0 · · · 0 −1 0
0 0 0 0 · · · 0 0 1 0 0 0 0 · · · 0 0 −1





3.3. Construction. The following theorem states that given an integer s and a
number of variables n there exists a function of n variables and minimal weight size
s.

Theorem 3.5 (main result). For any pair (s, n), with both s and n even, sat-
isfying n ≤ s ≤ 2

n
2 , there exists a linear threshold function of n variables, f , with

minimal weight size S[f ] = s.

Proof. Given a pair (s, n) that satisfies the above conditions we first construct
a weight vector w that satisfies

∑n
i=1 |wi| = s; then we show that it is the minimal

weight vector of the function f(x) = sgn(w · x). The proof is shown only for n even.

Construction.

1. Define (a1, a2, . . . , an/2) = (1, 1, . . . , 1).

2. If
∑n/2
i=1 ai < s/2, then increase by one the smallest ai such that ai < 2i−2.

(In the case of a tie take the ai with smallest index i).

3. Repeat the previous step until
∑n/2
i=1 ai = s/2 or

(a1, a2, . . . , an/2) = (1, 1, 2, 4, . . . , 2
n
2−2).

4. Set w = (a1, a2, . . . , an/2, a1, a2, . . . , an/2).

Because we increase the size by one unit at a time the algorithm will converge to the
desired result for any integer s that satisfies n ≤ s ≤ 2

n
2 . We have a construction for

any valid (s, n) pair. Let us show that w is minimal.

Minimality. Given that w = (a1, a2, . . . , an/2, a1, a2, . . . , an/2) we find a root v,

v = (1, 1, . . . , 1,−1,−1, . . . ,−1),

and n/2 rows of the generator matrix G corresponding to the equations wi = wi+n
2

.
To form additional rows note that the first k ai’s are powers of two (where k depends

on s and n). Those can be written as ai =
∑i−1
j=1 aj and generate k − 1 rows. And

finally note that all other ai, i > k, are smaller than 2k+1. Hence, they can be written
as a binary expansion ai =

∑k
j=1 αijaj , where αij ∈ {0, 1}. There are n

2 − k such
weights. G has a total of n − 1 independent rows. rank(G) = n − 1 and w1 = 1;
therefore, by Lemma 3.4, w is minimal and S[f ] = s.

Example 6 (a function of 10 variables and size 26). We start with
a = (1, 1, 1, 1, 1). We iterate (1, 1, 2, 1, 1), (1, 1, 2, 2, 1), (1, 1, 2, 2, 2), (1, 1, 2, 3, 2),
(1, 1, 2, 3, 3), (1, 1, 2, 4, 3), (1, 1, 2, 4, 4), and finally the algorithm converges to a =
(1, 1, 2, 4, 5). We claim that w = (a,a) = (1, 1, 2, 4, 5, 1, 1, 2, 4, 5) is minimal. Indeed,
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v = (1, 1, 1, 1, 1,−1,−1,−1,−1,−1) and

G =





1 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 −1 0 0 0
0 0 1 0 0 0 0 −1 0 0
0 0 0 1 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 0 −1
1 0 0 0 0 0 −1 0 0 0
1 1 0 0 0 0 0 −1 0 0
1 1 1 0 0 0 0 0 −1 0
1 0 0 1 0 0 0 0 0 −1





is a matrix of rank 9.
Example 7 (functions with polynomial size). This example shows an application

of Theorem 3.5. We define L̂T
(d)

as the set of linear threshold functions for which
S[f ] ≤ nd. The theorem states that for any even n there exists a function f of n

variables and minimum weight S[f ] = nd. The implication is that for all d, L̂T
(d−1)

is a proper subset of L̂T
(d)

.

4. Arbitrary threshold function over {0, 1}. In this section we present a
different technique for constructing threshold functions with minimal weights. It
allows us to construct functions with any weight size and number of variables. We
consider functions with input domain {0, 1}, but, as mentioned below, the argument
holds for an arbitrary input space {a, b}.

4.1. Approach. The method we use is based on a result from [Willis 63]. We
assume, without loss of generality, that the weights are strictly positive integers. Our
goal is to minimize s =

∑n
0 |wi| =

∑n
0 wi. We know from [Muroga 71] that any other

weights, u, implementing the same function have to be strictly positive. We will show
that under certain conditions on w,

∑n
0 wi ≤

∑n
0 ui for any u.

Consider input vectors x and y for which the following equations hold:

F (x) = −w0 +

n∑

1

wixi = 0, F (y) = −w0 +

n∑

1

wiyi = −1.

Let them define the rows of a matrix that we call A. Using p x-type and q y-type
vectors we get

A =





−1 x(1)

−1 x(2)

...
...

−1 x(p)

1 −y(1)

1 −y(2)

...
...

1 −y(q)





=





−1 x
(1)
1 x

(1)
2 · · · x

(1)
n

−1 x
(2)
1 x

(2)
2 · · · x

(2)
n

...
...

−1 x
(p)
1 x

(p)
2 · · · x

(p)
n

1 −y(1)1 −y(1)2 · · · −y(1)n

1 −y(2)1 −y(2)2 · · · −y(2)n

...
...

1 −y(q)1 −y(q)2 · · · −y(q)n





Example 8 (the matrix A). Suppose we are given the following weights:

w = (16 1 2 4 8 1 2 4 8).
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Our goal is to show they are minimal. We need to first construct the matrix A. Here
follows a candidate:

A =





−1 x(1)

−1 x(2)

1 −y(1)

1 −y(2)



 =





−1 1 0 0 0 1 1 1 1
−1 1 1 1 1 1 0 0 0

1 0 0 0 0 −1 −1 −1 −1
1 −1 −1 −1 −1 0 0 0 0





There are many possible choices for A, depending on which of the x- and y-type
vectors are used. The one shown above is not a good one, as we will see. Additional
x-type vectors need to be included in the construction of A in order to satisfy the
requirements in Theorem 4.1.

Theorem 4.1 (condition for minimality). Given a weight vector w, we construct
A as described above. If there is a nonnegative row vector a (that is, ai ≥ 0 for all i)
such that A satisfies

aA = (

n+1︷ ︸︸ ︷
1 . . . 1),

the weight vector w is minimal.
Proof. By definition of the x’s and the y’s the matrix A satisfies

A · (w0 w1 w2, . . . , wn)T = (

p︷ ︸︸ ︷
0 0 . . . 0 0

q︷ ︸︸ ︷
1 1 . . . 1 1)T .(4.1)

Because sgn(0) = 1 and sgn(−1) = 0, any other weight vector, u, implementing the
same function has to verify the above equalities with “≥” instead of “=”:

A · (u0 u1 u2, . . . , un)T ≥ (

p︷ ︸︸ ︷
0 0 . . . 0 0

q︷ ︸︸ ︷
1 1 . . . 1 1)T .(4.2)

Let v = u−w, and subtracting equations (4.1) from inequalities (4.2) we get

A · (v0 v1 v2, . . . , vn)T ≥ (

p+q︷ ︸︸ ︷
0 0 . . . 0 0)T(4.3)

Now suppose A is such that

(a0 a1, . . . , ap+q−1) ·A = (

n+1︷ ︸︸ ︷
1 1 . . . 1 1)(4.4)

Where the ai are strictly positive. We multiply inequalities (4.3) by a from the left
and get

(a0 a1, . . . , ap+q−1) ·A · (v0 v1 v2, . . . , vn)T ≥ (a0 a1, . . . , ap+q−1) · (
p+q︷ ︸︸ ︷

0 0 . . . 0 0)T ,

(

n+1︷ ︸︸ ︷
1 1 . . . 1 1) · (v0 v1 v2, . . . , vn)T ≥ 0,

n∑

0

vi ≥ 0.
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Since wi ≥ 0, ui ≥ 0 for all i = 0, . . . , n we know that
∑n

0 ui ≥
∑n

0 wi.
Notice that nowhere in the proof did we use the fact that the input domain is

{0, 1}. Indeed, the above proof is valid for any input domain {a, b}. As you can
see the proof relies on constructing A so that (4.4) holds. To construct A we need
appropriate x’s and y’s which in turn depend on the choice w.

4.2. Basic construction. In this section we introduce w, the weight vector for
the general construction, and prove it is minimal by finding an appropriate matrix A.
We use a construction similar to the one in section 3, based on powers of two.

Construction. Given a pair (s, n), where n+ 1 ≤ s ≤ 3∗2�
n
2 �−2, and s = 3m− l,

with l ∈ {0, 1, 2}, we have the following:
1. Define s′ = 3m− 2 and n′ = n− (s− s′).
2. Define k as the largest integer such as s′ > 3 ∗ 2k−1 − 2.
3. Define s0 = 1

3 (s′ − 3 ∗ 2k−1 + 2).
4. Set

(w0, w1, . . . , w2k) = (2k−1 + s0, 1, 2, 4, . . . , 2
k−2, s0, 1, 2, 4, . . . , 2

k−2, s0).

At this point the size of w is s′. In the following two steps additional weights are
added in order to get to the desired number of variables n and the exact weight size
s.

5. For every wi with i ∈ {2k + 1, . . . , n′} let wi = 1 and subtract 1 from the
largest weight wj , j ∈ {1, . . . , 2k}. In case of a tie select the weight with largest index.

6. For every wi with i ∈ {n′ + 1, . . . , n} let wi = 1. No subtraction is needed.
(Notice that n− n′ ∈ {0, 1, 2}.)

Let us look at two examples.
Example 9 (a function of 12 variables and size 35). s = 35 = 3∗12−1, therefore

s′ = 34, n′ = 11, k = 4, s0 = 4. The weight iterations are

w = (12, 1, 2, 4, 4, 1, 2, 4, 4),

w = (12, 1, 2, 4, 4, 1, 2, 4, 3, 1),

w = (12, 1, 2, 4, 4, 1, 2, 3, 3, 1, 1),

w = (12, 1, 2, 4, 3, 1, 2, 3, 3, 1, 1, 1),

w = (12, 1, 2, 4, 3, 1, 2, 3, 3, 1, 1, 1, 1).

Example 10 (base case: n = 2k, s0 = 2k−1). Let us show that the weights of
Example 8 are minimal. Using the above notation n = 8, s0 = 8, and k = 4.

w = (16 1 2 4 8 1 2 4 8).

Here follow the X- and Y -type rows for A:
{ −1 1 0 0 0 1 1 1 1
−1 1 1 1 1 1 0 0 0

}
sumX1 = (−2 2 1 1 1 2 1 1 1)

{ −1 0 1 0 0 0 1 1 1
−1 0 1 1 1 0 1 0 0

}
sumX2 = (−2 0 2 1 1 0 2 1 1)

{ −1 0 0 1 0 0 0 1 1
−1 0 0 1 1 0 0 1 0

}
sumX3 = (−2 0 0 2 1 0 0 2 1)

{ −1 0 0 0 1 0 0 0 1
−1 0 0 0 1 0 0 0 1

}
sumX4 = (−2 0 0 0 2 0 0 0 2)
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1 0 0 0 0 −1 −1 −1 −1
1 −1 −1 −1 −1 0 0 0 0
︸ ︷︷ ︸

sumY1=(2 −1 −1 −1 −1 −1 −1 −1 −1)

We replicate rows and add them in order to get to the all 1 vector. Only the first five
columns are shown.





−2 2 1 1 1
−2 0 2 1 1
−2 0 0 2 1
−2 0 0 0 2

2 −1 −1 −1 −1









−16 16 8 8 8
−8 0 8 4 4
−4 0 0 4 2
−2 0 0 0 2

2 −1 −1 −1 −1









−24 24 12 12 12
−12 0 12 6 6
−6 0 0 6 3
−3 0 0 0 3
46 −23 −23 −23 −23





The last matrix was obtained by multiplying the first four rows by 3/2, and the last
row by 23. Its rows add up to the all 1 vector. Using the notation of Theorem 4.1,
given the matrix A, as defined above,

a =

(
12, 12, 6, 6, 3, 3,

3

2
,

3

2
, 23, 23

)
.

Theorem 4.2 (minimality of the construction). For any pair (s, n) satisfying

n+ 1 ≤ s ≤ 3 ∗ 2�
n
2 � − 2

one can construct an n-variable threshold function with minimal weights of size s.
We will first show that steps 1–4 of the construction produce minimal weights.

The second part of the proof focuses on adding a padding of unit weights in order to
achieve the desired number of variables n.

Proof (part 1: no padding). As of step 4 of the construction,

w = (2k−1 + s0, 1, 2, 4, . . . , 2
k−2, s0, 1, 2, 4, . . . , 2

k−2, s0).

We are going to construct A, show that it satisfies aA = 1, and apply Theorem 4.1.
Only two Y -type vectors are needed for the construction of A:

(
1 0 · · · 0 −1 · · · −1
1 −1 · · · −1 0 · · · 0

)

They add up to (2 −1 · · · −1). The X-type vectors, summed two by two, produce
the following matrix (only the first k+1 columns are shown, the remaining k columns
are identical to columns 2 to k + 1):

AX =





−2 2 1 1 1 1 · · · 1 1 1
−2 0 2 1 1 1 · · · 1 1 1
−2 0 0 2 1 1 · · · 1 1 1
−2 0 0 0 2 1 · · · 1 1 1

...
...

−2 0 0 0 0 0 · · · 0 2 1
−2 t0 t1 t2 t3 t4 · · · tk−2 tk−1 2
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The ti, (ti ∈ {0, 1}), are the binary expansion of 2k−1 − s0,

2k−1 − s0 =

k−1∑

i=0

2iti.

One can verify that the last row is indeed the sum of two X-type vectors. Given the
above choice of A we need to compute the ai in the following set of equations:





a0
a1
a2

...
ak−2

ak−1

ak





T 



−2 2 1 1 1 ·· 1 1 1 1
−2 0 2 1 1 ·· 1 1 1 1
−2 0 0 2 1 ·· 1 1 1 0

...
...

−2 0 0 0 0 ·· 0 0 2 1
−2 t0 t1 t2 t3 ·· tk−4 tk−3 tk−2 2

2 −1 −1 −1 −1 ·· −1 −1 −1 −1





=





1
1
1
...
1
1
1





T

It is possible to get an explicit formula for ai as a function of the ti, but it is not
necessary. All that is needed is to show that the ai are nonnegative. Consider the
following set of equations:





b0
b1
b2

...
bk−2

1





T 



2 1 1 1 ·· 1 1 1 1
0 2 1 1 ·· 1 1 1 1
0 0 2 1 ·· 1 1 1 0
...

...
0 0 0 0 ·· 0 0 2 1
t0 t1 t2 t3 ·· tk−4 tk−3 tk−2 2





=





h
h
h
...
h
h





T

Notice that bk−1 is set to 1. This is a system of k equations with k unknowns. Solving

for the bi and h we get 2b0 = h − t0, 2bi = h − ti −
∑i−1
j=0 bj , and h = 2 +

∑k−2
j=0 bj .

The last two equations can be combined into bk−2 = 2 − tk−2. Using the recurrence
formula, 2bi = bi−1 − (ti − ti−1), the remaining values are obtained:

bk−3 = 4− tk−2 − tk−3,

bk−4 = 8− 2tk−2 − tk−3 − tk−4,

bk−5 = 16− 4tk−2 − 2tk−3 − tk−4 − tk−5,

...

b0 = 2k−1 − 2k−3tk−2 − 2k−4tk−3 − · · · − t1 − t0,

h = 2k − 2k−2tk−2 − 2k−3tk−3 − · · · − 2t1 − t0.
Notice that all the bi and h are nonnegative because ti ∈ {0, 1}.

Let ai = αbi for i = 0, .., k − 1. We need to show that α and ak are nonnegative.
Going back to aA = 1, the remaining two equations are

2ak − 2α

k−1∑

i=0

bi = 1 and αh− ak = 1.
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Solving for α and ak we get α = 3/2(h −∑ bi) and ak = (h + 2
∑
bi)/2(h −∑ bi).

Substituting for h = 1 +
∑k−1
i=0 bi we get

α =
3

2
and ak =

1

2
+

3

2

k−1∑

i=0

bi.

Since all bi are nonnegative, ak ≥ 0, which completes the proof.
Proof (part 2: extra padding of ones). The second part of the proof will focus on

steps 5 and 6 of the construction. The following two lemmas are needed.
Lemma 4.3 (splitting a weight). Let w = (w0, w1, . . . , wn) be minimal.

Then w̃ = (w0, w1, . . . , wn−1, a, b), where a+ b = wn is also minimal.
Proof. Construct the matrix A while duplicating the last column.
Lemma 4.4 (adding an input with unit weight). If w = (w0, w1, . . . , wn) is

minimal, and w0 > 0, then w̃ = (w0, w1, w2, w3, . . . , wn+1), where wn+1 = 1, is also
minimal.

Proof. Suppose it is not minimal, implying there exists a better choice for w̃;
let us call it w′. There are two possibilities. Either w′n+1 = 0 or some of the w′i for
i < n + 1 is smaller than the corresponding wi. In the latter case, we set xn+1 = 0
and obtain the original function implemented with smaller weights, contradicting the
hypothesis. Now suppose w′n+1 = 0, implying that f̃ does not depend on xn+1. That
in turn implies

∑n
0 wixi ≥ 0 or

∑n
0 wixi ≤ −2 for all inputs X. We can reduce w0 by

1, implying the original function was not minimal.
In step 5 of the construction, starting with the following weights,

w = (2k−1 + s0, 1, 2, 4, . . . , 2
k−2, s0, 1, 2, 4, . . . , 2

k−2, s0).

Lemma 4.3 is used to increase the number of weights while keeping their size constant.
In step 6, a final adjustment is done for the cases s = 3m− 1 and s = 3m. Applying
Lemma 4.4, an additional one, or two, unit weights are added to achieve the desired
pair (s, n). The smallest weights achievable are w = (1 . . . 1). Any smaller weights
will produce a function of less variables. The upper bound 3 ∗ 2�

n
2 � − 2 is achieved

when s0 = 2k−1 and there is no padding of ones.
Example 11 (functions with polynomial size). Just as in section 3, we can

define L̂T
(d)

as the set of linear threshold functions for which S[f ] ≤ nd. Theorem
4.2 states that for any n there exists a function f of n variables and minimum weight

S[f ] = nd. The implication is that for all d, L̂T
(d−1)

is a proper subset of L̂T
(d)

.

5. Conclusions. We presented two techniques for constructing minimal weight
threshold functions of arbitrary weight size and number of inputs. We considered
both the {0, 1} and {−1, 1} input domains. Using these techniques we further refined
the separation between polynomialy and exponentially growing weights. The natural
open problem is to find out if these new techniques are useful in extending the existing
lower bounds [Hajnal 93] on circuit size to functions with arbitrary weights.
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FACET OBTAINING PROCEDURES FOR SET PACKING
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Abstract. New results concerning the facial structure of set packing polyhedra are presented.
In particular, new methods are given to obtain facets from the subgraphs of the intersection graph
associated with a set packing polyhedron that properly subsume several other methods in the liter-
ature. A new class of facet defining graphs, termed fans, is also introduced, as well as a procedure
to link any graph to a certain claw K1,k in order to obtain a new graph and an associated facet.

Key words. facet, set packing, independent set, stable set
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1. Introduction. Throughout this paper it is assumed that the graphs are finite,
without loops, without multiple edges, undirected, and connected. Let G = (V,E) be
a graph with node set V and edge set E. G is said to be odd (resp., even) if |V | is odd
(resp., even). The incidence vector of a subset B of V is a binary vector (x1, . . . , x|V |)
where xj = 1 if and only if the jth node of V belongs to B, j = 1, . . . , |V |. A nonempty
subset of V of mutually nonadjacent nodes in G is called a packing (anticlique, stable
set, independent set). A maximal packing is a packing which is not a proper subset of
another packing. A maximum packing is a packing of maximum cardinality. A clique
in G is a maximal complete subgraph. A hole is a chordless cycle with more than
three nodes. The neighborhood N(v) of a node v is the set of nodes that are adjacent
to v. The incidence degree δ(v) of a node v is the cardinality of its neighborhood.
PI(G) is the set of incidence vectors of all packings of G, and the polytope (polyhedron)
associated with G, P (G) is the convex hull of PI(G). (It holds that P (G) is a full
dimensional polytope, and a vector x is a vertex of P (G) if and only if x ∈ PI(G).)
A set packing problem is a binary optimization problem

SPP: Opt {cx : Ax ≤ 1m, x ∈ {0, 1}n},
where c ∈ Rn, A ∈ {0, 1}m×n, and 1m is an m-vector of ones. The graph associated
with (intersection graph of) SPP is G = (V,E) with |V | = n and (vi, vj) ∈ E if and
only if the ith and jth columns of A are not orthogonal. Then, if G is the graph
associated with SPP, the feasible set of SPP is PI(G) and the optimal solutions of
SPP can be obtained by solving the linear optimization problem

Opt {cx : x ∈ P (G)}.
A linear inequality πx ≤ π0 is said to be valid for P (G) if it holds for all x ∈ P (G)
(if and only if it holds for all x ∈ PI(G)). Given a valid inequality for P (G), the set
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{x ∈ P (G) : πx = π0} is called a face of P (G). A proper face is a face different from
the polyhedron and the empty set. A valid inequality for P (G) is a facet of P (G) if
and only if it is satisfied as an equality (exactly) by |V | linearly independent vertices
of P (G). Up to multiplication by a positive constant, there is a unique set of facets
πix ≤ πi0, i = 1, . . . , �, such that P (G) = {x : πix ≤ πi0, i = 1, . . . , �}. A set of linear
inequalities satisfying the last condition is called a defining linear system of P (G).
Since set packing problems have a large variety of practical applications, and linear
optimization problems can be solved by means of several procedures, it is a matter of
interest to contribute to the characterization of the defining linear system of P (G),
i.e., to obtain facets of P (G). A facet of P (G) is termed nontrivial if it is different
from xj ≥ 0 for any j = 1, . . . , |V |. All nontrivial facets of P (G) are of the form
πx ≤ π0 with πj ≥ 0, j = 1, . . . , |V |, and π0 > 0. A graph G = (V,E) with |V | = n is
facet defining if there exists a facet πx ≤ π0 such that πj > 0 for all j ∈ V .

Throughout the paper, sets of nodes are usually denoted by V or Vi, and the
same node is denoted indifferently by vj and j. In particular, j is used in the figures,
summations, and subindices and vj is used in the text. Frequently, the expression facet
of the graph will be used instead of facet of the polyhedron associated with the graph,
for brevity. Row and column vectors are not differentiated, since the orientation of
the vectors employed in the paper should be clear from the context. Xi will denote
the ith row of matrix X.

In the seminal papers [1, 6, 11, 12, 13, 14, 16] the basic principles to derive facets
for set packing problems were given. One can find there the first families of facet
defining graphs. It was proved in [11, 12, 14] that, if G = (V,E) is a graph and B
is a subset or V , the inequality

∑
j∈B xj ≤ 1 is a facet of P (G) if and only if the

subgraph induced by B is a clique in G. Consequently, a facet with right-hand side
1 and binary coefficients is called a clique facet. In [11, 12] it was shown that the
inequality

∑
j∈V xj ≤ (|V | − 1)/2 is a facet of P (G) if G = (V,E) is an odd hole.

Other results concerning rank facets
∑
j∈V xj ≤ π0 were given in [1, 6, 14], and more

recently in [8], [9] (where a complete characterization of the rank facets of P (G) when
G does not contain K1,3 as an induced subgraph is given), [10], and [15]. In [11],
Nemhauser and Trotter gave two procedures to construct facets of P (G). Additional
families of graphs and associated facets have been studied in the literature; see, for
example, [2] and [4] for wheels, [2] and [3] for series-parallel and other special graphs.

In order to find new facets of the set packing polyhedron, it is useful to (i)
identify families of graphs with associated known facets, and (ii) to devise methods for
transforming known facets associated with smaller graphs into others containing those
as subgraphs. Examples of these transformations in the literature can be consulted
in [5, 14, 17]. We shall refer to these transformations as liftings, regardless of whether
they keep the coefficients of the initial facet unchanged or not. Here the constructions
in [14, 17] are revisited and extended, and new methods are developed.

2. Lifting procedures. The common techniques for proving that a given valid
inequality induces a facet of a specified full dimensional polyhedron in Rn are (see,
e.g., [7]) the following:
Proving necessity. The inequality must be included in any defining linear system of

the polyhedron.
Direct construction. Display a set of n affinely (linearly, in our case) independent

vectors in the polyhedron satisfying the inequality exactly.
Verifying maximality. Show that the face of the polyhedron defined by the inequality

is not contained in any larger proper face.
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Lifting procedures try to simplify the second method by using previously known
information about facets of polyhedra of lower dimensions. In particular, when the
polyhedron is P (G′), and G′ can be obtained from a smaller graph G by means of
some graph theoretic operations, a lifting method will transform the facet πx ≤ 1
of P (G) into the facet π′x′ ≤ 1 of P (G′) by constructing the independent vectors
of P (G′) from those of P (G). If the vectors of P (G) are arranged as the rows of
a matrix X, the facet of P (G) is obtained by solving the regular equation system
Xπ = 1. Then the lifting procedure can be seen as a way to obtain X ′ from X in
such a way that the rows of X ′ are incidence vectors of P (G′) and the equation system
X ′π′ = 1 can be solved to obtain π′.

Summarizing, five steps are necessary to implement the approach:
1. constructing X ′ from X,
2. proving the regularity of X ′,
3. solving the system X ′π′ = 1,
4. showing that π′j ≥ 0 for all j,
5. proving that π′x′ ≤ 1 is satisfied by all the packings in G′.

Sometimes it is necessary to impose algebraic conditions to guarantee that 2, 4,
or 5 are satisfied.

Note that if the rows of X ′ include the incidence vectors of all the maximal
packings of G, the nonnegativity of the solution π′ of the system X ′π′ = 1 implies
the validity of the inequality π′x′ ≤ 1. Moreover, if these rows include a nonmaximal
packing p′, the coefficients of the variables associated with the nodes in pi−p′ will be
zero for all the packings pi such that p′ ⊂ pi.

The best known method to obtain facets of P (G′) from facets of the polyhedra
associated with its subgraphs was simultaneously obtained by several authors ([12] for
odd holes, [11, 13, 14] for the general case). This method will be called usual lifting
throughout the paper. The usual lifting procedure fits as follows into our framework.

Proposition 2.1 ([11, 12, 13, 14], usual lifting procedure). Let G′ = (V ′, E′)
be a graph with V ′ = {v1, . . . , vn}. If the inequality

∑n−1
j=1 πjxj ≤ π0 is a facet of the

subgraph of G′ induced by V ′ − {vn}, the inequality
∑n−1
j=1 πjxj + πnxn ≤ π0, where

πn = π0 −max






n−1∑

j=1

πjxj : x ∈ PI(G′), x	 = 0 ∀v	 ∈ N(vn)




 ,(2.1)

is a facet of P (G′).
Here

X ′ =





0
X 0

0
b1 · · · bn 1



 ,

where X contains n − 1 independent incidence vectors of packings of the subgraph
induced by V ′ − {vn}, and (b1, . . . , bn) is the optimum of the maximization problem
given in (2.1).

This paper analyzes more complicated combinatorial lifting situations, adding
two or more variables at the same time, and involving less obvious extensions X ′ to
the packings in X. Furthermore, the inverse way is also explored to obtain facets of
a graph from facets associated with greater graphs.
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Some technical results needed in the following sections are now given. All of
them are quite straightforward, but to the best of our knowledge they do not appear
explicitly in the literature.

Proposition 2.2.
1. Let G = (V,E) be a graph. If π0x1 +

∑|V |
j=2 πjxj ≤ π0 is a facet of P (G),

then v1 is connected to every vi such that πi > 0.
2. Let G = (V,E) be a graph, and let H be the graph (V ∪ {v0}, E ∪ {(v0, v1),

(v0, v2), . . ., (v0, v|V |)}). Then
∑|V |
j=1 πjxj ≤ π0 is a facet of P (G) if and only if

∑|V |
j=1 πjxj + π0x0 ≤ π0 is a facet of P (H).

Proof.
1. If not, a packing violating the inequality can be constructed.
2. The only if part directly follows applying the usual lifting to the first facet. To

see the if part, note that {v0} is a maximal packing satisfying the second inequality
exactly. The remaining |V | independent packings do not contain v0 and satisfy the
first inequality (which is valid for P (G)) exactly.

Proposition 2.3. Let G = (V,E) be a graph and πx ≤ π0 a facet of P (G) other
than a clique facet. If a new node v0 is added to G and connected to a set of nodes
inducing a complete subgraph of G, then the coefficient of v0 obtained by means of the
usual lifting of πx ≤ π0 is null.

Proof. The coefficient is null if and only if a vertex x of P (G) verifying πx = π0

and such that xj = 0 for all vj ∈ N(v0) exists. For if not, all the vertices x of P (G)
with πx = π0 satisfy

∑
j∈N(v0)

xj ≥ 1. Since N(v0) induces a complete subgraph,

it follows that
∑
j∈N(v0)

xj = 1, and there cannot be enough independent points in

P (G) satisfying πx = π0, unless both equalities are the same.
Proposition 2.4. Let G = (V,E) be a graph, let C ⊂ V be a set of nodes

inducing a clique in G, and let v1 ∈ C be a node such that (v1, vj) �∈ E for any
vj �∈ C. Let πx ≤ π0 be a facet of P (G) other than

∑
j∈C xj ≤ 1. Then π1 = 0.

Proof. Let P be any packing in G satisfying πx = π0. If P does not include nodes
of C − {v1} and π1 > 0, P must include v1. For, if not, P ∪ v1 is a packing which
violates the inequality. In any case, if π1 > 0, then

∑
j∈P xj = 1, and there cannot

exist enough independent packings satisfying πx ≤ π0 exactly.

3. Replacing a node by K1,p. In this section a facet generating procedure
given in [17] is generalized (in several ways). The generalization is worthwhile itself
and is also employed in the forthcoming section. The arguments of the proofs have
been adapted from those of [17].

3.1. Replacing a node by K1,2. Let us initially consider the following con-
struction (see Figure 3.1). Given a graph G = (V,E) and a selected node vn ∈ V , a
new graph G′ is obtained by

(i) separating the nodes adjacent to vn into two nonempty subsets V1 and V2,
(ii) introducing two new nodes vn+1 and vn+2 so that each vertex of Vi is joined

to vn+i, i = 1, 2, and
(iii) joining vn to vn+1 and vn+2 only.
Theorem 3.1. Let

∑n
j=1 πjxj ≤ π0 be a facet of P (G) and

Mi := max






n∑

j=1

πjxj : x ∈ PI(G), x	 = 0 ∀v	 ∈ Vi ∪ {vn}



 , i = 1, 2.
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Fig. 3.1. Construction of Theorem 3.1.

If M1 +M2 + πn ≥ 2π0, then

n−1∑

j=1

πjxj + (M1 +M2 + πn − 2π0)xn

+ (M2 + πn − π0)xn+1 + (M1 + πn − π0)xn+2 ≤M1 +M2 + πn − π0(3.1)

is a facet of P (G′).
Proof. The proof is divided in five parts, according to the generic procedure given

in section 1.
Part 1. The matrix X ′. Let {(Xk, 0)}sk=1, {(Xk, 1)}nk=s+1 be n independent

points of PI(G) satisfying
∑n
j=1 πjxj = π0, and let (Xn+i, 0), i = 1, 2, be two vertices

of P (G) satisfying xn+i
j = 0, j ∈ Vi ∪ {vn}, and

∑n
j=1 πjx

n+i
j = Mi. Let X ′ be the

(n + 2)× (n + 2) matrix





X1 1 0 0
...

...
...

...
Xs 1 0 0

Xs+1 0 1 1
...

...
...

...
Xn 0 1 1

Xn+1 0 1 0
Xn+2 0 0 1





.

It can be rightly checked that the n + 2 rows of X ′ are incidence vectors of vertices
of P (G′).

Part 2. Regularity of X ′. It is clear that the n + 1 first rows of X ′ are indepen-
dent, and assuming w.l.o.g. that (X ′)n+2 =

∑n
k=1 αk(X

′)k +β(X ′)n+1 it follows that
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∑s
k=1 αk = 0,

∑n
k=s+1 αk = 1, β = −1, Xn+2 =

∑n
k=1 αkX

k −Xn+1, and

M2 =

n−1∑

j=1

πjx
n+2
j =

n−1∑

j=1

πj(

n∑

k=1

αkx
k
j − xn+1

j )

=
n∑

k=1

αk

n−1∑

j=1

πjx
k
j −

n−1∑

j=1

πjx
n+1
j

= π0

s∑

k=1

αk + (π0 − πn)

n∑

k=s+1

αk −M1 = π0 − πn −M1,

which is impossible by hypothesis.
Part 3. Solution of X ′π′ = 1. Since X ′ is regular, there is a unique solution

of the system. It can be easily checked that the coefficients of (3.1), divided by its
right-hand side, satisfy all the equations.

Part 4. Nonnegativity of π′. The proof follows from the assumptions of the
theorem.

Part 5. Validity of (3.1). Let x1 be a vertex of P (G′). If x1
n = 1, then x1

n+1 =
x1
n+2 = 0 and the point x2 given by x2

j = x1
j for j = 1, . . . , n− 1, x2

n = 0, is a vertex
of P (G); thus

n−1∑

j=1

πjx
1
j + (M1 +M2 + πn − 2π0)x

1
n

=

n∑

j=1

πjx
2
j +M1 +M2 + πn − 2π0 ≤M1 +M2 + πn − π0.

If x1
n = 0 and x1

n+1 = x1
n+2 = 1, the point x3 given by x3

j = x1
j for j = 1, . . . , n − 1,

x3
n = 1, is a vertex of P (G) and

n−1∑

j=1

πjx
1
j + (M2 + πn − π0)x

1
n+1 + (M1 + πn − π0)x

1
n+2

=

n∑

j=1

πjx
3
j +M1 +M2 + πn − 2π0 ≤M1 +M2 + πn − π0.

If x1
n = x1

n+1 = 0 and x1
n+2 = 1, using the above defined point x2

n−1∑

j=1

πjx
1
j + (M1 + πn − π0)x

1
n+2 =

n−1∑

j=1

πjx
2
j +M1 + πn − π0 ≤M1 +M2 + πn − π0,

and the remaining cases are treated in a similar way.
Example. Let G be the left-hand graph of Figure 3.2, vn = v21, V1 = {v16, v19, v20},

and V2 = {v17, v18}. Then G′ is the right-hand graph of Figure 3.2 and the facet

πx = 2

5∑

i=1

xi +

20∑

i=6

xi + 2x21 ≤ 12

of P (G) (see [4]) becomes the facet of P (G′),

2

5∑

i=1

xi +

21∑

i=6

xi + 2x22 + x23 ≤ 13,
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Fig. 3.2. Example of Theorem 3.1.
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Fig. 3.3. Example of Theorem 3.6 when V1 ∩ V2 �= ∅.

since M1 = max{πx : x16 = x19 = x20 = x21 = 0, x ∈ PI(G)} = 11 and M2 =
max{πx : x17 = x18 = x21 = 0, x ∈ PI(G)} = 12, π0 = 12, and π21 = 2.

Remark 1. Proposition 3 in [17] is obtained as a particular case of Theorem 3.1
by taking M1 = M2 = π0. As seen in the previous example, this is an unnecessarily
restrictive condition.

Remark 2. The proof of Theorem 3.1 remains valid when V1 ∩ V2 �= ∅. A similar
observation can be made about the assumptions of the forthcoming Theorem 3.6.

Example. Let G be the left-hand graph of Figure 3.3, vn = v4, V1 = {v1, v2},
and V2 = {v2, v3}. Then G′ is the right-hand graph of Figure 3.3 and the facet

πx =
∑4
i=1 xi ≤ 1 of P (G) becomes the facet of P (G′)

∑6
i=1 xi ≤ 2, since M1 =

max{πx : x1 = x2 = x4 = 0, x ∈ PI(G)} = 1 and M2 = max{πx : x2 = x3 = x4 =
0, x ∈ PI(G)} = 1, π0 = 1, and π4 = 1.

We will show next how Proposition 2 in [17] (see also [14]) can be obtained from
Theorem 3.1. Consider the nodes adjacent to vn subdivided into two subsets, V1

containing a unique node (say v1) and V2 containing the remaining nodes (see Figure
3.4).

Corollary 3.2. Let
∑n
j=1 πjxj ≤ π0 be a facet of P (G) other than x1 +xn ≤ 1,

and let G− := (N,E − {(v1, vn)}) be the graph obtained by removing the edge joining
v1 to vn from G. Assume an optimal solution of the auxiliary problem

max






n∑

j=1

πjxj : x ∈ PI(G−)
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Fig. 3.4. Inserting two nodes inside an edge.
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Fig. 3.5. Transformations of Theorems 3.3 and 3.4.

exists such that x1 = xn = 1, and let Z be its optimal value. Then

n−1∑

j=1

πjxj + (Z − π0)xn + (Z − π0)xn+1 + πnxn+2 ≤ Z(3.2)

is a facet of P (G′).
Proof. Since the original facet is other than x1 + xn ≤ 1, a vertex in P (G) with

x1 = xn = 0 satisfying
∑n
j=1 πjxj = π0 will exist. Therefore M1 = π0.

Now, since the optimal value of the auxiliary problem is reached in some point
with x1 = xn = 1, the maximum M2 will verify M2 = Z − πn ≥ π0− πn, which is the
condition of Theorem 3.1, and (3.2) follows.

A converse transformation was shown in Theorem 2.5 of [2].
Theorem 3.3 ([2], converse of Corollary 3.2). Let G = (V,E) be a graph with

|V | = n, and let
∑n
j=1 πjxj ≤ π0 be a facet defined by P (G). Suppose that (vn−1, v1),

(v1, vn), (vn, v2) ∈ E, and v1, vn have degree two. Assume also that πn−1 = π1 =
πn = β. Let Gb be the graph obtained from G by deleting vn−1 and vn, and linking v1

to v2 and to the nodes in N(vn−1) (see Figure 3.5). Then
∑n−2
j=1 πjxj ≤ π0 − β is a
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facet of P (Gb).
The following result deals with the case when vn does not have degree two. Al-

though the proof is similar to that of [2], it is included here for the sake of complete-
ness.

Theorem 3.4. Let G = (V,E) be a graph with |V | = n, and let πx =
∑n
j=1 πjxj ≤

π0 be a facet of P (G). Suppose that (vn−1, v1), (v1, vn) ∈ E, (vn−1, vn) �∈ E, and v1

has degree two. Assume also that πn−1 = π1 = πn = β > 0. Let Gm be the graph ob-
tained from G by deleting vn−1 and vn, and linking v1 to the nodes in N(vn−1)∪N(vn)
(see Figure 3.5). Then

n−2∑

j=1

πjxj ≤ π0 − β(3.3)

is a facet of P (Gm).
Proof.
Part 1. The matrix X ′. Let X = (xij) be the n × n matrix whose rows are the

incidence vectors of the independent packings associated with πx ≤ π0. Then X ′ is
obtained from the n× (n− 2) matrix

X ′′ =





x11 + x1,n−1 + x1n − 1 x12 · · · x1,n−2

x21 + x2,n−1 + x2n − 1 x22 · · · x2,n−2

...
...

. . .
...

xn1 + xn,n−1 + xnn − 1 xn2 · · · xn,n−2





by choosing n− 2 rows of maximum rank. Note that all the rows of X ′′ are incidence
vectors of vertices of PI(G

m).
Part 2. Regularity of X ′. Consider the (n+ 1)× (n+ 1) linear equations system

X ′′′λ =





1

X
...
1

1 0 0 · · · 0 1









λ1

...
λn
λn+1



 =





0
...
0
0



 .

It follows that λn+1 = −λ1 and



λ1

...
λn



 = −λn+1X
−1




1
...
1



 = −(λn+1/π0)π

and then λ1(π0 − π1) = 0. Since v1 is not connected to the remaining nodes in V
(Proposition 2.2), it follows that λ1 = 0 and then λj = 0 for all j. Therefore X ′′′ has
range n+ 1. X ′′ is obtained from X ′′′ by (i) adding (X ′′′)n−1 + (X ′′′)n− (X ′′′)n+1 to
(X ′′′)1 and (ii) deleting (X ′′′)n−1, (X ′′′)n, and (X ′′′)n+1; therefore the range of X ′′

must be n−2, there exist n−2 independent rows in X ′′, and the range of X ′ is n−2.
Part 3. Solution of X ′π′ = 1. The coefficients of (3.3), divided by the right-hand

side, are the unique solution of the system X ′′π′ = 1 and, in particular, of X ′π′ = 1.
Part 4. Nonnegativity of π′. The proof is obvious.
Part 5. Validity of (3.3). Consider (x1, . . . , xn−2) ∈ PI(G

m). The point (1 −
x1, x2, . . . , xn−2, x1, x1) belongs to PI(G) and then β(1−x1)+

∑n−2
j=1 πjxj+2βx1 ≤ π0,

which implies
∑n−2
j=1 πjxj + βx1 ≤ π0 − β.
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Fig. 3.6. Example of Corollary 3.5.

Corollary 3.5. Let G = (V,E) be a graph with |V | = n and (vn−1, vn) �∈ E, and

let
∑n
j=1 πjxj ≤ π0 be a facet of P (G) satisfying πn−1 = πn = π0−max{∑n−2

j=1 πjxj :

x ∈ PI(G)}. Then
∑n−1
j=1 πjxj ≤ π0 − πn is a facet of the graph obtained from G by

deleting vn and linking vn−1 to the nodes in N(vn).
Proof. It can be easily checked that this is equivalent to (i) adding a node to V

linked to vn−1 and vn only, (ii) making the usual lifting of the original facet, and (iii)
applying Theorem 3.4.

Example. Let G be the left-hand graph of Figure 3.6, vn−1 = v7, and vn =
v8. Then πx =

∑8
i=1 xi ≤ 3 is a facet of P (G). Applying Corollary 3.5, the facet∑7

i=1 xi ≤ 2 of the right-hand graph of Figure 3.6 is obtained.

3.2. Replacing a node by K1,3. Theorem 3.1 can be extended by separating
the nodes adjacent to n into more than two subsets. This is shown now by means
of two results: Theorem 3.6, in which the separation is done into three subsets, and
Theorem 3.11 in subsection 3.3, where separation occurs into m unitary subsets. To
start with, the following construction is needed. Given a graph G = (V,E) and a
selected node vn ∈ E, a new graph G′′ is obtained by

(i) separating the nodes adjacent to vn into three nonempty subsets Vi, i =
1, 2, 3,

(ii) introducing three new nodes vn+i so that each vertex of Vi is joined to vn+i,
i = 1, 2, 3, and

(iii) joining vn to vn+i, i = 1, 2, 3, only.
Theorem 3.6. Let

∑n
j=1 πjxj ≤ π0 be a facet of P (G) and

Mi := max






n∑

j=1

πjxj : x ∈ PI(G), x	 = 0 ∀v	 ∈ Vi ∪ {vn}



 ,

Mij := max






n∑

j=1

πjxj : x ∈ PI(G), x	 = 0 ∀v	 ∈ Vi ∪ Vj ∪ {vn}





for i, j = 1, 2, 3. (Note that Mij = Mji for all i and j.) Then we have the following:
1. If M12 + M13 + M23 + 2πn ≥ 3π0 and Mi,i+1 + Mi,i+2 + πn ≥ Mi + π0 for

i = 1, 2, 3, then

n−1∑

j=1

πjxj + (M12 +M23 +M13 + 2πn − 3π0)xn

+

3∑

i=1

(Mi+1,i+2 + πn − π0)xn+i ≤M12 +M23 +M13 + 2πn − 2π0(3.4)

is a facet of P (G′′).
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2. If M1 + M2 + M3 + πn ≥ 3π0 and Mi + Mi+1 + π0 ≥ 2Mi,i+1 + Mi+2 + πn
for i = 1, 2, 3, then

n−1∑

j=1

2πjxj + (M1 +M2 +M3 + πn − 3π0)xn

+

3∑

i=1

(Mi+1 +Mi+2 −Mi + πn − π0)xn+i ≤M1 +M2 +M3 + πn − π0

is a facet of P (G′′).
In parts 1 and 2, the index set {1, 2, 3} is considered to be cyclic; i.e., 4 = 1, 5 = 2,
and so on.

Proof. Only the first part of the theorem is going to be proved. The proof of the
second part is very similar and is left to the reader.

Part 1. The matrix X ′. Let {(Xk, 0)}sk=1, {(Xk, 1)}nk=s+1 be n independent
points of PI(G) satisfying

∑n
j=1 πjxj = π0, and let (Xn+i, 0), i = 1, 2, 3, be three

vertices of P (G) satisfying xn+i
j = 0, j ∈ Vi+1 ∪ Vi+2 ∪ {vn}, and

∑n
j=1 πjx

n+i
j =

Mi+1,i+2. Let X ′ be the (n + 3)× (n + 3) matrix





X1 1 0 0 0
...

...
...

...
...

Xs 1 0 0 0

Xs+1 0 1 1 1
...

...
...

...
...

Xn 0 1 1 1

Xn+1 0 0 1 1
Xn+2 0 1 0 1
Xn+3 0 1 1 0





.

It can be rightly checked that the n + 3 rows of X ′ are incidence vectors of vertices
of P (G′′).

Part 2. Regularity of X ′. It is clear that the n+2 first rows of X ′ are independent,
and assuming w.l.o.g. that (X ′)n+3 =

∑n
k=1 αk(X

′)k + β1(X
′)n+1 + β2(X

′)n+2 it
follows that

∑s
k=1 αk = 0,

∑n
k=s+1 αk = 2, β1 = β2 = −1, Xn+3 =

∑n
k=1 αkX

k

−Xn+1 −Xn+2, and

M12 =

n−1∑

j=1

πjx
n+3
j =

n−1∑

j=1

πj(

n∑

k=1

αkx
k
j − xn+1

j − xn+2
j )

=

n∑

k=1

αk

n−1∑

j=1

πjx
k
j −

n−1∑

j=1

πjx
n+1
j −

n−1∑

j=1

πjx
n+2
j

= π0

s∑

k=1

αk + (π0 − πn)

n∑

k=s+1

αk −M23 −M13 = 2π0 − 2πn −M23 −M13,

which is impossible by hypothesis.
Part 3. Solution of X ′π′ = 1. The coefficients of (3.4), divided by its right-hand

side, satisfy all the equations.



138 L. CÁNOVAS, M. LANDETE, AND A. MARÍN

Part 4. Nonnegativity of π′. Since Mij ≥ max{∑n
j=1 πjxj : x ∈ PI(G), x	 = 0

for all v	 ∈ V1 ∪ V2 ∪ V3 ∪ {vn}} = π0 − πn, the coefficients of (3.4) are nonnegative.
Part 5. Validity of (3.4). Let x1 be a vertex of P (G′′). If x1

n = 1, then x1
n+i = 0,

i = 1, 2, 3, and the point x2 given by x2
j = x1

j for j = 1, . . . , n− 1, x2
n = 0, is a vertex

of P (G); thus

n−1∑

j=1

πjx
1
j + (M12 +M23 +M13 + 2πn − 3π0)x

1
n

=

n∑

j=1

πjx
2
j +M12 +M23 +M13 + 2πn − 3π0 ≤M12 +M23 +M13 + 2πn − 2π0.

If x1
n = 0 and x1

n+i = 1, i = 1, 2, 3, the point x3 given by x3
j = x1

j for j = 1, . . . , n− 1,

x3
n = 1, is a vertex of P (G) and

n−1∑

j=1

πjx
1
j +

3∑

i=1

(Mi+1,i+2 + πn − π0)x
1
n+i

=

n∑

j=1

πjx
3
j +M12 +M23 +M13 + 2πn − 3π0 ≤M12 +M23 +M13 + 2πn − 2π0.

If x1
n = x1

n+1 = 0 and x1
n+2 = x1

n+3 = 1, using the above defined point x2

n−1∑

j=1

πjx
1
j +

3∑

i=2

(Mi+1,i+2 + πn − π0)x
1
n+i

=

n−1∑

j=1

πjx
2
j +M13 +M12 + 2πn − 2π0 ≤M23 +M13 +M12 + 2πn − 2π0.

If x1
n = x1

n+1 = x1
n+2 = 0 and x1

n+3 = 1, using again the point x2

n−1∑

j=1

πjx
1
j + (M12 + πn − π0)x

1
n+3

=

n−1∑

j=1

πjx
2
j +M12 + πn − π0 ≤M3 +M12 + πn − π0

≤M13 +M23 + πn − π0 +M12 + πn − π0,

the last inequality being by hypothesis. The remaining cases are treated in a similar
way.

Example.
1. Let G be the northwest graph of Figure 3.7, vn = v5, V1 = {v1}, V2 =

{v2, v3}, and V3 = {v4}. Then G′′ is the northeast graph and πx =
∑5
i=1 xi ≤ 1 is a

facet of P (G), Mi = Mij = 1 for all i, j, π0 = 1 and π5 = 1. Applying the first part
of Theorem 3.6, the facet of P (G′′)

x1 + x2 + x3 + x4 + 2x5 + x6 + x7 + x8 ≤ 3

is obtained. The conditions of the second part of Theorem 3.6 are not satisfied.
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Fig. 3.7. Examples of Theorem 3.6.

2. Now let G be the southwest graph of Figure 3.7, vn = v8, V1 = {v1, v2, v4, v6},
V2 = {v2, v4, v5, v7}, and V3 = {v1, v3, v5}. Then G′′ is the southeast graph and

πx =
∑7
i=1 xi + 3x8 ≤ 3 is a facet of P (G), Mi = 3 for all i, Mij = 1 for all i, j,

π0 = 3, and π8 = 3. Applying the second part of Theorem 3.6, the facet of P (G′′)

7∑

j=1

2xj +

11∑

j=8

3xj ≤ 9

is obtained. The conditions of the first part of Theorem 3.6 are not satisfied.
Consider now the special case of Theorem 3.6 where Vi, i = 1, 2, 3, are pairwise

disjoint and V1∪V2∪V3 = V −{vn}. Then the coefficient of xn in the original facet of

P (G) must be equal to π0, and
∑n−1
j=1 πjxj ≤ π0 is a facet of the subgraph induced by

V − {vn} (see Proposition 2.2). Thus the conditions of the first part of the theorem
become

M12 +M13 +M23 ≥ π0,
Mi,i+1 +Mi,i+2 ≥Mi, i = 1, 2, 3.

(3.5)

Here

Mi = max





∑

j∈Vi+1∪Vi+2

πjxj : x ∈ PI(G)




 ,

Mi,i+1 = max





∑

j∈Vi+2

πjxj : x ∈ PI(G)




 .
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Then

π0 = max





∑

j∈V1∪V2∪V3

πjxj : x ∈ PI(G)






≤
3∑

i=1

max





∑

j∈Vi

πjxj : x ∈ PI(G)




 = M12 +M13 +M23

and

Mi = max





∑

j∈Vi+1∪Vi+2

πjxj : x ∈ PI(G)






≤
2∑

	=1

max





∑

j∈Vi+�

πjxj : x ∈ PI(G)




 = Mi,i+1 +Mi,i+2.

Therefore (3.5) holds, and the following results can be established.
Corollary 3.7. Let

∑n
j=1 πjxj ≤ π0 be a facet of P (G), and let Vi, i = 1, 2, 3,

be disjoint subsets of N(vn) such that V1 ∪ V2 ∪ V3 ∪ {vn} = V . Then

n−1∑

j=1

πjxj +

(
3∑

i=1

Mi,i+1 − π0

)
xn +

3∑

i=1

Mi+1,i+2xn+i ≤
3∑

i=1

Mi,i+1

is a facet of P (G′′).
Corollary 3.8. Under the hypotheses of Corollary 3.7,

1. if each Vi, i = 1, 2, 3, contains a packing of G satisfying πx = π0, then

n−1∑

j=1

πjxj + 2π0xn +

3∑

i=1

π0xn+i ≤ 3π0

is a facet of P (G′′);
2. if the subgraphs of G induced by Vi, i = 1, 2, 3, are complete, then

n−1∑

j=1

πjxj +

(
3∑

i=1

Πi − π0

)
xn +

3∑

i=1

Πixn+i ≤
3∑

i=1

Πi,(3.6)

where Πi = maxj∈Vi{πj} is a facet of P (G′′).
Proof. Part 1 directly follows from Corollary 3.7, since Mi,i+1 = π0, i = 1, 2, 3,

due to the presence in each Vi of a packing satisfying the inequality exactly. In part
2, since the subgraphs of G induced by Vi, i = 1, 2, 3, are complete, it holds that
Mi,i+1 = maxj∈Vi+2

{πj}, and (3.6) follows from Corollary 3.7.
Corollary 3.8 can be easily extended to the case of more than three subsets of

nodes adjacent to vn, V1,. . . ,Vk.
Corollary 3.9. Let

∑n
j=1 πjxj ≤ π0 be a facet of P (G), and let Vi, i = 1, . . . , k

be disjoint subsets of N(vn) such that (
⋃k
i=1 Vi) ∪ {vn} = V . Then

1. if each Vi, i = 1, . . . , k, contains a packing of G satisfying πx = π0, then

n−1∑

j=1

πjxj + (k − 1)π0xn +

k∑

i=1

π0xn+i ≤ kπ0

is a facet of P (G′′);
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2. if the subgraphs of G induced by Vi, i = 1, . . . , k, are complete, then

n−1∑

j=1

πjxj +

(
k∑

i=1

Πi − π0

)
xn +

k∑

i=1

Πixn+i ≤
k∑

i=1

Πi,

where Πi = maxj∈Vi
{πj} is a facet of P (G′′).

Note that Proposition 2.2 along with the last statement of Corollary 3.9 leads to
Theorem 2.3 of [5].

Moreover, consider Theorem 3.6 in the case where Vi, i = 1, 2, 3, are pairwise
disjoint and complete, although vn is not necessarily connected to the rest of the
nodes of V . If a facet of G is obtained from a facet of its subgraph induced by
V − {vn} by means of the usual lifting, the coefficient of xn must be π0 − c, where

c = max






n−1∑

j=1

πjxj : x ∈ PI(G), x	 = 0 ∀v	 ∈ V1 ∪ V2 ∪ V3 ∪ {vn}



 .

Assume also that πx ≤ π0 is not a clique inequality. Then for each i = 1, 2, 3 there will
be a packing of G satisfying πx = π0 and such that xj = 0 for all vj ∈ Vi (Proposition
2.3). Therefore Mi = π0, i = 1, 2, 3, and the conditions of the second part of Theorem
3.6 become 4π0 − c ≥ 3π0, which always holds, and π0 + c ≥ 2 max{M12,M13,M23},
leading to the following result.

Corollary 3.10. Let
∑n−1
j=1 πjxj ≤ π0 be a facet of the polytope associated with

the subgraph of G induced by V − {vn} other than a clique facet. If N(vn) can be
subdivided into Vi, i = 1, 2, 3, disjoint subsets such that the subgraph induced by Vi is
complete, and if π0 + c ≥ 2 max{M12,M13,M23}, then the inequality

n−1∑

j=1

2πjxj + (π0 − c)xn +

3∑

i=1

(π0 − c)xn+i ≤ 3π0 − c

is a facet of P (G′′).
Note that N(vn) may always be subdivided into a number of disjoint subsets

whose induced subgraphs are complete, say k subsets. Then a facet of P (G′′) of the
form

n−1∑

j=1

(k − 1)πjxj + (π0 − c)xn +

k∑

i=1

(π0 − c)xn+i ≤ kπ0 − c(3.7)

is obtained if (3.7) is a valid inequality. This result matches Theorem 2.4 in [5]. The
conditions for the validity of (3.7) extend that of Corollary 3.10 and can be consulted
in the referenced paper.

3.3. Replacing a node v by K1,|N(v)|. Finally, consider the following con-
struction. Given a graph G = (V,E) and a selected node vn ∈ E, assume w.l.o.g. that
N(vn), the set of nodes adjacent to vn, is given by M = {v1, . . . , vm}. Then a new
graph G′′′ is obtained by

(i) introducing m new nodes vn+i so that each vertex vi in M is joined to vn+i

and
(ii) joining vn to vn+i, i = 1, . . . ,m, only.
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Theorem 3.11. Let
∑n
j=1 πjxj ≤ π0 be a facet of P (G) and

µ(S) := max






n∑

j=1

πjxj : x ∈ PI(G), x	 = 0 ∀v	 ∈ (M − S) ∪ {vn}





for S ⊆M . Let µi := µ({vi}) for i = 1, . . . ,m. If
∑
i∈S µi−µ(S) ≥ (|S|−1)(π0−πn)

for all S ⊆M , then

n−1∑

j=1

πjxj +

(
m∑

i=1

µi + (m− 1)πn −mπ0

)
xn

+

m∑

i=1

(µi + πn − π0)xn+i ≤
m∑

i=1

µi − (m− 1)(π0 − πn)(3.8)

is a facet of P (G′′′).
Proof. Note that µ(∅) = π0 − πn and µ(M) = π0.
Part 1. The matrix X ′. Let {(Xk, 0)}sk=1, {(Xk, 1)}nk=s+1 be n independent

points of PI(G) satisfying
∑n
j=1 πjxj = π0, and let (Xn+i, 0), i = 1, . . . ,m, be m

vertices of P (G) satisfying xn+i
n = 0, xn+i

j = 0 for all j �= i and
∑n
j=1 πjx

n+i
j = µi.

Let X ′ be the (n +m)× (n +m) matrix





X1 1 0 0 . . . 0
...

...
...

...
. . .

...
Xs 1 0 0 . . . 0

Xs+1 0 1 1 . . . 1
...

...
...

...
. . .

...
Xn 0 1 1 . . . 1

Xn+1 0 1 0 . . . 0
Xn+2 0 0 1 . . . 0

...
...

...
...

. . .
...

Xn+m 0 0 0 . . . 1





.

It can be rightly checked that the n + m rows of X ′ are incidence vectors of vertices
of P (G′′′).

Part 2. Regularity of X ′. The n+m− 1 first rows of X ′ are clearly independent,
and assuming w.l.o.g. that

(X ′)n+m =

n∑

k=1

αk(X
′)k +

m−1∑

k=1

βk(X
′)n+k
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it follows that
∑s
k=1 αk = 0,

∑n
k=s+1 αk = m − 1, βk = −1 for k = 1, . . . ,m − 1,

Xn+m =
∑n
k=1 αkX

k −∑m−1
k=1 Xn+k, and

µm =

n−1∑

j=1

πjx
n+m
j =

n−1∑

j=1

πj

(
n∑

k=1

αkx
k
j −

m−1∑

k=1

xn+k
j

)

=
n∑

k=1

αk

n−1∑

j=1

πjx
k
j −

m−1∑

k=1

n−1∑

j=1

πjx
n+k
j

= π0

s∑

k=1

αk + (π0 − πn)

n∑

k=s+1

αk −
m−1∑

k=1

µk = (m− 1)(π0 − πn)−
m−1∑

k=1

µk,

which is not compatible with the hypothesis when S = M .
Part 3. Solution of X ′π′ = 1. The coefficients of (3.8), divided by its right-hand

side, satisfy all the equations.
Part 4. Nonnegativity of π′. The conditions of the theorem imply the coefficients

in (3.8) are nonnegative.
Part 5. Validity of (3.8). Let x1 be a vertex of P (G′′′). If x1

n = 1, then x1
n+i = 0,

i = 1, . . . ,m, and the point x2 given by x2
j = x1

j for j = 1, . . . , n − 1, x2
n = 0, is a

vertex of P (G); thus

n−1∑

j=1

πjx
1
j +

(
m∑

i=1

µi + (m− 1)πn −mπ0

)
x1
n

=

n∑

j=1

πjx
2
j +

m∑

i=1

µi + (m− 1)πn −mπ0 ≤
m∑

i=1

µi + (m− 1)πn − (m− 1)π0.

If x1
n = 0 and x1

n+i = 1, i = 1, . . . ,m, the point x3 given by x3
j = x1

j for j = 1, . . . , n−1,

x3
n = 1, is a vertex of P (G) and

n−1∑

j=1

πjx
1
j +

m∑

i=1

(µi + πn − π0)x
1
n+i

=

n−1∑

j=1

πjx
3
j +

m∑

i=1

(µi + πn − π0) ≤ π0 − πn +

m∑

i=1

µi +mπn −mπ0.

If x1
n = x1

n+i = 0 for i ∈ S and x1
n+i = 1, for i ∈ S̄ := M −S, using the above defined

point x2

n−1∑

j=1

πjx
1
j +

m∑

i=1

(µi + πn − π0)x
1
n+i =

n−1∑

j=1

πjx
2
j +

∑

i∈S̄
(µi + πn − π0)

≤ µ(S) +
∑

i∈S̄
µi + |S̄|(πn − π0) = µ(S) +

m∑

i=1

µi + |S̄|(πn − π0)−
∑

i∈S
µi

≤
m∑

i=1

µi − (m− 1)(π0 − πn),

the last inequality being by hypothesis.
Example. Let G be the left-hand graph of Figure 3.8, vn = v7. Then G′′′ is the

right-hand graph of Figure 3.8 and πx = x1 + x2 + x3 + 2x4 + x5 + x6 + x7 ≤ 3 is a
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Fig. 3.8. Example of Theorem 3.11.

facet of P (G), m = 3, µi = 3 for i = 1, 2, 3, π0 = 3, and π7 = 1. Applying Theorem
3.11, the facet of P (G′′′)

x1 + x2 + x3 + 2x4 + x5 + x6 + 2x7 + x8 + x9 + x10 ≤ 5

is obtained.
Remark 3. Subdivision of a star (Theorem 2.3 of [2]) follows from Theorem 3.11.

Moreover, it is not necessary to suppose (see [2]) that k and p are relatively prime.
Corollary 3.12. Under the conditions of Theorem 3.11, assume |V | = n =

m + 1; that is to say, the selected node vn is adjacent to the rest of the nodes of V
(and consequently πn = π0). Then

m∑

j=1

πjxj +

(
m∑

i=1

πi − π0

)
xn +

m∑

i=1

πixn+i ≤
m∑

i=1

πi(3.9)

is a facet of P (G′′′).
Proof. Here µi = πi for all i, πn = π0 and (3.9) follows straightforward.
Remark 4. Consider any graph G = (V,E) with |V | = n− 1 and associated facet∑n−1

j=1 πjxj ≤ π0. The graph and facet obtained by means of Proposition 1 of [17] (see
also [14]) can be also obtained by (i) adding the node n, connecting it to the n − 1

nodes of V , and lifting the facet in the usual way to obtain
∑n−1
j=1 πjxj + π0xn ≤ π0,

and (ii) applying Corollary 3.12.

4. Fans. In this section it is shown how the foregoing results can be employed
to construct a new class of facet defining graphs, which are called fans. The details
are given in the following.

A fan A = (VA, EA) consists of
1. a complete graph G = (V,E) with V = {v1, v2, . . . , vn},
2. an odd path disjoint to G, going from node O to node D, and containing n so-

called connecting nodes O = u1, u2, . . . , un = D—not necessarily different—arranged
in the given order, with odd distances when different,

3. an odd path between each node vi and its associated connecting node ui.
Example. Figure 4.1 shows a fan constructed from a complete 6-graph. Here

O = u1 = u2, D = u4 = u5 = u6, and the central black-filled node is u3. Note that
a fan can also be seen as a clique plus a collection of odd holes going through it in a
certain way.

Theorem 4.1. Let A = (VA, EA) be a fan. The inequality

n∑

i=1

xi +

|VA|∑

i=n+1

(δi − 1)xi ≤ |VA| − 1

2
,(4.1)
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O D

Fig. 4.1. Fan. Connecting nodes are black-filled. The path through connecting nodes is the
thick one.

where δi denotes the incidence degree of node vi, is a facet of P (A).
Proof. We call d the number of different connecting nodes in A, p1, . . . , pd the

different connecting nodes arranged in the same order as above, ni the number of
nodes between vi and ui, and mi the number of nodes in the path O − D between
pi and pi+1. A can be obtained from the complete graph G by using exclusively the
transformations given in Theorem 3.1, Remark 4, and Corollary 3.2 as shown in the
following iterative procedure.
Step 1. Consider the complete graph G with nodes {v1, . . . , vn}.
Step 2. Apply Remark 4 to G to obtain G1. Let vn+1, . . . , v2n be the nodes adjacent

to v1, . . . , vn respectively, and let v2n+1 be the special node.
Step 3.
(a) Set t = 1 and apply Theorem 3.1 to G1, taking V1 equal to the set of nodes

vk with k ∈ {n + 1, . . . , n + δp1 − 1}, V2 equal to the set of nodes vk with
k ∈ {n + δp1 , . . . , 2n}, and special node v2n+1, obtaining G2 with two new
nodes v2n+2 and v2n+3.

(b) For i = 2, . . . , d − 1: Set t = t + 1 and apply Theorem 3.1 to Gt, taking V1

equal to the set of nodes vk with k ∈ {n + δp1 +
∑i−1
j=2(δpj − 2), . . . , n +

δp1 +
∑i
j=2(δpj − 2) − 1} ∪ {v|Gt|−2}, V2 equal to the set of nodes vk with

k ∈ {n+ δp1 +
∑i
j=2(δpj −2), . . . , 2n}, and special node v|Gt|, obtaining Gt+1

with two new nodes v|Gt|+1 and v|Gt|+2.
Step 4. For i = 1, . . . , n: Set t = t+1 and apply Corollary 3.2, on the unique edge of

the form (vi, va) of Gt with va out of the clique, (ni − 1)/2 times, to obtain
Gt+1.

Step 5. Let (vq1 , . . . , vqd) be the path linking the connecting nodes of Gt+1. For
i = 1, . . . , d− 1: Set t = t + 1 and apply Corollary 3.2 to Gt, on the edge of
the subpath between vqi and vqi+1

which is incident to vqi , (mi − 1)/2 times.
Notice that the facet of P (G1)

2n∑

i=1

xi + (n− 1)x2n+1 =

n∑

i=1

xi +

2n+1∑

i=n+1

(δi − 1)xi ≤ n

is obtained in Step 2 from the facet
∑n
i=1 xi ≤ 1 of P (G), and the coefficients match

those in (4.1). Moreover, when Step 3 is applied for the ith time, the maxima M1

and M2 needed in Theorem 3.1 are

M1 = n + i− |V1|, M2 = n + i− |V2|,
the coefficient of the node to be disconnected from V1 ∪ V2 and the right-hand side of
the facet to be modified are (using the hypothesis of induction) πa = |V1| + |V2| − 1
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Fig. 4.2. Graph G1 with associated facet
∑12

i=1
xi + 5x13 ≤ 6.
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Fig. 4.3. Graph G2 with associated facet
∑13

i=1
xi + 2x14 + 4x15 ≤ 7.

and πb = n + i − 1, respectively. Then the new coefficient of the disconnected node
is M1 + M2 + πa − 2πb = 1 and its new incidence degree is 2, the coefficient of
the new node associated with V1 is M2 + πa − πb = |V1| and its incidence degree is
|V1| + 1, the coefficient of the new node associated with V2 is M1 + πa − πb = |V2|
and its incidence degree is |V2| + 1, and the new right-hand side of the inequality is
M1 + M2 + πa − πb = n + i. That is to say, each time Step 3 is applied, two new
nodes are added to the graph and the new facet still matches (4.1). In Steps 4 and
5, the optimum value of the auxiliary problem needed in Corollary 3.2 is always the
right-hand side of the current facet plus one. Then two new nodes with coefficients 1
and incidence degree two are added to the graph, and the right-hand side is increased
by one. Thus when |VA| − 2n− 1 new nodes have been added to G1, the right-hand
side becomes

n +
|VA| − 2n− 1

2
=
|VA| − 1

2

and the proof is complete.
Example. Consider again the graph of Figure 4.1. Here d = 3, m1 = 1, m2 = 3,

n1 = 1, n2 = 1, n3 = 3, n4 = 1, n5 = 3, n6 = 3. The initial facet, associated
with the complete 6-graph, is

∑6
i=1 xi ≤ 1. Then G1 is the graph given in Figure

4.2. In Step 3, for i = 1, we have V1 = {v7, v8} and V2 = {v9, v10, v11, v12} and then
M1 = n + i − |V1| = 6 + 1 − 2 = 5, M2 = n + i − |V2| = 6 + 1 − 4 = 3, π13 = 5, and
π0 = 6. Therefore

12∑

i=1

xi + x13 + 2x14 + 4x15 ≤ 7

is a facet associated with the new graph G2 given in Figure 4.3. For i = 2, we have
V1 = {v9, v13} and V2 = {v10, v11, v12} and then M1 = n + i − |V1| = 6 + 2 − 2 = 6,
M2 = n + i− |V2| = 6 + 2− 3 = 5, π15 = 4, and π0 = 7. Therefore
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∑13

i=1
xi + 2x14 + x15 + 2x16 + 3x17 ≤ 8.
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Fig. 4.5. Graph G11 with associated facet
∑13

i=1
xi + 2x14 + x15 + 2x16 + 3x17 +

∑25

i=18
xi ≤ 12.

13∑

i=1

xi + 2x14 + x15 + 2x16 + 3x17 ≤ 8

is a facet associated with the new graph G3 given in Figure 4.4. By using Step 4
one time for edges (v3, v9), (v5, v11), and (v6, v12), and then Step 5 one time for edge
(v16, v15), the fan A of the example is obtained (see Figure 4.5), and the associated
facet of P (A) is

13∑

i=1

xi + 2x14 + x15 + 2x16 + 3x17 +

25∑

i=18

xi ≤ 12.

If a new node is added to the clique of a fan A to obtain a new fan, the facet
can be lifted in the usual way and all the coefficients of the new nodes become zero.
To see it, add a node v′ and link it to all the nodes of the complete subgraph in A.
By Proposition 2.3, v′ is lifted with coefficient 0. Now add a node v′′ linked only
to a connecting node of A; since there must exist a packing not containing v′′ and
satisfying the inequality of the facet exactly, v′′ is also lifted with coefficient 0. The
rest of the new nodes are on the path which links v′ and v′′, and are also lifted with
coefficient 0 since they are not linked to any node of A. Consequently, the following
result can be established.

Corollary 4.2. Let A = (VA, EA) be a fan, and let N be the set of nodes of its
associated clique. The inequalities

∑

i∈H
xi +

∑

i∈VH

(δi − 1)xi ≤ |VH | − 1

2

are facets of P (A) for all H ⊂ N , |H| ≥ 2, where (VH , EH) is the unique subgraph of
A containing the nodes of H which is a fan.



148 L. CÁNOVAS, M. LANDETE, AND A. MARÍN

Example. Consider again the fan of Figure 4.5. By enumerating all the subsets of
{v1, . . . , v6} of cardinality at least 2, 56 facets of P (A) are obtained. Some of them,
corresponding to the subsets of N {v1, v2, v3, v4, v6}, {v2, v3, v5}, {v4, v5, v6}, {v1, v2},
and {v1, v6}, respectively, are given in the following:

4∑

i=1

xi +

10∑

i=6

xi + x12 + x13 + 2x14 + x15 + 2x16 + 2x17

+x18 + x19 +

25∑

i=22

xi ≤ 10,

x2 + x3 + x5 + x8 + x9 + x11 +

15∑

i=13

xi + 2x16 +

21∑

i=17

xi + x24 + x25 ≤ 8,

x4 + x5 + x6 + x10 + x11 + x12 + 2x17 + x20 + x21 + x22 + x23 ≤ 5,
x1 + x2 + x7 + x8 + x14 ≤ 2,

x1 + x6 + x7 + x12 + x13 + x14 + x15 + x16 + x17 + x22 + x23 + x24 + x25 ≤ 6.

Note that the last two facets match odd holes traversing a pair of nodes of the clique.
Furthermore, it is not difficult to prove that the unique 2-connected subgraphs

of a fan are either fans or fans plus additional nodes in the clique (only connected to
the other nodes in the clique). Then, by Proposition 2.4, the unique subgraphs of a
fan which are facet defining are fans.

5. Other results. Two different methods to obtain facets of graphs which are
combinations of other graphs are given in this section.

5.1. An alternative lifting procedure. In this subsection an alternative facet
lifting method is given. It can be used when two nodes are going to be added to the
graph and the sets of nodes not to be connected to each of the new nodes are disjoint
packings and one of them is maximal.

Definition 5.1. Given a graph G = (V,E) with V = {v1, . . . , vn} and two
packings E1, E2 ⊂ V such that E1 ∩ E2 = ∅, we denote by G∗(E1, E2) the graph
obtained by adding to G (i) two new nodes vn+1 and vn+2 and (ii) |V −E1|+ |V −E2|
edges connecting vn+1 to the nodes in V − E1 and vn+2 to the nodes in V − E2.

Theorem 5.2. Let E1, . . . , Em be the incidence vectors of all the maximal pack-
ings of the graph G = (V,E) with V = {v1, . . . vn} and assume they are independent.
Let πx ≤ 1 be a facet of P (G) associated with E1, . . . , Em along with n−m nonmaxi-
mal packings Em+1, . . . , En. Let X be the square matrix whose rows are the incidence
vectors of the packings Ei, i = 1, . . . , n, let M = X−1 = (mij) be the inverse of X,
and let B ⊂ V be a packing of G such that for some i, 1 ≤ i ≤ m, Ei ∩ B = ∅ holds
and

πB ≤ min

{
1 +mBi,min

{
(1 +mBi)

π	
m	i

: m	i > 0

}}
,

where πB =
∑
j∈B πj and mBi =

∑
j∈Bmji. Then the inequality

n∑

j=1

(
πj −mji

πB
1 +mBi

)
xj +

πB
1 +mBi

xn+1 +

(
1− πB

1 +mBi

)
xn+2 ≤ 1(5.1)

is a facet of P (G∗(Ei, B)).
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Proof. For clarity of exposition, suppose that the packings {E1, . . . , En} are re-
ordered in such a way that En is a maximal packing such that En ∩B = ∅, i.e., such
that i = n. Then let B ⊂ V , En ∩B = ∅, be a packing of G.

Part 1. The matrix X ′. Let (b1, . . . , bn) be the incidence vector of packing B in
the graph G, and let X ′ be the (n + 2)× (n + 2) matrix





0 0

X
...

...
0 0
1 0

b1 . . . bn 0 1
0 . . . 0 1 1





.

It should be clear that the rows of X ′ are incidence vectors of vertices of P (G∗(En, B)).
Parts 2 and 3. Regularity of X ′ and solution of X ′π′ = 1. The system X ′π′ = 1

can be split into

X





π′1
...

π′n−1

π′n



+





0
...
0

π′n+1



 =





1
...
1
1



 ,

(b1, . . . , bn, 0, 1) ·




π′1
...

π′n+2



 = 1,

π′n+1 + π′n+2 = 1.

Given that π = M1n, it follows that





π′1
...

π′n−1

π′n



+M





0
...
0

π′n+1



 =





π1

...
πn−1

πn



 ,

∑

j∈B
π′j + π′n+2 = 1,

π′n+1 + π′n+2 = 1,

and finally

π′j = πj −mjn
πB

1 +mBn
, j = 1, . . . , n, π′n+1 =

πB
1 +mBn

, π′n+2 = 1− πB
1 +mBn

.

Part 4. Nonnegativity of X ′. Under the conditions given in the theorem, the
coefficients π′j are nonnegative.

Part 5. Validity of (5.1). Consider the graph G1 = (V 1, E1) obtained when
the node vn+1 and its incident edges are added to G, i.e., G1 = (V ∪ {vn+1}, E ∪
{(vj , vn+1) : vj ∈ V − En}). In particular, vn+1 will be connected to all the nodes
of packing B. Hence, the n+ 1 first coefficients of each row (X ′)i, which represented
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Fig. 5.1. Graph for the example of Theorem 5.2.

a maximal packing in G, define an incidence vector of a maximal packing of G1.
Moreover, these are all the maximal packings of G1.

The graph G∗(En, B) is obtained from G1 by adding the node vn+2 to V 1 and the
edges connecting vn+2 with all the nodes in V 1 − (B ∪ {vn+1}) to E1. In particular,
vn+2 will be connected to the nodes of packing En. Consequently, the n first rows of
X ′ become incidence vectors of maximal packings of G∗, except the incidence vector
of B, if it was one of them. In any case, rows (X ′)n+1 and (X ′)n+2 are the incidence
vectors of the two unique new maximal packings of G∗. Therefore, given that any
packing of G∗ must be included in at least one of the n + 2 maximal packings, (5.1)
is a valid inequality.

Example. Consider the graph of Figure 5.1. The subgraph G induced by nodes
{v1, . . . , v5} is a cycle of length 5 and therefore it has five maximal and independent
packings {v1, v3}, {v1, v4}, {v2, v4}, {v2, v5}, and {v3, v5} determining the facet πx ≤ 1
with π = 1

2 (1, 1, 1, 1, 1). The node v6 is connected to all the nodes of the cycle except
those in the last packing. The node v7 is connected to all the nodes of the cycle except
v4 and is not connected to v6, and so the graph of Figure 5.1 matches G∗(E5, B) with
E5 = {v3, v5} and B = {v4}. According to the established order of the packings, the
inverse of X is

M =
1

2





1 1 −1 1 −1
1 −1 1 1 −1
1 −1 1 −1 1
−1 1 1 −1 1
−1 1 −1 1 1




.

Then it is obtained that πB = 1
2 , mB5 = m45 = 1

2 , and (πj− 1
3mj5)

5
j=1 = 1

3 (2, 2, 1, 1, 1).
Since all the coefficients are nonnegative, the inequality

2x1 + 2x2 + x3 + x4 + x5 + x6 + 2x7 ≤ 3

is a facet of the graph of Figure 5.1. Note that the usual lifting of the original facet
gives a different facet:

x1 + x2 + x3 + x4 + x5 + x7 ≤ 2.

Corollary 5.3. Let E1, . . . , Em be the incidence vectors of all the maximal
packings of the graph G = (V,E) with V = {v1, . . . vn} and assume they are indepen-
dent. Let πx ≤ 1 be a facet of P (G) associated with E1, . . . , Em along with n − m
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nonmaximal packings Em+1, . . . , En. Let X be the square matrix whose rows are the
incidence vectors of packings Ei, i = 1, . . . , n, and let M = X−1 = (mij) be the
inverse of X. Assume Ei and Ek are two maximal packings such that Ei ∩ Ek = ∅
and also that for all j = 1, . . . , n,

∑
	 	=imj	 ≥ 0 holds. Then the inequality

∑

j∈V−Ei

(πj −mji)xj ≤ 1(5.2)

is a facet of the subgraph of G induced by V − Ei.
Proof. The assumptions of the corollary are those of Theorem 5.2 when B = Ek.

Reordering the packings in such a way that En = Ei, and given that B is, in this
case, a maximal packing, it holds that

πB =
∑

j∈B
πj = 1,

mBn =
∑

j∈B
mjn = 0,

and then the coefficients of xn+1 and xn+2 in the inequality (5.1) are 1 and 0, respec-
tively. Since En ∪ {vn+1} is a packing of G∗(En, B) and the coefficient of xn+1 is 1,
the coefficients of xj for all j ∈ En must be equal to zero. Furthermore,

0 ≤ πj −mjn
πB

1 +mBn
=

n∑

	=1

mj	 −mjn =

n−1∑

	=1

mj	,

which is the assumption of the corollary, and this leads to the facet of P (G∗(En, B))
∑

j∈V−En

(πj −mjn)xj + xn+1 ≤ 1.(5.3)

Consequently, (5.3) is also a facet of the graph induced by the nodes with positive
coefficients. Finally, vn+1 is connected to all the other nodes in this graph (the reason
for its coefficient to be 1). So, if this node is deleted only one packing satisfying (5.3)
exactly is eliminated. Then (5.2) is a facet of the remaining subgraph and the proof
is complete.

Example. Consider the graph (a) of Figure 5.2, with associated facet
∑5
j=1 xj +

2x6 ≤ 2, whose maximal packings are {v1, v3}, {v1, v4}, {v2, v4}, {v2, v5}, {v3, v5}, and
{v6}. For each of these packings, another maximal and disjoint packing exists. The
inverse of the matrix whose rows are the incidence vectors of the maximal packings
in the indicated order is

M =
1

2





1 1 −1 1 −1 0
1 −1 1 1 −1 0
1 −1 1 −1 1 0
−1 1 1 −1 1 0
−1 1 −1 1 1 0

0 0 0 0 0 2




.

Taking Ei = {v6}, the difference between π = 1
2 (1, 1, 1, 1, 1, 2) and the last column

of M is 1
2 (1, 1, 1, 1, 1, 0), and it follows that

∑5
j=1 xj ≤ 2 is a facet of the cycle given

by the first five nodes. Taking Ei equal to each of the remaining packings, the facets
x4 + x5 + x6 ≤ 1, x2 + x3 + x6 ≤ 1, x1 + x5 + x6 ≤ 1, x3 + x4 + x6 ≤ 1, and
x1 + x2 + x6 ≤ 1, associated with the graphs (c)–(g), respectively, are obtained.



152 L. CÁNOVAS, M. LANDETE, AND A. MARÍN
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Fig. 5.2. Graphs of the example of Corollary 5.3.
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Fig. 5.3. Cooking a facet.

5.2. Cooked facets. Finally, a result is presented which relates those obtained
in section 3, in the following sense. The nodes of an initial graph G are going to be
connected to the degree one nodes of an additional graph K1,k in order to obtain a
new graph and an associated facet, the so-called cooked facet. This facet will depend
on the connections between the initial graph and K1,k, connections which are based
on the packings of a k-node graph to be freely chosen.

Let us consider the following construction (see Figure 5.3). Given a graph G =
(V,E) with V = {v1, . . . , vn} and a facet of P (G) πx ≤ 1 associated with the n
packings P1, . . . , Pn, a new graph Gx is obtained by

(i) choosing k pairwise disjoint packings, say P1,. . . ,Pk,
(ii) choosing a graph Ga = (V a, Ea) with |V a| = k and a facet µx ≤ 1 of P (Ga)

with associated packings E1, . . . , Ek,
(iii) adding k + 1 nodes {vn+1, . . . , vn+k, v0} to V ,
(iv) joining the nodes in Pi to the nodes in {vn+1, . . . , vn+k} − Ei, i = 1, . . . , k,

and
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(v) joining v0 to vn+1, . . . , vn+k.
Theorem 5.4. The inequality

(
k∑

	=1

µ	 − 1

)
n∑

j=1

πjxj +

k∑

j=1

µjxn+j + x0 ≤
k∑

	=1

µ	(5.4)

is a facet of P (Gx).
Proof.
Part 1. The matrix X ′. Let X ′ be the (n + k + 1)× (n + k + 1) matrix




X1 X2 0k×1

X3 0n×k 1n×1

01×n 11×k 0



 ,

where X3 and X2 are the matrices whose rows are the incidence vectors of the packings
of G and Ga determining π and µ, respectively, and X1 is the matrix whose rows are
the incident vectors of the disjoint packings P1, . . . , Pk.

Part 2. Regularity of X ′. Since each row of X1 is equal to some row of X3,
subtracting the adequate rows of X ′ results in the matrix with the same rank

X ′′ =




0k×n X2 −1k×1

X3 0n×k 1n×1

01×n 11×k 0



 .

Suppose, given a vector of multipliers t = (t1, . . . , tn+k+1), that X ′′t = 0. Then

X2(tn+1, . . . , tn+k)
T = (tn+k+1, . . . , tn+k+1),

X3(t1, . . . , tn)T = (−tn+k+1, . . . ,−tn+k+1),

and
∑n+k
j=n+1 tj = 0. Since π = X−1

3 1 and µ = X−1
2 1, it follows that

(tn+1, . . . , tn+k) = tn+k+1µ, (t1, . . . , tn) = −tn+k+1π.

Now
∑n+k
j=n+1 tj = tn+k+1

∑k
j=1 µj = 0, and thus tn+k+1 = 0, implying t = 0.

Part 3. Solution of X ′π′ = 1. The unique solution of the system is given by the
coefficients of (5.4) divided by its right-hand side.

Part 4. Nonnegativity of π′. It is clear that the coefficients in (5.4) cannot be
negative.

Part 5. Validity of (5.4). All the packings of Gx will be considered. Packings
including v0 are those of the form P ∪ {v0}, where P is a packing of G. For these,
(5.4) becomes

(
k∑

	=1

µ	 − 1

)
n∑

j=1

πjxj + 1 ≤
k∑

	=1

µ	 − 1 + 1.

Now packings not including nodes of V are subsets of {vn+1, . . . , vn+k}. Then (5.4)
becomes

k∑

j=1

µjxn+j ≤
k∑

	=1

µ	.
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Fig. 5.4. Graph for the example of Theorem 5.4.

The rest of the packings contain nodes in V and, possibly, nodes in {vn+1, . . ., vn+k}.
If a node of Pj , j = 1, . . . , k, belongs to the packing, the nodes of {vn+1, . . . , vn+k}
out of Ej cannot belong to the packing, and then, since Ej is itself a packing of Ga

determining the facet µx ≤ 1,

(
k∑

	=1

µ	 − 1

)
n∑

j=1

πjxj +

k∑

j=1

µjxn+j ≤
k∑

	=1

µ	 − 1 + 1.

Therefore the inequality holds for all the packings of Gx.
Example. Consider the graph Gx of Figure 5.4. The subgraph G induced by the

set of nodes {v1, . . . , v8}, the facet of P (G)
∑6
j=1 xj + 2x7 + 2x8 ≤ 2, and the five

disjoint packings P1 = {v8}, P2 = {v7}, P3 = {v1, v6}, P4 = {v2, v4}, P5 = {v3, v5}
have been chosen. (Notice that Pi, i = 1, . . . , 5, are independent and satisfy the

inequality exactly.) Moreover, a cycle Ga of length 5, the facet of P (Ga)
∑5
j=1 xj ≤ 2,

and the associated maximal packings E1 = {w1, w3}, E2 = {w1, w4}, E3 = {w2, w4},
E4 = {w3, w5}, E5 = {w2, w5} have been employed to obtain Gx. For instance, P3

consists of nodes v1 and v3; since E3 contains nodes w2 and w4, nodes v1 and v3 in
Gx are connected to all the nodes v9, . . . , v13 except v10 and v12. Theorem 5.4 gives
the (cooked) facet of P (Gx)

6∑

j=1

3xj + 6x7 + 6x8 +

13∑

j=9

2xj + 4x14 ≤ 10.
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Abstract. This paper establishes a connection between the theory of convex geometries, the
principle of inclusion-exclusion, and the topological concept of an abstract tube. In particular, it
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1. Introduction. Undoubtedly, one of the most important tools in combina-
torial probability theory and reliability theory is the principle of inclusion-exclusion
and the associated Bonferroni inequalities; see Galambos and Simonelli [10] for a
detailed account. For any finite family of sets {Av}v∈V the classical principle of
inclusion-exclusion states that

χ

(
⋃

v∈V
Av

)
=

∑

J⊆V
J �=∅

(−1)|J|−1 χ




⋂

j∈J
Aj



(1.1)

and the classical Bonferroni inequalities are

χ

(
⋃

v∈V
Av

)
≥

∑

J⊆V,J �=∅
|J|≤r

(−1)|J|−1 χ




⋂

j∈J
Aj



 (r even),(1.2)

χ

(
⋃

v∈V
Av

)
≤

∑

J⊆V,J �=∅
|J|≤r

(−1)|J|−1 χ




⋂

j∈J
Aj



 (r odd),(1.3)

where χ(A) is used to denote the indicator function of A; that is, χ(A)(ω) = 1 if
ω ∈ A, and χ(A)(ω) = 0 if ω /∈ A. There is no real restriction in using indicator
functions rather than measures, since (1.1)–(1.3) can be integrated with respect to
any measure (e.g., a probability measure) on the algebra generated by {Av}v∈V .

Since each sum on the right-hand sides of (1.1)–(1.3) ranges over a large number
of terms, it is natural to ask whether fewer terms would give the same or an even
better result. Partial answers to this question have been given by several authors,
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e.g., McKee [15], Naiman and Wynn [16, 17, 18], Narushima [19, 20], and the present
author [3, 4, 5]. The problem naturally arises when assessing the reliability of a
coherent system [11, 12, 22, 23] or when computing the volume of a union of spherical
balls or other geometric objects in Euclidean space [8, 16, 17, 18].

This paper unifies some of the known results in the area by establishing a con-
nection with the theory of convex geometries, which was initiated by Edelman and
Jamison [6]. Section 2 reviews the concept of a convex geometry and provides some
examples that will be used in later sections. In section 3 we review the topological
concept of an abstract tube due to Naiman and Wynn [17] and state our main result,
which under certain conditions provides an improved inclusion-exclusion identity and
a series of improved Bonferroni inequalities for any finite collection of sets and any
convex geometry on the index set of this collection. Then, in section 4 we give an
elementary proof of the inclusion-exclusion identity corresponding to our main result
in section 3. Sections 5 and 6 provide applications to system reliability analysis, reli-
ability analysis of consecutive k-out-of-n systems, and reliability covering problems.

2. Convex geometries. For any set V , we use P(V ) to denote the set of subsets
of V and P∗(V ) to denote the set of nonempty subsets of V . A closure operator on
V is a mapping c from P(V ) into itself such that for any subsets X and Y of V ,

(i) X ⊆ c(X) (extensionality),

(ii) X ⊆ Y ⇒ c(X) ⊆ c(Y ) (monotonicity),

(iii) c(c(X)) = c(X) (idempotence).

If c is a closure operator on V , then a subset X of V is referred to as c-closed if
c(X) = X and as c-free if all subsets of X are c-closed. A c-basis of X is a minimal
subset B of X such that c(B) = X. If there are no ambiguities, we simply write
closed instead of c-closed, free instead of c-free, and basis instead of c-basis.

A convex geometry is a pair (V, c) consisting of a finite set V and a closure operator
c on V such that any closed set has a unique basis. For equivalent characterizations
of convex geometries, see Edelman and Jamison [6]. Some examples follow.

Throughout, we assume that all graphs (including trees) are finite, undirected,
simple, and loop-free. The empty graph is considered as connected.

Example 2.1 (see [6]). Let V be a finite set of points in R
d, and for any subset

X = {x1, . . . , xn} of V let conv(X) denote the convex hull of X, that is,

conv(X) :=

{
n∑

i=1

tixi

∣∣∣∣∣ t1, . . . , tn ≥ 0 and

n∑

i=1

ti = 1

}
.

Then, by c(X) := conv(X)∩V a closure operator on V is defined. By the Minkowski–
Krein–Milman theorem, any c-closed subset X of V has a unique c-basis, consisting
of the vertices of the convex polytope conv(X). Thus, (V, c) is a convex geometry.

Example 2.2 (see [6]). For any tree G = (V,E) and any subset X of V define

c(X) :=
⋃

x,y∈X
{z ∈ V | z is on the unique path between x and y} .

Then, a subset X of V is c-closed if and only if the vertex-induced subgraph G[X]
is a subtree of G, and c-free if and only if X = {v, w} for some edge {v, w} ∈ E
or X = {v} for some vertex v ∈ V or X = ∅. Since the leaves of G[X] constitute
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a unique c-basis of any c-closed subset X of V , we conclude that (V, c) is a convex
geometry.

Example 2.3 (see [6]). Let G = (V,E) be a connected block graph (i.e., a
graph where each maximal 2-connected subgraph is complete), and for any subset X
of V let c(X) be the smallest (with respect to inclusion) superset of X that induces
a connected subgraph of G. Then, a subset X of V is c-closed if and only if G[X] is
connected, and c-free if and only if X is a clique of G, that is, if G[X] is complete.
Since the vertices of G[X] whose neighborhood induces a clique of G[X] constitute
a unique c-basis of any c-closed subset X of V , it follows that (V, c) is a convex
geometry.

Example 2.4 (see [6]). Let V be a finite upper (resp., lower) semilattice, and for
any subset X of V let c(X) be the upper (resp., lower) subsemilattice of V which is
generated by X (with respect to the join, resp., meet operation). Then, the c-closed
subsets of V are the upper (resp., lower) subsemilattices of V , while the c-free subsets
of V are the chains of V . Since any c-closed subset X of V has a unique c-basis,
namely the set of its join-irreducibles (resp., meet-irreducibles), we are again faced
with a convex geometry (V, c).

For any closure operator on a finite set, the following proposition, which will be
used in the next two sections, characterizes the free sets by means of their bases.

Proposition 2.5. Let V be a finite set, and let c be a closure operator on V .
Then, any subset J of V is free if and only if it is a basis of itself.

Proof. Trivially, if J is free, then J is a basis of itself. Subsequently, the opposite
direction is proved by contraposition. Assume that J is not free; that is, K ⊂ J
for some nonclosed set K. If J is not closed, then it is not a basis of itself, and
we are done. Thus, assume that J is closed. For each k ∈ c(K) \ K we find that
k ∈ c(K) = c(K \ {k}) ⊆ c(J) = J and hence J = c(J \ {k} ∪ {k}) ⊆ c(c(J \ {k}) ∪
{k}) = c(c(J \ {k})) = c(J \ {k}) ⊆ c(J) = J . Therefore, k ∈ J and c(J \ {k}) = J ,
whence J is not a basis of itself.

3. Improved Bonferroni inequalities. The results of this section require some
basic knowledge of combinatorial topology. For details, the reader is referred to
Rotman [21].

An abstract simplicial complex S is a set of nonempty subsets of some finite set
V such that I ∈ S and ∅ �= J ⊂ I imply J ∈ S. The elements of S are the faces or
simplices of S, whereas the elements of Vert(S) :=

⋃
I∈S I are the vertices of S. The

dimension of a face I, dim I, is one less than its cardinality. The dimension of S, dim S,
is the maximum dimension of a face in S. A geometric realization of S is any topological
space homeomorphic to

⋃
I∈S conv

({eπi | i ∈ I}
)
, where π : Vert(S) → {1, . . . , n} is

an injective mapping for some given n and {e1, . . . , en} is the standard basis of R
n.

S is called contractible if it has a contractible geometric realization.
Example 3.1. Figure 1 shows a realization of the abstract simplicial complex

S = {{1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3},
{3, 4}, {4, 5}, {4, 6}, {5, 6}} .

Obviously, this complex is not contractible because of the unshaded hole on the right-
hand side. However, if we fill in the hole (that is, if we attach the triangle {4, 5, 6} to
the complex), then a contractible abstract simplicial complex would result.

Following Naiman and Wynn [17], an abstract tube is a pair (A, S) consisting of a
finite collection of sets A = {Av}v∈V and an abstract simplicial complex S ⊆ P∗(V )
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1

2

3 4

5

6

Fig. 1. A geometric realization of an abstract simplicial complex.

such that for any ω ∈ ⋃v∈V Av the abstract simplicial complex

S(ω) :=

{
I ∈ S

∣∣∣∣∣ω ∈
⋂

i∈I
Ai

}

is contractible. Given two abstract tubes (A1, S1) and (A2, S2), we say that (A1, S1)
is a subtube of (A2, S2) if A1 = A2 and S1 ⊆ S2.

In the following, we restate the main results of abstract tube theory due to Naiman
and Wynn [17] without proof.

Proposition 3.2 (see [17]). Let ({Av}v∈V , S) be an abstract tube. Then, for r ∈ N,

χ

(
⋃

v∈V
Av

)
≥
∑

I∈S
|I|≤r

(−1)|I|−1 χ

(
⋂

i∈I
Ai

)
(r even),

χ

(
⋃

v∈V
Av

)
≤
∑

I∈S
|I|≤r

(−1)|I|−1 χ

(
⋂

i∈I
Ai

)
(r odd).

Proposition 3.3 (see [17]). Let ({Av}v∈V , S) and ({Av}v∈V , S′) be abstract
tubes, where ({Av}v∈V , S′) is a subtube of ({Av}v∈V , S). Then, for any r ∈ N,

∑

I∈S′
|I|≤r

(−1)|I|−1 χ

(
⋂

i∈I
Ai

)
≥
∑

I∈S
|I|≤r

(−1)|I|−1 χ

(
⋂

i∈I
Ai

)
(r even),

∑

I∈S′
|I|≤r

(−1)|I|−1 χ

(
⋂

i∈I
Ai

)
≤
∑

I∈S
|I|≤r

(−1)|I|−1 χ

(
⋂

i∈I
Ai

)
(r odd).

Remarks. Since ({Av}v∈V ,P∗(V )) is an abstract tube for any finite collection of
sets {Av}v∈V , the classical Bonferroni inequalities are a particular case of Proposi-
tion 3.2. Moreover, since any tube ({Av}v∈V , S) is a subtube of ({Av}v∈V ,P∗(V )),
Proposition 3.3 especially states that the bounds provided by Proposition 3.2 are at
least as sharp as their classical counterparts, although less computational effort is
needed to compute them. We further remark that the inequalities in Proposition 3.2
become an identity if r ≥ dim S + 1. In particular, any abstract tube ({Av}v∈V , S)
gives rise to an improved inclusion-exclusion identity for the indicator function of⋃
v∈V Av which does not require intersections of more than dim S+ 1 sets; that is, the
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most complicated intersection is (dim S+1)-fold. Thus, in the terminology of Naiman
and Wynn [17], any abstract tube (A, S) gives rise to an inclusion-exclusion identity
of depth dim S + 1.

Due to Naiman and Wynn [17], the definition of an abstract tube can be weakened
by requiring contractibility of S(ω) for almost every ω with respect to some dominating
measure µ on the ambient space. In this case, the improved Bonferroni inequalities
of Propositions 3.2 and 3.3 (and the associated inclusion-exclusion identities) hold
almost everywhere with respect to µ, and the pair (A, S) is referred to as a weak
abstract tube. If µ is a probability measure, then the mapping ω �→ S(ω) may be
considered as a random abstract simplicial complex which is required to be almost
surely contractible.

We now state our main result. Recall from the above that any abstract tube gives
rise to an improved inclusion-exclusion identity and a series of improved Bonferroni
inequalities. In the following, we do not mention these identities and inequalities
explicitly, since they can easily be read from Proposition 3.2.

For any convex geometry (V, c), we use Free(V, c) to denote the set of all nonempty
c-free subsets of V . Obviously, Free(V, c) is an abstract simplicial complex.

Theorem 3.4. Let (V, c) be a convex geometry, and let {Av}v∈V be a finite family
of sets such that for any nonempty and nonclosed subset X of V ,

⋂

x∈X
Ax ⊆ Av for some v /∈ X.(3.1)

Then, ({Av}v∈V ,Free(V, c)) is an abstract tube.

The proof of Theorem 3.4 is based on the following observation of Björner and
Ziegler [2, Exercise 8.23c]. For a rigorous proof of this observation the reader is
referred to the more recent paper of Edelman and Reiner [7].

Proposition 3.5 (see [2]). Free(V, c) is contractible for any convex geometry
(V, c).

Proof of Theorem 3.4. Let ω ∈ ⋃v∈V Av, Vω := {v ∈ V |ω ∈ Av} and cω(I) :=
c(I) for any I ⊆ Vω. By the definition of Vω and the requirements of the theorem,
Vω is c-closed. Thus, (Vω, cω) is a convex geometry. Since, moreover, Free(V, c)(ω) =
Free(Vω, cω), the contractibility of Free(V, c)(ω) follows from Proposition 3.5.

Remarks. Note that by setting c(X) := X for any subset X of V , the abstract
tube of Theorem 3.4 specializes to the trivial tube ({Av}v∈V ,P∗(V )). In this case, the
associated Bonferroni inequalities coincide with the classical Bonferroni inequalities.

We further remark that the depth of the abstract tube of Theorem 3.4 is equal
to h(c) := max{|J | : J c-free}. As shown by Jamison-Waldner [14], h(c) is the Helly
number of the family of all c-closed subsets of V , that is, the smallest integer h such
that any family of c-closed subsets of V whose intersection is empty has a subfamily
of h or less sets whose intersection is also empty.

Note that condition (3.1) can be replaced by the more general condition

⋂

x∈X
Ax ⊆

⋃

v/∈X
Av .

However, in all known applications the stronger condition (3.1) applies.

In view of the remarks following Proposition 3.3, it is equally easy to prove that
({Av}v∈V ,Free(V, c)) is a weak abstract tube with respect to any probability measure
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µ on the algebra generated by {Av}v∈V such that

µ

(
⋂

x∈X
Ax

)
> 0 and µ

(
⋃

v/∈X
Av

∣∣∣∣∣
⋂

x∈X
Ax

)
= 1

for any nonempty and nonclosed subset X of V .
We further remark that the abstract tube ({Av}v∈V ,Free(V, c′)) is a subtube of

({Av}v∈V ,Free(V, c)) if both c and c′ satisfy the requirements of Theorem 3.4 and
c′ ≤ c, where the partial ordering relation ≤ is defined by

c′ ≤ c :⇔ c(I) ⊆ c′(I) for any subset I of V

or, equivalently,

c′ ≤ c :⇔ all c′-closed subsets of V are c-closed.

By this and Proposition 3.3, it follows that the improved Bonferroni inequalities
associated with c′ are at least as sharp as those associated with c if c′ ≤ c. In
particular, since the closure operator I �→ I on V is largest with respect to ≤, the
new Bonferroni inequalities are at least as sharp as their classical counterparts.

From Theorem 3.4 we now deduce some particular results, which for the first time
appear in a common context. As a first consequence of Theorem 3.4 we deduce the
following.

Corollary 3.6 (see [4]). Let {Av}v∈V be a finite family of sets, where V is
endowed with a linear ordering relation, and let X ⊆ P∗(V ) such that for any X ∈ X,

⋂

x∈X
Ax ⊆ Av for some v > maxX.

Then,
({Av}v∈V , {I ∈ P∗(V ) | I �⊇ X for all X ∈ X}) is an abstract tube.

Proof. We apply Theorem 3.4. By the requirements of the corollary there is a
family {vX}X∈X ⊆ V such that for any X ∈ X,

⋂
x∈X Ax ⊆ AvX for some vX >

maxX. Now, for any subset I of V define c(I) := I ∪ {vX |X ∈ X, X ⊆ I} as well as

c∗(I) := c(I) ∪ c(c(I)) ∪ c(c(c(I))) ∪ c(c(c(c(I)))) ∪ . . . .

Then, c∗ is a closure operator on V , where any c∗-closed subset I of V has a unique
c∗-basis, namely I \ {vX |X ∈ X, X ⊆ I}. Thus, we find that (V, c∗) is a convex
geometry, where a subset I of V is c∗-free if and only if I �⊇ X for any X ∈ X.

Remarks. Notice that Corollary 3.6 can be dualized by replacing v > maxX with
v < minX and that it yields the trivial abstract tube ({Av}v∈V ,P∗(V )) if X = ∅.

As already noted in [4], the identity associated with Corollary 3.6 generalizes
Whitney’s broken circuit theorem [24] on the chromatic polynomial of a graph.

From Corollary 3.6 we now deduce an abstract tube generalization of Narushima’s
inclusion-exclusion identity [20]. For any partially ordered set V we use C(V ) to denote
the order complex of V , which consists of all nonempty chains of V .

Corollary 3.7 (see [4]). Let {Av}v∈V be a finite family of sets, where V is
endowed with a partial ordering relation such that for any x, y ∈ V , Ax∩Ay ⊆ Az for
some upper bound z of x and y. Then, ({Av}v∈V ,C(V )) is an abstract tube.

Proof. Corollary 3.7 follows from Corollary 3.6 by defining X as the set of all
unordered pairs of incomparable elements of V and then considering an arbitrary
linear extension of the partial ordering relation on V .
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Remarks. The requirements of Corollary 3.7 are weaker than the requirements by
Narushima [20]. Namely, Narushima [20] requires that for any x, y ∈ V , Ax∩Ay ⊆ Az
for some minimal upper bound z of x and y. In Corollary 3.7, however, the minimality
of z is not required. Evidently, the requirements of Corollary 3.7 are satisfied if V is
a finite upper semilattice and Ax ∩Ay ⊆ Ax∨y for any x, y ∈ V . This particular case
can also be deduced by applying Theorem 3.4 in connection with Example 2.4.

Corollary 3.7 specializes to the classical inclusion-exclusion identity if the partial
ordering relation on V is linear or, in other words, if V is a chain. In the extreme case
where V has a maximum 1̂ and any distinct x, y < 1̂ are incomparable and satisfy
Ax ∩Ay ⊆ A1̂, Corollary 3.7 requires evaluation of only 2 |V | − 1 terms, whereas the
traditional inclusion-exclusion principle would require evaluation of 2|V | − 1 terms.

For our next corollary, we must recall some terminology from graph theory.

Let G be a graph. By definition, a chord of a path P of G is an edge of G joining
two vertices that are not adjacent in P and similarly for cycles. A graph G is called
a chordal graph if any cycle of length greater than three has a chord. A clique of G
is a subset X of the vertex-set of G such that the vertex-induced subgraph G[X] is
complete. The clique complex of G consists of all nonempty cliques of G.

Corollary 3.8. Let {Av}v∈V be a finite family of sets, and let G = (V,E) be a
connected chordal graph such that Ax ∩ Ay ⊆ Az for any x, y ∈ V and any z on any
chordless path between x and y in G. Then, {Av}v∈V and the clique complex of G
constitute an abstract tube.

Proof. We apply Theorem 3.4. For any subset X of V define

c(X) :=
⋃

x,y∈X
{z ∈ V | z is on a chordless path between x and y} .

Then, (V, c) is a convex geometry, where a subset X of V is free if and only if X is a
clique of G [6, 9]. Now, Theorem 3.4 immediately gives the result.

Remarks. Note that Corollary 3.8 yields the trivial abstract tube ({Av}v∈V ,P∗(V ))
if G is complete, since all subsets of the vertex-set are cliques in this case.

From Corollary 3.8 we now deduce the tree sieve of Naiman and Wynn [16].

Corollary 3.9 (see [16]). Let {Av}v∈V be a finite family of sets, where the
indices form the vertices of a tree G = (V,E) such that Ax ∩ Ay ⊆ Az for any
x, y ∈ V and any z on the unique path between x and y in G. Then, {Av}v∈V and
the tree (considered as an abstract simplicial complex) constitute an abstract tube.

Proof. Since trees are chordal, Corollary 3.9 follows from Corollary 3.8.

We close this section with a further corollary.

Corollary 3.10. Let {Av}v∈V be a finite family of sets such that for any
nonempty subset X of V there is a unique minimal nonempty subset Y of X such that⋂
x∈X Ax =

⋂
y∈Y Ay. Then, {Av}v∈V and the abstract simplicial complex consisting

of all nonempty subsets I of V such that
⋂
i∈I Ai �=

⋂
j∈J Aj for all nonempty proper

subsets and supersets J of I constitute an abstract tube.

Proof. Again, we apply Theorem 3.4. It is straightforward to check that

c(X) :=

{
v ∈ V

∣∣∣∣∣
⋂

x∈X
Ax ⊆ Av

}
(X �= ∅) ; c(∅) := ∅

defines a closure operator on V . In order to check the unique basis property, let X
be a nonempty closed subset of V and Y the unique minimal nonempty subset of X
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such that
⋂
x∈X Ax =

⋂
y∈Y Ay, which exists by the requirements. Then,

X ⊆
{
v ∈ V

∣∣∣∣∣
⋂

x∈X
Ax ⊆ Av

}
=




v ∈ V
∣∣∣∣∣∣

⋂

y∈Y
Ay ⊆ Av




 = c(Y ) ⊆ X

and hence c(Y ) = X. Now, to show that Y is minimal with respect to c(Y ) = X,
suppose that c(Y ′) = X for some nonempty subset Y ′ of X. Then,

⋂
x∈X Ax =⋂

y∈Y ′ Ay and hence Y ′ ⊇ Y by the choice of Y . Thus, Y is the unique basis of X.
The description of the free sets immediately follows from Proposition 2.5.

4. Improved inclusion-exclusion identities. In this section, we give an ele-
mentary proof of the inclusion-exclusion identity associated with the abstract tube of
Theorem 3.4. More precisely, we prove the following theorem, which generalizes and
improves the classical inclusion-exclusion identity.

Theorem 4.1. Let (V, c) be a convex geometry, and let {Av}v∈V be a finite family
of sets such that for any nonempty and nonclosed subset X of V ,

⋂

x∈X
Ax ⊆ Av for some v /∈ X.

Then,

χ

(
⋃

v∈V
Av

)
=

∑

J∈P∗(V )
J free

(−1)|J|−1 χ




⋂

j∈J
Aj



 .

The proof of Theorem 4.1 is facilitated by several propositions. The first one is
due to Edelman and Jamison [6]. Although not mentioned by these authors, their
result strongly generalizes a useful result of Narushima [19] on semilattices.

Proposition 4.2 (see [6]). For any closed set J in a convex geometry (V, c),

∑

I⊆J
c(I)=J

(−1)|I| =

{
(−1)|J| if J is free,

0 otherwise.

Subsequently, we give our own proof of Proposition 4.2. It generalizes Narushima’s
proof [19] for the semilattice case (Example 2.4).

Proof. Let J0 be the unique basis of J . Then, c(I) = J if and only if J0 ⊆ I ⊆ J .
Hence,

∑

I⊆J
c(I)=J

(−1)|I| =

{
(−1)|J| if J0 = J,

0 otherwise.

From Proposition 2.5 it follows that J0 = J if and only if J is free.
From the following proposition we derive two corollaries which are not needed for

proving Theorem 4.1 but which are interesting in their own right.
Proposition 4.3. Let (V, c) be a convex geometry. Furthermore, let g be a

mapping from the power set of V into an abelian group such that g = g ◦ c. Then,
∑

I⊆V
(−1)|I| g(I) =

∑

J⊆V
J free

(−1)|J| g(J) .
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Proof. By the requirements, g(I) = g(c(I)) for any subset I of V . Therefore,

∑

I⊆V
(−1)|I| g(I) =

∑

I⊆V
(−1)|I| g(c(I)) =

∑

J⊆V
c(J)=J

∑

I⊆J
c(I)=J

(−1)|I| g(J) .

Now, by applying Proposition 4.2, the statement immediately follows.
Corollary 4.4. The number of free sets in a convex geometry (V, c) is equal to

∑

I⊆V
(−1)|c(I)\I| .

Proof. For any I ⊆ V define g(I) := (−1)|c(I)| and apply Proposition 4.3.
Corollary 4.5. Let (V, c) be a convex geometry. Then,

∑

I⊆V
(−1)|I| |c(I)| =

∑

J⊆V
J free

(−1)|J| |J | .(4.1)

Proof. For any I ⊆ V define g(I) := |c(I)| and apply Proposition 4.3.
Remark. For the convex geometry of Example 2.1, where c is derived from the

convex hull operator in R
d, Corollary 4.5 specializes to a result of Gordon [13]. A

recent result of Edelman and Reiner [7] states that either side of (4.1) agrees in
absolute value with the number of points in V which are in the interior of the convex
hull of V .

We continue with a further proposition.
Proposition 4.6. Let {Av}v∈V be a finite family of sets, and let c be a closure

operator on V such that for any nonempty and nonclosed subset X of V ,

⋂

x∈X
Ax ⊆ Av for some v /∈ X .(4.2)

Then, for any nonempty subset I of V ,

⋂

i∈I
Ai =

⋂

i∈c(I)
Ai .

Proof. Fix I ⊆ V , I �= ∅. If
⋂
i∈I Ai = ∅, then since c(I) ⊇ I,

⋂
i∈c(I)Ai = ∅,

and we are done. Otherwise choose ω ∈ ⋂i∈I Ai and show that ω ∈ ⋂i∈c(I)Ai. By

the choice of ω, I ⊆ Vω, where Vω := {v ∈ V |ω ∈ Av}. By the definition of Vω
and (4.2), Vω is closed and hence c(I) ⊆ Vω. Thus, ω ∈ ⋂i∈c(I)Ai and the proof is
complete.

We are now ready to prove Theorem 4.1.
Proof of Theorem 4.1. By the classical inclusion-exclusion principle we have

χ

(
⋃

v∈V
Av

)
=

∑

I∈P∗(V )

(−1)|I|−1g(I), where g(I) := χ

(
⋂

i∈I
Ai

)
.

By Proposition 4.6, g = g ◦ c. Thus, the result follows from Proposition 4.3.
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5. Application to system reliability analysis. In this section, we describe
some consequences of our results to system reliability analysis. Applications to net-
work reliability analysis can be found in [4].

A coherent binary system is a couple Σ = (E, φ) consisting of a finite set E and
a function φ from the power set of E into {0; 1} such that φ(∅) = 0, φ(E) = 1 and
φ(X) ≤ φ(Y ) for any X,Y ⊆ E with X ⊆ Y . E and φ are, respectively, called the
component set and the structure function of Σ.

At any instant of time, each component e of Σ assumes randomly and indepen-
dently one of two states, operating or failing , with probabilities pe and qe = 1 − pe,
respectively. Σ is said to be operating (resp., failing) if φ applied to the set of oper-
ating components, which is also referred to as the state of Σ, gives 1 (resp., 0). The
reliability of Σ is the probability that Σ is operating. Since this quantity is deter-
mined by Σ and the vector of operation probabilities p = (pe)e∈E , it is abbreviated
to RelΣ(p).

At this point let us consider a particular kind of coherent binary system. Let
k, n ∈ N, 1 ≤ k ≤ n. A consecutive k-out-of-n success (resp., failure) system is a
coherent binary system Σ = (E, φ), where E is a linearly ordered finite set of size n
and where for any subset X of E, φ(X) = 1 (resp., φ(E \ X) = 0) if and only if
X contains k consecutive elements of E. In other words, the system operates (resp.,
fails) whenever k or more consecutive components operate (resp., fail).

Consecutive k-out-of-n failure systems serve as a model for a particular type of
communication networks. Consider, for instance, the network in Figure 2, where
nodes 1–6 are assumed to fail randomly and independently with known probabilities
and all other nodes and edges are assumed to be perfectly reliable. It is immediately
clear that in this network a message can pass from s to t if and only if no three
consecutive nodes among 1–6 simultaneously fail. Thus, the network is appropriately
modeled as a consecutive 3-out-of-6 failure system. The reliability of this system is
simply the probability that a message can pass from s to t.

1 2 3 4 5 6s t

Fig. 2. A consecutive 3-out-of-6 failure system.

A key role in calculating the reliability of a general coherent binary system Σ is
played by the minpaths and mincuts of Σ: A minpath of Σ is a minimal subset P of E
such that φ(P ) = 1; that is, φ(P ) = 1 and φ(Q) = 0 for any proper subset Q of P . A
mincut of Σ is a minimal subset C of E such that φ(E \C) = 0; that is, φ(E \C) = 0
and φ(E \D) = 1 for any proper subset D of C.

Note that in the particular case of a consecutive k-out-of-n success (resp., failure)
system, X is a minpath (resp., mincut) if and only if X is consecutive and |X| = k.

In general, if F is a set of components of a coherent binary system Σ, then F is
said to operate (resp., fail) if all components in F operate (resp., fail). Thus, with F

denoting the set of minpaths (resp., mincuts) of Σ, we have

RelΣ(p) = Pr

(
⋃

F∈F

{F operates}
) (

resp., 1− RelΣ(p) = Pr

(
⋃

F∈F

{F fails}
))

,

(5.1)
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where Pr denotes the induced probability measure on the set of system states.
In connection with Proposition 3.2, the first part of the following theorem yields

improved inclusion-exclusion identities and Bonferroni inequalities for the right-hand
sides of (5.1) and thus for RelΣ(p). We do not mention the identities explicitly, since
they are an immediate consequence of the corresponding inequalities.

Theorem 5.1. Let Σ = (E, φ) be a coherent binary system, whose set of minpaths
(resp., mincuts) F is endowed with a closure operator c such that (F, c) is a convex
geometry and such that Y ⊆ ⋃X for any nonempty X ⊆ F and any Y ∈ c(X). Then,

({{F operates}}
F∈F

,Free(F, c)
) (

resp.,
({{F fails}}

F∈F
,Free(F, c)

))

is an abstract tube. In particular, in the case where F denotes the set of minpaths,

RelΣ(p) ≥
∑

I∈Free(F,c)
|I|≤r

(−1)|I|−1
∏

e∈⋃ I

pe (r even),

RelΣ(p) ≤
∑

I∈Free(F,c)
|I|≤r

(−1)|I|−1
∏

e∈⋃ I

pe (r odd),

and in the case where F denotes the set of mincuts,

1− RelΣ(p) ≥
∑

I∈Free(F,c)
|I|≤r

(−1)|I|−1
∏

e∈⋃ I

qe (r even),

1− RelΣ(p) ≤
∑

I∈Free(F,c)
|I|≤r

(−1)|I|−1
∏

e∈⋃ I

qe (r odd).

Proof. The first part follows from Theorem 3.4 with V := F andAF := {F operates}
(resp., AF := {F fails}) for any F ∈ F. The second part is an immediate consequence
of the first part and Proposition 3.2.

Remark. Note that the inequalities of Theorem 5.1 specialize to the usual Bon-
ferroni inequalities for system reliability if c(X) = X for any X ⊆ F. For the convex
geometry of Example 2.4, where F is a lower (resp., upper) semilattice, the require-
ments of Theorem 5.1 are equivalent to X ∧ Y ⊆ X ∪ Y (resp., X ∨ Y ⊆ X ∪ Y ) for
any X,Y ∈ F. Note in this case the free sets are the chains of F. We thus rediscover
Shier’s chain formula for the reliability of a coherent binary system [22, 23] as well as
the corresponding improved Bonferroni inequalities, which are established in [4].

As an illustration of how to obtain such a semilattice structure (and thereby a
closure operator), define for any k-subsets X and Y of some linearly ordered set E,
X ≤ Y :⇔ x ≤ y for all x ∈ X, y ∈ Y \ X. In this case, X ∧ Y consists of the k
smallest elements of X ∪ Y ; in particular, X ∧ Y ⊆ X ∪ Y as required.

The remainder of this section is devoted to consecutive k-out-of-n systems.
In [22, 23], Shier describes a O(n3) method based on the disjoint products tech-

nique for computing the reliability of a consecutive k-out-of-n system for fixed k. The
following theorem provides a O(n2) method under the requirement that k ≥ n/2. By
a suitable factoring, the expression in this theorem can be evaluated in O(n) steps.

Theorem 5.2. Let Σ be a consecutive k-out-of-n success system whose component
reliabilities are given by p = (p1, . . . , pn). If k ≥ n/2, then

RelΣ(p) =

n−k∑

i=1

(1− pi+k)

i+k−1∏

j=i

pj +

n∏

j=n−k+1

pj .
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Proof. For i = 1, . . . , n−k+1 let Ai be the event that components i, . . . , i+k−1
operate. Then, RelΣ(p) = Pr(A1 ∪ · · · ∪ An−k+1). Since k ≥ n/2, Ax ∩ Ay ⊆ Az for
x, y = 1, . . . , n− k + 1 and any z between x and y. Thus, by combining Theorem 4.1
with the convex geometry of Example 2.2 (or by applying Corollary 3.9) we obtain

RelΣ(p) =

n−k+1∑

i=1

Pr(Ai)−
n−k∑

i=1

Pr(Ai ∩Ai+1) =

n−k+1∑

i=1

i+k−1∏

j=i

pj −
n−k∑

i=1

i+k∏

j=i

pj

=

n−k∑

i=1

i+k−1∏

j=i

pj −
n−k∑

i=1

i+k∏

j=i

pj +

n∏

j=n−k+1

pj =

n−k∑

i=1

i+k−1∏

j=i

pj −
n−k∑

i=1

pi+k

i+k−1∏

j=i

pj +

n∏

j=n−k+1

pj ,

which immediately gives the result.
In the case of equal component reliabilities we even obtain a closed formula.
Corollary 5.3. Let Σ = (E, φ) be a consecutive k-out-of-n success system

whose component reliabilities are given by p = (p, . . . , p). If k ≥ n/2, then

RelΣ(p) = pk [(n− k)(1− p) + 1] .

Proof. Corollary 5.3 is an immediate consequence of Theorem 5.2.
Remark. Notice that the preceding results can easily be adapted to compute the

reliability of a consecutive k-out-of-n failure system. In this way, the reliability of the
consecutive 3-out-of-6 failure system in Figure 2 is easily seen to be

1− (1− q4)q1q2q3 − (1− q5)q2q3q4 − (1− q6)q3q4q5 − q4q5q6 ,
which equals 1− 4q3 + 3q4 if all failure probabilities are equal. The reader is invited
to obtain the same result using the classical inclusion-exclusion method.

6. Application to reliability covering problems. Reliability covering prob-
lems were introduced by Ball, Provan, and Shier [1] (see also [23]) in order to generalize
several types of reliability problems. They serve, e.g., as a model for mass transit sys-
tems with reliable stops and unreliable routes. The overall reliability of such a system
is the probability that each stop is served by an operating route. Further examples
include evaluating the reliability of flight schedules for aircraft [1, 23] and determining
the reliability of maintaining continuous surveillance of a critical point of a country’s
border [23].

Reliability covering problems can be adequately formulated using the terminology
of hypergraphs. A hypergraph is a couple H = (V,E), where V is a finite set and E

is a set of subsets of V . The elements of V and E are the vertices and edges of H,
respectively. Thus, in the case of a mass transit system, the vertices correspond to
the stops and the edges to the routes of the system. Throughout, we assume that
the vertices of the hypergraph are perfectly reliable, whereas the edges are subject
to random and independent failure. The edge operation probabilities are given by a
vector p = (pE)E∈E ∈ [0, 1]E. A covering of V is a subset X of E such that

⋃
X = V .

Thus, in case of a mass transit system, the coverings correspond to sets of routes such
that each stop is served by a route. The general objective is to compute Cov(H;p),
the probability that the vertex-set of H is covered by the operating edges of H. With
E(v) := {E ∈ E | v ∈ E} (v ∈ V ), this coverage probability can be expressed as

Cov(H;p) = 1 − Pr




⋃

v∈V

⋂

E∈E(v)

{E fails}


 .(6.1)
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The following theorem provides improved inclusion-exclusion identities and improved
Bonferroni inequalities for the right-hand side of (6.1) and thus for Cov(H;p). Again,
we do not mention the improved inclusion-exclusion identities explicitly, since they
are an immediate consequence of the corresponding improved inequalities.

Theorem 6.1. Let H = (V,E) be a hypergraph whose edges fail randomly and
independently and whose vertex-set V is endowed with a closure operator c such that
(V, c) is a convex geometry and such that the complement of each edge is c-closed.
Then,

({⋂
E∈E(v)

{E fails}
}

v∈V
,Free(V, c)

)

is an abstract tube. In particular, for any p = (pE)E∈E ∈ [0, 1]E and any r ∈ N,

Cov(H;p) ≤
∑

I⊆V,|I|≤r
I is c-free

(−1)|I|
∏

E∈E
E∩I �=∅

qE (r even),

Cov(H;p) ≥
∑

I⊆V,|I|≤r
I is c-free

(−1)|I|
∏

E∈E
E∩I �=∅

qE (r odd),

where qE = 1− pE for any E ∈ E.
Proof. We apply Theorem 3.4 with Av :=

⋂
E∈E(v){E fails} for any v ∈ V .

Evidently, the requirements of Theorem 3.4 are satisfied if
⋂
x∈X Ax ⊆ Av for any

nonempty subset X of V and any v ∈ c(X). A sufficient condition for
⋂
x∈X Ax ⊆ Av

is that all edges containing v have a nonempty intersection with X. In order to show
that this condition holds, assume that v ∈ E and E ∩X = ∅ for some edge E of the
hypergraph. Then X would be a subset of the complement E of E, and, since all
complements of edges are required to be c-closed, we would also have c(X) ⊆ E and
hence v ∈ E, contradicting v ∈ E. Now, the first part of Theorem 6.1 follows from
Theorem 3.4. The second part follows from the first part and Proposition 3.2.

Due to Ball, Provan, and Shier [1] and Shier [23], the reliability covering problem,
that is, the problem of computing Cov(H;p) for given H and p, is #P -hard, even
when restricted to the class of hypergraphs whose vertices are the vertices of an
undirected tree and whose edges are paths of cardinality 3 in the tree (viewing paths
as sets of vertices). A careful reading of the #P -hardness results in [1, 23] reveals
that the restricted problem remains #P -hard even if the tree is part of the input.
Considering complements of paths instead of paths or, more generally, complements
of subtrees instead of subtrees or paths, we obtain the following positive result.

Theorem 6.2. For hypergraphs whose vertices are the vertices of an undirected
tree and whose edges are complements of subtrees of the tree, the coverage probability
can be computed in polynomial time from the hypergraph and the tree.

Proof. Let G = (V, T ) be a tree and H = (V,E) be a hypergraph where each
edge of H is the complement of a subtree of G. By combining Theorem 6.1 with
Example 2.2 (or by applying Corollary 3.9) we are led to the improved inclusion-
exclusion identity

Cov(H;p) = 1 −
∑

v∈V

∏

E∈E(v)

qE +
∑

{v,w}∈T

∏

E∈E(v)∪E(w)

qE ,

whose evaluation requires O(|V | · |E|) time.
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An even more general result is the following. Recall that the clique number of a
graph G is the maximum cardinality of a clique in G.

Theorem 6.3. For hypergraphs whose vertices are those of a connected block
graph of bounded clique number and whose edges are complements of connected sub-
graphs of the connected block graph, the coverage probability can be computed in poly-
nomial time from the hypergraph and the connected block graph.

Proof. Let G be a connected block graph having clique number at most d, and let
H = (V,E) be a hypergraph where each edge of H is the complement of a connected
subgraph of G. By applying Theorem 6.1 in connection with the convex geometry of
Example 2.3 we obtain the improved inclusion-exclusion formula

Cov(H;p) =
∑

I is a clique
of G

(−1)|I|
∏

E∈E
E∩I �=∅

qE ,

whose evaluation requires O(|V |d · |E|) time, where d is a constant.

1

2

3 4 5

6

7

Fig. 3. A connected block graph.

Table 1
Bonferroni bounds for the coverage probability of the hypergraph in Example 6.4.

C l a s s i c a l b o u n d s Imp r o v e d b o u n d s
r fr(q) # sets f∗

r (q) # sets

1 1− q2 − q3 − 3q4 − 2q5 8 1− q2 − q3 − 3q4 − 2q5 8
2 1− q2 − q3 − 2q4 + 3q5 + 5q6 + 10q7 29 1− q2 − q3 − 2q4 + 3q5 + 3q6 + 3q7 20
3 1− q2 − q3 − 2q4 + 3q5 + q6 − 5q7 − 16q8 64 1− q2 − q3 − 2q4 + 3q5 + q6 − 3q8 28
4 1− q2 − q3 − 2q4 + 3q5 + q6 + 14q8 99 1− q2 − q3 − 2q4 + 3q5 + q6 − q8 30
5 1− q2 − q3 − 2q4 + 3q5 + q6 − 7q8 120
6 1− q2 − q3 − 2q4 + 3q5 + q6 127
7 1− q2 − q3 − 2q4 + 3q5 + q6 − q8 128
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Table 2
Numerical values of the bounds in Table 1.

q f3(q) f∗
3 (q) f∗

4 (q)
† f4(q) f∗

2 (q) f2(q)

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.1 0.98883 0.98883 0.98883 0.98883 0.98883 0.98884
0.2 0.94972 0.94982 0.94982 0.94986 0.94999 0.95021
0.3 0.87268 0.87462 0.87475 0.87574 0.87693 0.87992
0.4 0.74094 0.75765 0.75896 0.76879 0.77272 0.79238
0.5 0.50781 0.59766 0.60547 0.66406 0.66406 0.75000
0.6 0.03603 0.39435 0.42794 0.67988 0.62203 0.91130
0.7 -1.02548 0.13572 0.25101 1.11573 0.79102 1.60280

†exact coverage probability

0.2 0.4 0.6 0.8 1
q

0.2

0.4

0.6

0.8

1

f2

f2
*

f3

f3
*

Cov

Fig. 4. A plot of some of the bounds in Table 1.

Remarks. The requirement that the connected block graph is of bounded clique
number is essential, since otherwise we could take, e.g., the complete graph and thus
reduce the problem to its unconstrained counterpart, which is #P -hard. Anyway,
as in the following example, we can take full advantage of the improved Bonferroni
inequalities associated with Theorem 6.1 and the convex geometry of Example 2.3.

Example 6.4. Consider the hypergraph with vertices 1, 2, 3, 4, 5, 6, 7 and edges

{1, 2, 3, 4}, {4, 5, 6, 7}, {1, 6, 7}, {1, 3, 6}, {2, 3, 5, 7}, {2, 5, 6}, {2, 6, 7}, {1, 5, 7}.

Obviously, the edges of this hypergraph are complements of connected subgraphs of
the connected block graph displayed in Figure 3. Therefore, we can apply Theo-
rem 6.1 in connection with the convex geometry of Example 2.3 to obtain improved
Bonferroni bounds on the coverage probability Cov(H;p) of this hypergraph. Under
the assumption that the edges of the hypergraph fail randomly and independently
with equal probability q = 1− p, the results are shown in Table 1. Here, fr(q) (resp.,
f∗r (q)) denotes the rth classical (resp., improved) Bonferroni bound, where even and
odd values of r correspond to upper and lower bounds, respectively. As guaranteed by
Proposition 3.3, the improved Bonferroni bounds are much sharper than the classical
Bonferroni bounds, although much fewer sets are taken into account. Table 2 shows
some numerical values and Figure 4 shows a plot of some of the bounds in Table 1.
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THE EXISTENCE OF 2× 4 GRID-BLOCK DESIGNS AND THEIR
APPLICATIONS∗
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Abstract. Fu, Hwang, Jimbo, Mutoh, and Shiue [J. Statist. Plann. Inference, to appear]
introduced the concept of a grid-block design, which is defined as follows: For a v-set V , let A be a
collection of r×c arrays with elements in V . A pair (V,A) is called an r×c grid-block design if every
two distinct points i and j in V occur exactly once in the same row or in the same column. This
design has originated from the use of DNA library screening. They gave some general constructions
and proved the existence of 3 × 3 grid-block designs. Meanwhile, the existence of 2 × 3 grid-block
designs was shown by Carter [Designs on Cubic Multigraphs, Ph.D. thesis, McMaster University,
Hamilton, ON, Canada, 1989] by decomposing Kv into cubic graphs. In this paper, we show the
existence of 2× 4 grid-block designs.

Key words. graph decomposition, graph design, grid-block

AMS subject classifications. 05B05, 05C70

PII. S0895480101387364

1. Introduction. A graph G is a pair of sets (V,E), where V is a finite set, and
E is a set of unordered pairs of elements of V . The elements of V are called vertices
of G and the elements of E are called edges of G. If x and y are vertices of a graph
G, we say that x is adjacent to y if there is an edge between x and y. Kv is the
graph with v vertices such that every vertex is adjacent to every other vertex. For a
v-set V , let A be a collection of r × c arrays with elements in V . Each array in A is
called a grid-block. For a graph G = (V,E), a pair (V,A) is called an r × c grid-block
design with respect to G denoted by Dr×c(G) if every two distinct points i and j in
V such that {i, j} ∈ E occur exactly once in the same row or in the same column.
We used the terminology “grid-block design” to avoid the confusion with the “grid
design” defined by Lamken and Wilson [9]. Here we show an example of a D3×3(K9).
Example 1. The following two grid-blocks form a D3×3(K9).

1 2 3
4 5 6
7 8 9

1 6 8
9 2 4
5 7 3

A grid-block design was introduced by Fu et al. [7]. It is easy to show the following
necessary conditions for the existence of a Dr×c(Kv).
Lemma 1.1. Necessary conditions for the existence of a Dr×c(Kv) are
(i) (r + c− 2)|(v − 1) and
(ii) rc(r + c− 2)|v(v − 1).
Combinatorial designs were used as an efficient way of group testing in fields such

as medical science and pharmaceutical science (see Du and Hwang [6]). Recently, a
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combinatorial design has come to be applied to DNA library screening to discover the
required DNA sequences by testing every row and every column in a microtiter plate
at the same time.

In DNA library screening, a popular group testing method is a two-stage test. In
this method, every row and every column in a microtiter plate is tested at the same
time in the first stage, and each individual segment with positive response is tested
in the second stage. See Figure 1.1 for demonstration. To reduce the number of tests
and to improve the efficiency of experiments, several methods of screening have been
studied by many authors.

Berger, Mandell, and Subrahmanya [1] evaluated the efficiency for the two-stage
test from the point of view of information theory, while Fu et al. [7] introduced a
combinatorial method based on a grid-block design.

1st stage : group test

r times

tests in r+c times

c times

c

r

2nd stage : individual test

C

R

: positive response

Fig. 1.1. The demonstration of DNA library screening.

In this paper, we start with a recursive construction for a grid-block design. Then,
by utilizing this recursive construction together with those given by Fu et al. [7], we
will prove the existence of 2×4 grid-block designs which satisfy the necessary condition
v ≡ 1 (mod 32).

2. General constructions. In this section, we prepare a proposition and lem-
mas to use in the next section. First, we define a block design. For sets of positive
integers K and M , let V be a set of v points, let G be a partition of V such that each
G has m points for m ∈ M , and let B be a collection of k-subsets (blocks) of V for
k ∈ K. A triple (V,G,B) is called a group divisible design, denoted by GD[K,λ,M ; v],
if every two distinct points contained in different groups occur in exactly λ blocks and
if every two distinct points contained in the same group do not occur together in any
blocks. Especially, a GD[{k}, λ, {m}; v] is written by GD[k, λ,m; v] for simplicity of
notation.

Suppose that the set of st vertices are partitioned into s subsets of size t each.
Let Ks(t) be the complete multipartite graph such that (i, j) is an edge if i and j are
not in the same subset. A grid-block design Dr×c(Ks(t)) is called a group divisible
grid-block design. It is easy to see that the following lemma holds.
Lemma 2.1. Necessary conditions for a Dr×c(Ks(t)) to exist are
(i) (r + c− 2)|(s− 1)t and
(ii) rc(r + c− 2)|(s− 1)st2.
Fu et al. [7] proved the following construction.
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Table 3.1
Table of the existence of group divisible designs.

v K Group type u Exceptions Ref.
0, 1 (mod 4) {4, 5} 1u 0, 1 (mod 4) 12 [2]

12 4 34 − − [4]
12 (mod 12) 4 2u 1 (mod 3) − [4]
3 (mod 12) 4 3u 1 (mod 4) − [4]
6 (mod 12) 4 6u Anything 18 [4]
7 (mod 12) 4 711u 0 (mod 12) 19 [3]
10 (mod 12) 4 711u 3 (mod 12) − [3]
11 (mod 12) 4 512u 0 (mod 3) − [3]

Proposition 2.2 (Fu et al. [7]). A Dr×c(Kst+1) exists if a Dr×c(Kt+1) and a
Dr×c(Ks(t)) exist.

We give a recursive construction by utilizing a group divisible design, group di-
visible grid-block designs, and grid-block designs.

Lemma 2.3. A Dr×c(Kvt+1) exists if a GD[K, 1,M ; v] exists and if a Dr×c(Kk(t))
and a Dr×c(Kmt+1) exist for any k ∈ K and for any m ∈M .

Proof. For a v-set V , let a triple (V,G,B) be a GD[K, 1,M ; v], where B =
{B1, B2, . . . , Bb} is a collection of blocks and G = {G1, G2, . . . , Gn} is a family of
group sets. Let T = {0, 1, . . . , t−1} and V ∗ = (V ×T )∪{∞}. For each block Bi of size
k ∈ K, let (Bi×T,Hi, Ei) be the ingredient designDr×c(Kk(t)), where Ei is a collection
of grid-blocks and Hi is a family of group sets {{bi1} × T, {bi2} × T, . . . , {bik} × T}
for bij ∈ Bi. We define a collection of grid-blocks A1 = E1 ∪ E2 ∪ · · · ∪ Eb. Also,
for each group Gi of size m ∈ M , let ((Gi × T ) ∪ {∞},Fi) be the ingredient design
Dr×c(Kmt+1), where Fi is a collection of grid-blocks. We define another collection of
grid-blocks A2 = F1 ∪F2 ∪ · · · ∪ Fn and let A = A1 ∪A2. Then a pair (V ∗,A) is the
desired Dr×c(Kvt+1).

In fact, if two distinct elements x and y in V are not contained in the same group
set Gj , then x and y occur together exactly once in a Bi. Hence (x, α1) and (y, α2)
occur exactly once in the same row or in the same column of a grid-block in A1 and
do not occur in A2 for any α1, α2 ∈ T . Otherwise, two elements x and y in V are
contained in the same group set Gj including the case of x = y. In this case, (x, α1)
and (y, α2) occur exactly once in the same row or in the same column of a grid-block
in A2 and do not occur in A1. Finally, ∞ and (x, α) for any x ∈ V and α ∈ T occur
exactly once in the same row and in the same column of a grid-block in A2.

3. The existence of a 2× 4 grid-block design. In this section we apply the
results obtained in the previous section to prove the following theorem.

Theorem 3.1. The necessary condition v ≡ 1 (mod 32) for the existence of a
D2×4(Kv) is also sufficient.

This existence theorem is shown by utilizing a recursive construction. First, we
give an existence of a group divisible design.

Lemma 3.2. For any integer v ≥ 12, there exists a GD[K, 1,M ; v], where K =
{4, 5} and M = {1, 2, . . . , 7}.

Proof. According to Brouwer [3], Brouwer, Schrijver, and Hanani [4], and Beth,
Jungnickel, and Lenz [2], we know the existence of a GD[K, 1;M ; v] for any v ≥ 12
except for v = 18 and 19 as is listed in Table 3.1 (see also Kreher and Stinson [8] and
Mullin and Gronau [10]). In Table 3.1, the notation tu1

1 tu2
2 of a group type implies

that V is divided into u1 groups with group size t1 and u2 groups with group size t2.



176 Y. MUTOH, T. MORIHARA, M. JIMBO, AND H.-L. FU

Table 3.2
Table of the base grid-blocks of group divisible grid-block designs.

Base grid-blocks

D2×4(K4(32))
0 1 6 15
13 30 3 48

0 21 58 47
22 63 20 97

0 25 74 55
63 56 17 122

D2×4(K5(32))
0 1 7 3
11 27 48 39

0 31 17 63
22 73 129 30

0 66 47 133
13 149 105 51

0 111 52 23
84 15 141 102

Table 3.3
Table of the base grid-blocks of grid-block designs.

Base grid-blocks

D2×4(K33)
0 1 3 9
12 5 23 28

D2×4(K65)
0 1 3 7
5 13 22 38

0 10 21 45
47 32 60 9

D2×4(K97)
0 1 3 7
5 13 22 33

0 10 23 41
33 65 86 3

0 15 37 61
39 55 84 12

D2×4(K193)
0 36 65 60
89 155 152 153

0 46 180 153
186 23 71 169

0 55 108 73
114 77 133 81

0 14 97 165
102 52 40 134

0 105 54 44
75 34 178 55

0 76 67 148
39 189 73 174

D2×4(K225)
0 104 76 167
67 137 121 209

0 189 223 92
156 74 167 199

0 221 77 194
41 94 42 16

0 122 177 140
212 190 106 67

0 15 220 111
95 76 55 46

0 7 10 24
38 82 206 32

0 87 161 99
79 192 102 13

Moreover, it is known that GD[5, 1, 4; 20] exists, which is obtained by delet-
ing one parallel class of lines and five points on a line in the parallel class from
AG(2, 5). By deleting a single point of a GD[5, 1, 4; 20], we can show the existence of
a GD[{4, 5}, 1, {3, 4}; 19]. Similarly, by deleting two points from the same group of a
GD[5, 1, 4; 20], we obtain a GD[{4, 5}, 1, {2, 4}; 18], which proves the case of v = 18
and 19. Thus, the lemma is proved.

Second, we give two group divisible grid-block designs which are obtained by
computer.
Lemma 3.3. There exists a D2×4(Kk(32)) for k = 4 and 5.
Proof. For V = Z128, let

A0 =
0 1 6 15
13 30 3 48

, B0 =
0 21 58 47
22 63 20 97

, and

C0 =
0 25 74 55
63 56 17 122

,

which are listed in Table 3.2. Here A0, B0, and C0 are called a base grid-block or a
starting grid-block. For each base grid-block, let Ai = A0 + i (mod 128), Bi = B0 + i
(mod 128), and Ci = C0 + i (mod 128). Now we define

A = {A0, A1, . . . , A127, B0, B1, . . . , B127, C0, C1, . . . , C127};
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Table 3.4
Table of the base grid-blocks of grid-block designs (continued).

Base grid-blocks

D2×4(K257)
0 51 168 216
148 147 81 37

0 22 230 37
30 211 187 193

0 58 61 234
200 118 101 154

0 107 73 14
50 79 202 176

0 169 42 98
63 61 96 216

0 132 246 124
20 41 72 162

0 171 210 65
202 190 197 206

0 75 178 247
72 255 210 185

D2×4(K289)
0 217 34 207
28 188 253 168

0 199 54 19
105 282 236 183

0 228 8 13
86 35 165 189

0 179 122 4
209 37 211 284

0 241 47 244
124 191 110 98

0 27 256 218
248 182 225 98

0 185 148 163
128 186 216 180

0 133 271 227
166 14 150 206

0 25 32 213
77 255 266 164

D2×4(K321)
0 235 247 257
310 101 228 133

0 3 101 281
76 105 212 309

0 35 186 37
244 138 264 16

0 160 1 265
158 66 291 221

0 26 317 9
269 178 228 315

0 7 157 25
23 205 143 74

0 146 61 16
283 288 174 115

0 315 211 33
206 78 146 254

0 279 200 255
34 105 272 308

0 240 165 294
313 59 255 175

D2×4(K353)
0 286 267 129
198 149 219 118

0 133 95 248
22 20 275 113

0 81 72 26
82 257 147 261

0 294 142 15
34 173 198 1

0 88 76 247
71 222 144 194

0 337 109 217
66 150 2 211

0 340 7 343
195 5 234 264

0 169 254 122
316 229 17 59

0 193 8 44
352 103 127 76

0 52 23 154
45 192 134 4

0 186 40 83
236 298 201 293

then (Z128,A) is the desired D2×4(K4(32)). In fact, by calculating the differences of
two elements in the same row or in the same column of A0, B0, and C0, any difference
except for multiples of 4 occurs exactly once.

Similarly, for V = Z160, by utilizing four base grid-blocks in Table 3.2, we obtain
a D2×4(K5(32)). In fact, by calculating the differences of two elements in the same
row or in the same column of A0, B0, C0, and D0 any difference except for multiples
of 5 occurs exactly once.

Third, we give some grid-block designs which are obtained by computer.

Lemma 3.4. There exists a D2×4(K32m+1) for any m = 1, 2, . . . , 11.

Proof. By utilizing the base grid-blocks in Tables 3.3 and 3.4, we obtain the
desired D2×4(K32m+1)’s for m = 1, 2, 3, 6, 7, . . . , 11. By applying Proposition 2.2 to a
D2×4(K4(32)) and a D2×4(K5(32)) in Lemma 3.3 and a D2×4(K33), D2×4(K32m+1)’s
are obtained for m = 4 and 5.

Now we will show the main theorem.

Proof of Theorem 3.1. By Lemma 1.1, it is easy to show that the necessary
condition for the existence of a D2×4(Kv) is v ≡ 1 (mod 32). Now we write v =
32w + 1; then there exists a D(K32w+1) for w ≤ 11 by Lemma 3.4. By Lemma 3.2,
a GD[K, 1,M ;w] exists for w ≥ 12, where K = {4, 5} and M = {1, 2, . . . , 7}. And a
D(Kk(32)) exists for k = 4 and 5 by Lemma 3.3. Thus by Lemma 2.3 a D(K32w+1)
exists for any w ≥ 12, which prove the main theorem.
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1. Introduction. Recently Flajolet and Prodinger [4] defined the Stirling num-
bers of the second kind for complex arguments, solving a research problem of Graham,
Knuth, and Patashnik [5]. They define y set x by

{y
x

}
=
y!

x!

1

2πi

∫

H

(ez − 1)x
dz

zy+1
,(1)

where s! = Γ(s+ 1). The determination of (ez − 1)x is the principal determination on
the part of the contour �z > 0 extended by continuity to the whole of H. Here H is
a Hankel contour (see [14]) that starts from −∞ below the negative axis, goes around
the origin counterclockwise, and returns to −∞ in the half-plane �z > 0. The details
of H are immaterial; we assume only that the singularities at ±k2πi, k = 1, 2, . . . are
not inside H. This integral converges for �y > 0; however, if we integrate by parts
we find that

{y
x

}
=

(y − 1)!

(x− 1)!

1

2πi

∫

H

ez(ez − 1)x−1 1

zy
dz.(2)

This integral converges for all values of x and y; thus { yx} is a meromorphic function
of y (for any fixed x) with poles at the nonpositive integers. As a function of x (for
any fixed y) it is entire. We adopt this definition of { yx}.

Flajolet and Prodinger do not discuss in great detail the Stirling numbers of the
first kind for complex arguments; however, their paper implies a possible definition of
y cycle x by

[y
x

]
=
y!

x!

1

2πi

∫

H′
z−y−1 lnx

(
1

1− z
)
dz,(3)
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where H
′

is a contour which starts at 1, circles the origin in the counterclockwise
direction, and returns to 1. (Note H is the image of H

′
under the mapping which

replaces z by 1− ez.) We adopt this definition of [ yx ].
These generalized Stirling number functions are interesting for several reasons.

For example Flajolet and Prodinger show that

d

dy

{
x

y

}

y=1

= ζ(−x).

Thus finding the zeros of this derivative is equivalent to solving the famous Riemann
hypothesis! We do not give the proof here; however, the argument of Sprugnoli and
Del Lungo [13] can be adapted easily to give

ζ(s) =
1

1− 21−s

∞∑

k=1

{−s
k

}
k!(−1)k−1

2k+1
.

A celebrated identity between the first and second Stirling numbers is

{
x

y

}
=

[−y
−x
]
, x and y integral.

This is equation (6.33) of [5]; see [7] for the fascinating history of this identity. Rich-
mond and Merlini [9] show that with the above definitions this identity holds when
x and y are complex numbers such that x-y is an integer. In our last theorem of this
paper we extend this identity to all complex x and y.

The best definition of the generalized Stirling numbers may not be the ones we
give. Knuth [6] gives a definition of y set x when x is an integer and y is an integer
plus 1/2. With his definition the value of 2.5 set 2 is 2; however, with the Flajolet–
Prodinger definition, 2.5 set 2 equals 2

√
2− 1 (ask Maple). Chelluri, Richmond, and

Temme [2] used a different definition of y cycle x which was very convenient to derive
asymptotic estimates. The definition of [2] agrees with our present one for integral x
and y. Flajolet and Prodinger derive the formula for integral k,

{y
k

}
=

1

k!

k∑

j=0

(
k

j

)
(−1)k−jjy,

which is the definition of Sprugnoli and Del Lungo [13].
We aim to generalize certain well-known identities with integral arguments to

complex arguments. For example the arguments of [9] when applied to the Flajolet–
Prodinger definition of y cycle x very easily give

[y
x

]
= (y − 1)

[
y − 1

x

]
+

[
y − 1

x− 1

]
.

We let, using (2),

{y
x

}
=

(y − 1)!

(x− 1)!
By(x)

and show the following.
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Theorem 1. If 0 < d < 1, then

By(c+ d) =
∑

k≥0

d

k + d
Bk+d(d)By−k−d(c)(4)

converges absolutely for all y and c. If d = 1, the convergence is absolute for y > 1.
Furthermore

(
c+ d− 1

c

){
y

c+ d

}
=
∑

k≥0

(
y − 1

k + d

){
k + d

d

}{
y − k − d

c

}
.(5)

If c, d, and y are nonnegative integers, then the sum is finite and gives what seems
to be a new identity for these Stirling numbers.

If we use (1) to define B
′
y(x) (B

′
y(x) is not a derivative) by

B
′
y(x) =

x!

y!

{y
x

}
,

then we find for x, y nonnegative integers that B
′
y(x) is a convolution family as defined

by Knuth [8]. A convolution family is also called a binomial function; see Olive
[10]. These references show that convolution families or binomial functions have an
extensive literature. One of the goals of Olive [10] is to generalize certain binomial
functions and we shall generalize some of her binomial functions further by allowing
certain of her parameters to be real instead of integral. We shall study Cy(x) which

is defined for [ yx ] as B
′
y(x) is for { yx} and find that it is completely analogous to a

convolution family. The convolution family B
′
y(x) gives a sequence, B

′′
y (x), of binomial

type (see [12, p. 8])

B
′′
y (x) = y!B

′
y(x).

Theorem 2. If c, d, and y are nonnegative integers, then

B
′
y(c+ d) =

∑

k≥0

B
′
k(d)B

′
y−k(c)

and
(
c+ d

d

){
y

c+ d

}
=
∑

k≥0

(
y

k + d

){
k + d

d

}{
y − d− k

c

}
.

Remark. If c, d, and y are nonnegative integers, then this last sum is finite and
questions of convergence do not arise. Theorem 2 becomes equation (6.28) of Graham,
Knuth, and Patashnik [5]. Our proof of Theorem 2 is another proof of this identity.

We next give two theorems giving the asymptotic behavior of { yx} as y → −∞,
x fixed and as x → ∞, y fixed (there is a paper of Chelluri, Richmond, and Temme
[2] giving uniform asymptotic expansions of { yx}, [ yx ] as y → ∞ for 0 < x < y). The
results in [2] correspond to the well-known asymptotic results for {nk } and [nk ]. One
simply replaces the integer variables n and k by the real variables y and x in the
asymptotic formulas. The two theorems just referred to, however, do not have such
analogies since in the integer variable case the Stirling numbers become zero as k →∞
or n → −∞. See the second paragraph before Theorem 3 for further discussion.
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These results are used to prove that if Cy(x) = x!
y! [

y
x ], then

∑
k≥0 Ck+d(d)Cy−k−d(c)

converges to Cy(c+ d) provided c+ d < 0. This gives us a generalization of equation
(6.29) in Graham, Knuth, and Patashnik [5], namely

(
c+ d

d

)[
y

c+ d

]
=
∑

k≥0

(
y

k

)[
k

d

] [
y − k
c

]
.

Equation (6.29) of Graham, Knuth, and Patashnik is the case when c, d, and y are
nonnegative integers (since the sum is finite the condition c+ d < 1 implying conver-
gence can be dropped).

The references [1], [3], [5], [7] contain many results concerning Stirling numbers
of both kinds.

2. Proofs and further results. The contour in our definition (2) can be moved
as long as we do not pass through a singularity of the integrand. We can deform H
to a small circle at the origin so that the contour is inside the radius of convergence
of any given power series analytic at the origin without changing the value of the
integrand. We shall do this so that a term-by-term integration is justified, and then
we will deform the circle back to H in the proof of Theorem 1. The contour H is very
convenient for proving identities involving the Gamma function because of Hankels’
formula so we adopt it in our definition (2) as Flajolet and Prodinger do.

First, for k ∈ Z, k ≥ 0, it follows from Cauchy’s integral formula that

[zk]

(
ez − 1

z

)d
=

1

2πi

∫

H

(
ez − 1

z

)d
dz

zk+1
=

1

2πi

∫

H

(ez − 1)d
dz

zk+d+1
.

Upon integrating by parts we have, since d > 0,

=

∣∣∣∣
−(ez − 1)d

(k + d)zk+d

∣∣∣∣
H

+
d

k + d

1

2πi

∫

H

(ez − 1)d−1

zd+k
ezdz;

the first expression equals 0 so this equals d
k+dBk+d(d). Thus for small z

∑

k≥0

d

k + d
Bk+d(d)zk =

(
ez − 1

z

)d
.

Proof of Theorem 1. Since By(x) = (x− 1)!{ yx}/(y − 1)! we can rewrite sum (4)
of Theorem 1 as

(c+ d− 1)!

(y − 1)!

{
y

c+ d

}
=
∑

k≥0

d

(k + d)

(d− 1)!

(k + d− 1)!

{
k + d

d

}
(c− 1)!

(y − d− k − 1)!

{
y − d− 1

c

}

so
(
c+ d− 1

d

){
y

c+ d

}
=
∑

k≥0

(
y − 1

k + d

){
k + d

d

}{
y − d− k

c

}
;

hence sum (5) follows from sum (4). We now investigate the convergence of sum (4)
of Theorem 1. We first bound By−k−d(c). Suppose c ≥ 1 first of all. We break up the
contour of integration H into I, where z = re−πi below the real axis, and II, where
z = reiπ above the real axis. We may suppose k so large that y − k − d < 0; then

∫

I

=

∫ 0

∞
(e−r − 1)c−1e−re−iπ(k+d−y)rk+d−ye−iπdr
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= −e−iπ(k+d−y+c)
∫ ∞

0

(1− e−r)c−1e−rrk+d−ydr.

Also
∫

II

= eiπ(k+d−y+c)
∫ ∞

0

(1− e−r)c−1e−rrk+d−ydr.

Hence

By−k−d(c) =
sinπ(k + d− y + c)

π

∫ ∞

0

(1− e−r)c−1e−rrk−ydr.

When c ≥ 1 this last integral is bounded in absolute value by
∫ ∞

0

e−rrk+d−ydr = Γ(k + d− y + 1).

Now Bk(d)(k− 1)!/(d− 1)! = {kd}. We use the asymptotic behavior of {kd} derived in
Chelluri, Richmond, and Temme [2]. There u0 is defined by 1− e−u0 = du0/k, so we
have u0 = k/d + O(ke−k/d/d). The H0(u0) of [2] is therefore equal to 1 + O(e−k/d)
and Theorem 1 of [2] gives that {kd} ∼ dk/d!. Thus we have

Bk+d(d) ∼ dk+d

(k + d− 1)!d
=

dk+d−1

(k + d− 1)!

and

d

k + d
Bk+d(d)By−k−d(c) = O

(
dk

Γ(k + d)

Γ(k + d− y + 1)

k

)
= O

(
dk

ky

)
.

Hence, the first series in Theorem 1 converges for all y if 0 < d < 1 and for y > 1 if
d = 1.

Suppose now c < 1. In this case we break up the range of integration into I,
where z = re−iπ, 1 ≤ r ≤ ∞; III, where z = reiπ, 1 ≤ r ≤ ∞; and II, where z = eiθ,
−π ≤ θ ≤ π. As before we deduce that

∫

I

+

∫

II

= 2i sinπ(k + d− y − c)
∫ ∞

1

e−rrk−x

(1− e−r)1−c dr

and

∫

II

=

∫ π

−π

ee
iθ

eiθ(k+d−y+1)

(eeiθ − 1)1−c
dθ

which is O(1), where the O-constant depends on c. Now

∫ ∞

1

e−rrk+d−y

(1− e−r)1−c ≤
1

(1− e−1)1−c

∫ ∞

1

e−rrk+d−ydy ≤ 1

(1− e−1)1−c
Γ(k + d− y + 1)

and the argument proceeds as before. This proves that the first sum in Theorem 1
converges under the assumptions of Theorem 1.

Now from the definitions of By(x) and { yx} we have

d

k + d
Bk+d(d)By−k−d(c) =

1

2πi

∫

H

k

k + d
Bk+d(d)

(ez − 1)c−1

zy−d−k
ezdz.
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We can deform H to a small circle, C, centered at the origin without changing the
value of the integral. If we sum over k, now our result for [zk](ez − 1/z)d gives

∑ d

k + d
Bk+d(d)By−k−d(c) =

1

2πi

∫

C

(
ez − 1

z

)d
(ez − 1)c−1ezdz.

We now deform the contour C into H, since the integral over H is By(c + d), and
Theorem 1 is proved.

Proof of Theorem 2. The proof is quite similar to the proof of Theorem 1. We
have

B
′
y(c+ d) =

1

2πi

∫

H

(ez − 1)c(ez − 1)d
dz

zy+1
.

A nonnegative integral power of ez − 1 is analytic so, for integral k,

[zk](ez − 1)d =
1

2πi

∫

H

(ez − 1)d
dz

zk+1
= B

′
k(d)

so, we have as before

B
′
y(c+ d) =

∑

k≥0

B
′
k(d)B

′
y−k(c).

We now establish some further asymptotic relations that By(x) satisfies. We use
Laplace’s method, a form of the saddle-point method. This method is used to derive
the asymptotic behavior of a contour integral when the integrand has the form f(x)u

as u→∞. The method works when f(x) has a unique maximum at x0 and decreases
in absolute value as x moves away from x0. In our applications f(x) is log-concave.

We now discuss the asymptotic behavior of B−y(x) as y, then x, goes to ∞ in
Theorem 3 and 4, respectively. We use only Theorem 4 to prove the identity in
Theorem 5, so readers may skip Theorem 3 if their interest is not in asymptotics for
its own sake.

In the next theorem the asymptotic relation for B−y(x) is given in terms of a
function l defined implicitly as a function of x and y.

Theorem 3. Let l be defined by

ely − x =
ely − 1

l
.

Then

B−y(x) ∼ sin(π(y + x))ly−1 y!

e(l−1)y
as y →∞

and l ∼ 1. Indeed if x = 1, then l = 1 and

B−y ∼ sin(π(y + 1))y!

so
{y

1

}
∼ − π

y + 1

as y →∞.
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Proof. Note

B−y(x) =
1

2πi

∫

H

ez
(
ez − 1

z

)x−1

zx+y−1dz.

As y →∞ the integrand goes to 0 as z → 0; hence

∫

H

= 2i sin(π(x+ y))

∫ ∞

0

e−r(1− e−r)x−1rydr.

We let

F (y) =

∫ ∞

0

e−r(1− e−r)x−1rydr

=

∫ ∞

0

exp

(
y

(−r
y

+
x− 1

y
ln(1− e−r) + ln r

))
dr =

∫ ∞

0

exp(yS(r))dr.

We now apply Laplace’s method; see [11, sect. 7]. Let

S(r) =
−r
y

+
x− 1

y
ln(1− e−r) + ln r

so that

S
′
(r) = −1

y
+
x− 1

y

1

er − 1
+

1

r
,

S
′′
(r) = −x− 1

y

er

(er − 1)2
− 1

r2
.

Since S(r) is concave for any r we have that the unique maximum of S(r) is at
S

′
(r0) = 0 or

er0 − x
y

=
er0 − 1

r0
or r0

(
er0 − x
er0 − 1

)
= y

and that r0 → ∞ as y → ∞. If we let r0 = ly, then l is defined as in Theorem 3.
Furthermore

S(r0) = −l +
x− 1

y
ln(1− e−ly) + ln(ly) = −l + ln(ly) +O

(
1

y

)
,

yS
′′
(r0) = − 1

l2y
+O(e−ly),

so from Laplace’s method we have

F (y) ∼
√

2πy

l
e−ly+y ln(ly)

∼
√

2πy

l

(ly)y

ely
∼ ly−1 y!

e(l−1)y
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using Stirling’s formula for y!. The first part of Theorem 3 follows. Finally
{−y

1

}
∼ (−y)!y! sinπ(y + 1) ∼ −π

(y + 1) sinπ(y + 1)
sinπ(y + 1).

It only remains to show that l ∼ 1 as y →∞. We have seen that r0 = ly →∞. If

ely − x =
ely − 1

l
, then l =

ely − 1

ely − x,

so l ∼ 1 if ly →∞, and Theorem 3 is proved.
Theorem 4. Suppose y ≥ 0. Then

B−y(x) ∼ sinπ(y + x)

e

√
2/π

lny x

x

as x→∞ and
{−y

x

}
∼ (−y)!

x!

sin(π(x+ y))

e

√
2/π

lny x

x− 1

as x→∞.
Proof. We have

B−y(x) =
1

2πi

∫

H

ez(ez − 1)x−1zydz.

As x→∞ the integrand → 0 as x→∞ for small z for any y ≥ 0. Hence
∫

H

=

∫

I

+

∫

II

,

where
∫

I

=

∫ 0

∞
(e−r − 1)x−1e−re−iπ(y+1)rydr

= −e−iπ(x+y)

∫ ∞

0

e−r(1− e−r)x−1rydr.

Similarly
∫

II

= eiπ(x+y)

∫ ∞

0

e−r(1− e−r)x−1rydr

so
∫

H

= 2i sin(π(x+ y))

∫ ∞

0

e−r(1− e−r)x−1rydr.

We now proceed as in the proof of Theorem 3. Let us set

E(y) =

∫ ∞

0

e−r(1− e−r)x−1rydr

=

∫ ∞

0

ex[
−r
x + x−1

x ln(1−e−r)+ y
x ln r]dr
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=

∫ ∞

0

exS(r)dr,

where

S
′
(r) =

−1

x
+
x− 1

x

1

er − 1
+

y

rx
,

S
′′
(r) = −x− 1

x

er

(er − 1)2
− y

r2x
,

and we define r0 by

−1 +
x− 1

er0 − 1
+

y

r0
= 0.

We find that r0 = lnx+O(1/(lnx)) as x→∞ and that

xS(r0) = y ln lnx− lnx− 1 +O(1/(lnx)),

xS
′′
(r0) = −1 +O(1/(lnx)),

so again from Laplace’s method we have

E(y) ∼
√
−2π

xS′′(r0)
exS(r0) ∼

√
2π lny x

(
1

x

(
1− 1

x

)x−1
)

∼
√

2π

e(x− 1)
lny x;

hence

B−y(x) ∼ sin(π(x+ y))

e

√
2

π

lny(y)

x

as x→∞ and

{−y
x

}
∼ (−y)!

x!

sinπ(x+ y)

e

√
2

π
lny x/x.

This proves Theorem 4.
We conclude with a discussion of identities corresponding to Theorems 1 and 2

for the Stirling numbers of the first kind. Let us define Cx(y) by

Cy(x) =
1

2πi

∫

H′
lnx
(

1

1− z
)
z−y−1dz

so that

[y
x

]
=
y!

x!
Cy(x).
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Then if we let u = 1− ez, du = −ezdz, we have

Cy(x) = eiπ(x−y) 1

2πi

∫

H

zx
ez

(ez − 1)y+1
dz

= eiπ(x−y)B−x(−y).

We then easily find that, as with B
′
y(x),

Cy(c+ d) =
∑

k≥0

Ck+d(d)Cy−k−d(c)

provided the series converges. We determine the asymptotic behavior of Ck(d)Cy−k(c).
This is convenient because we can replace k by k + d in our final estimate without
affecting convergence. We have

Cy−k(c) = eiπ(c−y+k)B−c(k − y).

From Theorem 4 we obtain

Cy−k(c) ∼
√

2/πeiπ(c+k) sin(π(c+ k − y))

e

lnc(k − y)

k − y .

Now from Chelluri, Richmond, and Temme [2] we have

[
k

d

]
=
k!

d!
Ck(d) ∼ k!(log k)d−1

d!

so Ck(d) ∼ (ln k)d−1 and

Ck(d)Cy−k(c) ∼ 1

e

√
2/πeiπ(c+k−y) sin(π(c+ k − y))

lnc(k − y)(ln k)d−1

k − y .

Furthermore this series does not alternate with k. The series will not converge, there-
fore, unless c+ d− 1 < −1 or c+ d < 0. Thus we have the following.

Theorem 5. If c+ d < 0, then

Cy(c+ d) =
∑

k≥0

Ck(d)Cy−k(c)

and, using [ yx ] = y!Cy(x)/x!,

(
c+ d

d

)[
y

c+ d

]
=
∑

k≥0

(
y

k

)[
k

d

] [
y − k
c

]
.

Remark. If c, d, y are nonnegative integers, the sum is finite and we have a proof
of equation (6.26) of [5].

We now consider equation (6.15) of [5], namely

{
n+ 1

k + 1

}
=
∑

j≥0

(
n

j

){
j

k

}
.



STIRLING NUMBERS FOR COMPLEX ARGUMENTS 189

One way to generalize this identity is to follow Sprugnoli and Del Lungo [13]. Consider

∑

j≥0

(
y

j

){
j

x

}
;

however, as they show, { jx} ∼ xj/j! for 0 < x so this series only converges for
0 ≤ x < 1. The identity can be generalized this way; however, we prefer the following
path.

Theorem 6. If y > 0, then

∑

j≥0

(
y

j

){
y − j
x

}
=

{
y + 1

x+ 1

}
.

Remark. If we set y − j = k, y = n, z = k, we recover equation (6.15) of [5].
Proof. Recall that we can deform H to a small circle C,

{
y + 1

x+ 1

}
=
y!

x!

1

2πi

∫

H

ez(ez − 1)x
1

zy+1
dz

=
∑

j≥0

y!

j!x!

1

2πi

∫

C

(ez − 1)x

ey+1−j dz =
∑

j≥0

y!

j!(y − j)!
(y − j)!
x!

1

2πi

∫

C

(ez − 1)x

zy+1−j dz

=
∑

j≥0

(
y

j

){
y − j
x

}
,

provided the sum converges absolutely so that the interchange of summation and
integration is justified. We rewrite this as

y!

(x− 1)!

∑

j≥0

1

j!(y − j)!(x− 1)!
By−j(x).

Case I. x ≥ 1. Suppose j is large enough that y− j < 0. As before, we can break
the integration into a range over r, where z = re−πi and z = reπi. Then

By−x(x) =
sinπ(j − y + x)

π

∫ ∞

0

(1− e−r)x−1e−rrj−ydr.

This last integral is bounded by Γ(j − y + 1) so

1

j!(y − j)!By−j(x) = O(
Γ(j − y + 1)

Γ(j + 1)(y − j) ) = O(j−y−1);

hence we have convergence if y > 0.
Case II. x < 1. We break the range of integration up into I, where z = re−iπ,

1 ≤ r ≤ ∞; II, where z = eiθ, π < θ < π; and III, where z = reiπ, 1 ≤ r < ∞. As
before

∫

I

+

∫

III

= 2i sin(π(j − y + x))

∫ ∞

1

e−rrj−y(1− e−r)x−1dr
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≤ (1− e−1)x−1

∫ ∞

1

e−rrj−ydr ≤ (1− e−1)x−1Γ(j − y + 1).

Clearly
∫
II

is O(1) and the O-constant depends on x. Thus as in Case I we have
convergence for y > 1. This proves the theorem.

We now prove the following.
Theorem 7. We have

{−y
−x
}

= eiπ(x−y) sin(πx)

sin(πy)

[
x

y

]
.

Proof. By definition

{−y
−x
}

=
(−y − 1)!

(−x− 1)!

1

2πi

∫

H

ez(ez − 1)−x−1zydz.

Let z = log(1− w), so w = 1− ez, dz = −(1− w)−1dw. Then

{−y
−x
}

=
(−y − 1)!

(−x− 1)!

1

2πi

∫

H′

(
− log

(
1

1− w
))y

(−w)−x−1 − dw,

where H
′
starts at 1, circles the origin counterclockwise, and returns to 1. Furthermore

suppose x < 0; then we could start at −∞eiπ, go to 0 along re−iπ, and return along
z = reiπ to −∞eiπ. Then at first

(log(1− w))y = zy = rye−iπy = e−iπy
(

log

(
1

1− w
))y

.

Also w goes counterclockwise and so does −w. Thus

1

(−w)x+1
= −eiπ(x−1) 1

wx+1

so
{−y
−x
}

=
(−y − 1)!

(−x− 1)!
eiπ(x−y)

∫

H′
logy

(
1

1− w
)

1

wx+1
dw

=
Γ(x+ 1) sin(π(x+ 1))

Γ(y + 1) sin(π(y + 1))
eiπ(x−y)

∫

H′
logy

(
1

1− w
)

1

wx+1
dw = eiπ(x−y) sinπx

sinπy

[
x

y

]

as required. We proved this for x < 0 but it holds wherever the expressions in the
theorem are analytic. This proves the theorem.
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Abstract. Many applications in the area of production and statistical estimation are problems
of convex optimization subject to ranking constraints that represent a given partial order. This
problem, which we call the convex cost closure (CCC) problem, is a generalization of the known
maximum (or minimum) closure problem and the isotonic regression problem. For a CCC problem
on n variables and m constraints we describe an algorithm that has the complexity of the minimum
cut problem plus the complexity of finding the minima of up to n convex functions. Since the
CCC problem is a generalization of both minimum cut and minimization of n convex functions, this
complexity is the fastest one possible. For the quadratic problem the complexity of our algorithm is

strongly polynomial, O(mn log n2

m
). For the isotonic regression problem the complexity is O(n logU)

for U the largest range for a variable value.

Key words. closure problem, nonlinear costs, Bayesian estimation, maximum flow, parametric
minimum cut, convex optimization

AMS subject classifications. 68R10, 90C27, 90C30

PII. S0895480100369584

1. Introduction. A common problem in statistical estimation is that observa-
tions do not satisfy preset ranking order requirements. In that case the problem is
to find an adjustment of the observations that fits the ranking order constraints and
minimizes the total deviation penalty. The deviation penalty is a convex function of
the fitted values.

Formally, we define the problem for a directed graph G = (V,A) and a convex
function fj() associated with each node j ∈ V . The formulation of the convex cost
closure (CCC) problem is then

(CCC) Min
∑
j∈V fj(xj)

subject to xi − xj ≥ 0 ∀(i, j) ∈ A,
	j ≤ xj ≤ uj integer j ∈ V.

This problem generalizes the isotonic regression problem in which the graph is a
partial order graph for linear order—the arcs of A are of the form (i, i+ 1). Another
well-known problem that CCC generalizes is the minimum closure problem. That
problem is the binary case of CCC:

(Minimum Closure) Min
∑
j∈V wj · xj

subject to xi − xj ≥ 0 ∀(i, j) ∈ A,
0 ≤ xj ≤ 1 integer j ∈ V.
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Picard established in 1976 [17] that the closure problem is equivalent to a minimum
cut problem on a graph associated with G to which we add a source and a sink. This
construction is described in section 3. Solving the CCC problem is thus at least as
hard as solving the minimum cut problem on the associated graph.

When the graph is empty the CCC problem reduces to the integer minimization
of n convex functions, each in a given interval. Thus CCC generalizes the problem of
convex functions integer minimization in bounded intervals.

The challenge of the convex optimization problem is that searching for a minimum
of a convex function involves an unavoidable factor such as logU in the running
time for U the length of the interval containing the optimal value of the variable.
Although one can replace other parameters that depend on the variability of the
functions, the running time cannot be made strongly polynomial using the arithmetic
complexity model (see [11] for details on this result). The algorithm presented here
differs from previous algorithms in that the search for the minima of the convex
functions is separate from the rest of the algorithm. The main body of the algorithm
identifies disjoint intervals that are guaranteed to contain the optimal values of each
variable and satisfy the partial order constraints. The run time of our algorithm,

O(mn log n
2

m + n logU) for U = maxi{ui − 	i}, is the fastest known for the problem,
and it either matches or improves the complexity of algorithms devised for special
cases of CCC.

In dealing with nonlinear functions it is necessary to specify the complexity model
used. We assume the unit cost model and no restriction on the structure of the convex
functions; i.e., we assume the existence of an oracle returning function values for
every polynomial length argument input in O(1). Since we will search for an optimal
solution among the integers we will be interested only in integer arguments. Any
arithmetic operation or comparison involving function values is executed in unit time
in this model. Derivatives, or rather subgradients, are required as finite differences,
f ′j(x) = fj(x+ 1)− fj(x).

In the next section we give an overview of the literature and applications of the
problem. In section 3 the link of the closure problem to the maximum flow problem
is reviewed. Section 4 discusses a linear time algorithm that is employed to verify
whether an instance of CCC is feasible. Section 5 provides the main theoretical un-
derpinning of the algorithm, the so-called threshold theorem. Section 6 describes the
entire algorithm and its correctness and complexity. Section 7 details the implemen-
tations in strongly polynomial time for the quadratic case and the O(n logU) for the
isotonic regression problem. In Section 8 we provide an algorithm for the continuous
version of CCC. In Section 9 we conclude with several remarks and extensions.

2. Related applications and literature. We sketch first several classes of
applications for the CCC problem.

In the problem of selection of discrete contingent projects a number of projects
j ∈ N can be undertaken, but only at discrete levels lj , lj + 1, . . . , uj . These projects
are contingent in that, for specified pairs of projects (i, j) ∈ A, each unit of project i
requires one unit of project j: xi ≤ xj . Different projects i, k, . . ., however, can use
the same units of project j (otherwise, we might consider j as part of project i). For
instance, projects i and k may use j at different times. The objective is to maximize
the total net profit associated with the selected project levels. Here, −fj(xj) denotes
the net profit associated with level xj of project j. The convexity of −fj thus reflects
decreasing returns of scale for project j. Additional information about this problem
is provided by Picard and Queyranne [18].
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Maxwell and Muckstadt [16] considered nested power-of-two policies in a multi-
stage production/inventory problem. In this continuous-time deterministic model,
demand for end-products arises at a constant rate. Intermediate products are con-
sumed in the production of other products, as reflected by the directed graph (V,A).
Given are positive inventory-related holding costs gj and production setup costs Kj .
The problem is to find production intervals Tj = T02

kj , with kj integer, that are
nested, that is, Ti ≤ Tj for (i, j) ∈ A. The objective is to minimize the average total
cost per unit time,

c(T ) =
∑

j

gjTj +Kj/Tj .

Roundy [20] extends the Maxwell–Muckstadt model by considering joint setup costs
and relaxing the nestedness condition. He shows that the total cost is now

c(T ) =
∑

R

GRmax{Tj : j ∈ R}+
∑

F

KF /(min{Tj : j ∈ F}),

where R and F are suitably defined subsets of products, and GR and KF are corre-
sponding (nonnegative) costs. Although the constraints Ti ≤ Tj thus disappear, the
modeling capabilities of variable upper bound constraints are reflected in the han-
dling of joint setup costs and holding costs. For that, Roundy extends the product
set N by adding all the R and F sets and “defines” corresponding variables TR (TF ,
respectively) by the inequalities Tj ≤ TR (TF ≤ Tj , respectively) for all j ∈ R (F ,
respectively). The resulting problem is thus recast into the Maxwell–Muckstadt form
above. Roundy’s major result is that optimal power-of-two policies thus constructed
are 94% effective; that is, the cost of an optimal policy cannot be less than 94% of
an optimum power-of-two policy. He also shows that searching for an optimal base
interval T0 yields a 98% effective solution. The present paper extends this approach
to general convex average cost functions fj(kj) = cj(T02

kj ). The 94% and 98% effec-
tiveness results, however, hold only for the specific functions c above.

Sokkalingam, Ahuja, and Orlin [23] discuss the inverse spanning tree problem.
In this problem there is a spanning tree T given in an edge weighted graph. The
problem is to modify the edge weights so that the given tree is a minimum spanning
tree and the cost of the deviation is minimum. In order for a tree to be a minimum
spanning tree each out-of-tree edge j must have a weight wj greater than or equal to
each of the edges in the tree on the unique path between its endpoints. That is, the
constraints enforcing that T be a minimum spanning tree are of the form wj ≥ wi
for j ∈ E \ T , i ∈ T . The corresponding graph is a bipartite graph—a structure
that can be used to reduce the complexity of our algorithm for the resulting CCC.
Sokkalingam, Ahuja, and Orlin devised algorithms for three specific convex deviation
functions: sum of absolute differences, weighted sum of absolute differences, and
maximum absolute differences. All these functions are convex for which the minima
can be found in a single step. Our algorithm’s run time is thus strongly polynomial
and is better than O(mn log2 n) for this type of function, and with an additional
additive factor of n logC for general convex functions, where C is the maximum edge
weight. The complexity reported in [23] for the weighted absolute deviation problem is
weakly polynomial O(n2m log(nC)). Our algorithm can be further adapted to provide
substantial improvements for special cases as reported in [14].

Statistical problems of partially ordered estimation have been discussed exten-
sively in the literature; see, e.g., Veinott [24] and Barlow et al. [4]. Let p1, . . . , pn
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denote parameters to be jointly estimated and let fj(xj) denote the loss associated
with estimating that pj = xj for j = 1, . . . , n. A typical instance is when fj(xj) is
the negative of the logarithm of the likelihood, given pj = xj , that related random
variables assume observed values. The model being estimated may specify a partial
order on the parameters, as reflected by constraints xj ≤ xi for a set A of pairs (i, j),
as well as simple upper and lower bounds on the parameter values. If, in addition,
the model requires the parameter values to be integer, then the problem of jointly
estimating the parameter values so as to minimize total loss is precisely an instance
of the CCC problem. If there is no such integrality restriction, then the problem is
an instance of the continuous relaxation of CCC, which is discussed in section 8.

Algorithms for the CCC problem have been previously devised. Picard and
Queyranne [19] proposed an algorithm solving the problem with a running time of

O(n(mn log n
2

m + n logU)). Ahuja, Hochbaum, and Orlin [3] addressed a generaliza-
tion of CCC—a convex cost dual of minimum cost network flow. Their algorithm for

this convex cost dual of minimum cost flow has running time of O(mn log n
2

m log(nU)).

The method of Hochbaum and Naor [9] solves integer problems on monotone in-
equalities in at most two variables per inequality. A monotone inequality is of the
form ax − by ≤ c, where the coefficients of x and y are of opposite signs. Obvi-
ously, the constraints of CCC are monotone inequalities. The algorithm of Hochbaum

and Naor runs in pseudopolynomial time O(
∑
i(ui − 	i)mU log n

2U
m ). It is possible

to combine that algorithm with a scaling approach implemented for CCC in time

O(mn logU log n
2U
m ); see [2]. Hochbaum [12] generalized the concept of monotone

inequality to include three variables, ax − by ≤ c + z, for a, b ≥ 0. The run time for
solving integer programming on such inequalities was shown in [12] to be solved in
the same time as the algorithm in [2].

The algorithm described here solves CCC in time O(mn log n
2

m + n logU). The
first term in the complexity expression is the run time required to solve the min-
imum closure problem, and the second factor is the run time required to find the
integer minima of n convex functions. Since CCC generalizes both these problems,
as discussed above this is the best complexity achievable for CCC. It is likely that
if a faster algorithm for the minimum closure problem is discovered, then the run
time of the algorithm can be respectively improved. For the second term the factor
of log U cannot be avoided, as any algorithm solving a constrained nonlinear and
nonquadratic optimization problem may not run in strongly polynomial time [11].
When the functions fi are quadratic convex, the algorithm runs in strongly polyno-

mial time O(mn log n
2

m + n log n). For the isotonic regression problem the running
time improves to O(n log n + n logU), and thus the complexity of our algorithm is
O(n log(max{n,U})).

There are efficient algorithms known for solving several special cases of CCC. Any
maximum flow algorithm can be used to solve the minimum (or maximum) closure
problem. The most efficient algorithm known to date, due to Goldberg and Tarjan
[8], solves the maximum flow and thus the minimum cut, and the closure problems

have complexity of O(mn log n
2

m ).

The isotonic regression problem is an instance of CCC defined on a linear order.
Ahuja and Orlin report on an O(n logU) time algorithm for this problem [1]. The
problem has been reviewed extensively in the statistical study of observations. Barlow
et al. [4] provide an excellent review of applications and algorithms for the isotonic
regression problem as well as the CCC problem.
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3. Solving the minimum closure as a minimum cut problem. Recall that
the minimum closure problem is a special case of CCC attained by setting the variables
to be binary. We review here the procedure for solving the minimum closure problem
with a minimum cut algorithm. Although CCC is a problem far more general than the
minimum closure, our algorithm for CCC also solves the minimum closure problem
in the most efficient complexity known.

A set of nodes S ⊆ V in a directed graph G = (V,A) is said to be closed if all
predecessor nodes of S are also included in S; i.e., if j ∈ S and (i, j) ∈ A, then i ∈ S.
Equivalently, S is said to be closed if it has no incoming arcs.

We review here the reduction of Picard [17], demonstrating that the minimum
closure problem is solved using a minimum cut procedure. We first define an s, t-graph
that contains a source and a sink and that is associated with the minimum closure
problem: the graph has a node j associated with each variable xj . A source, and
sink nodes s and t, are now added to the graph. If the weight of the variable wj is
positive, then node j has an arc from the source into it with capacity wj . If the node
has weight wj which is negative, then there is an arc from j to t with capacity −wj .
Let V + be the set of nodes with positive weights and V − be the set of nodes with
negative weights.

Each inequality xi ≥ xj is associated with an arc (i, j) of infinite capacity. Con-
sider any finite s, t-cut in the graph that partitions the set of nodes into two subsets
commonly referred to as the source set of the cut and the sink set of the cut, {s} ∪ S
and {t} ∪ S̄. It is easy to see that S̄ is a closed set if there are no infinite capacity
arcs from S to S̄.

We denote by (A,B) the collection of arcs with tails at A and heads at B. The
corresponding sum of capacities of these arcs is denoted by C(A,B), C(A,B) =∑
i∈A,j∈B cij , where cij is the capacity of arc (i, j) . Let w(A) =

∑
j∈A wj .

Given a finite cut ({s} ∪ S, S̄ ∪ {t}), we have

minS̄⊆V [C({s} ∪ S, S̄ ∪ {t})] = minS̄⊆V
∑
j∈S̄∩V + wj +

∑
j∈S∩V −(−wj)

= minS̄⊆V
∑
j∈S̄∩V + wj − (

∑
i∈V − wi −

∑
i∈S̄∩V − wi)

= minS̄⊆V
∑
j∈S̄ wj − w(V −).

In the last expression the term w(V −) is a constant. Thus the closed set S̄ of minimum
weight is also the sink set of a minimum cut and vice versa—the sink set of a minimum
cut (without t), which has to be finite, also minimizes the weight of the closure.

4. Verifying feasibility in linear time. We define a graph associated with
CCC that has one node representing each variable in the problem. We let the set
of nodes be denoted by V . Each inequality xi ≥ xj is associated with an arc (i, j).
We let the set of arcs be denoted by A. If the directed graph (V,A) has strongly
connected components, then each node in the strongly connected component shares
a directed cycle with each of the other nodes in the strongly connected component,
and thus the values of the corresponding variables must be equal.

Finding the strongly connected components of a graph can be accomplished in
O(m) time; see, e.g., [6, Chap. 23]. The strongly connected components partition the
nodes of the graph into V1 ∪ · · · ∪ Vk. In each strongly connected component Vi we
let 	(Vi) be the tightest lower bound in Vi and let u(Vi) be the tightest upper bound
in Vi. That is,

	(Vi) = max
v∈Vi

	v and u(Vi) = min
v∈Vi

uv.
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A necessary condition for feasibility is that all variables in the same strongly con-
nected component assume the same value that falls in the interval range [	(Vi), u(Vi)].
Since the above recursion is performed in linear time, verifying this necessary condi-
tion amounts to checking that 	(Vi) ≤ u(Vi) in O(m+ n) steps.

We now consolidate each strongly connected component into a single node Vi
defined on the interval [	(Vi), u(Vi)]. The function associated with such a node (or
variable) is the sum of the convex functions associated with all nodes in Vi, which is
a convex function. The graph of strongly connected components is thus a directed
acyclic graph (DAG).

Let Vi be a predecessor of Vj in different strongly connected components. Then
the following updates are valid:

	(Vi)← max{	(Vj), 	(Vi)}, u(Vj)← min{u(Vi), u(Vj)}.
All these updates can be performed in time O(m). A necessary condition for

feasibility is that for i = 1, . . . , k, 	(Vi) ≤ u(Vi). This condition is also sufficient since,
if satisfied, there exists a feasible solution which is, say, to set all variables to the
lower bounds of their corresponding intervals.

Our optimization algorithm runs faster if the feasibility preprocessing step is
performed and the interval bounds are adjusted. This preprocessing step, however, is
not essential and does not affect the worst case complexity.

5. The threshold theorem. The threshold theorem is the cornerstone of our
algorithm. The theorem is an extension of an earlier result of Picard and Queyranne
[19].

Let α be a scalar in the interval (	, u) = (mini∈V 	i,maxi∈V ui). Consider further
the convex extension of the functions fi() on the real line by setting f ′i(x) to be equal
to M at values of x > ui, and to −M for values x < 	i, for M a suitably large value.
We will comment after the statement of the theorem on how large M should be. The
functions fi() are therefore defined for any real value x as follows:

fi(x) =






fi(ui) +M(x− ui) if x > ui,
fi(x) if 	i ≤ x ≤ ui,
fi(	i) +M(	i − x) if x < 	i.

Consider now the minimum closure problem with variable weights wi = wi(α)
that are the subgradients of fi at α, wi = f ′i(α) = fi(α + 1) − fi(α). The theorem
establishes that all elements i in the minimum weight closed set S∗ satisfy that for any
optimal solution x, xi > α, and satisfy that for all elements j in the complement of
S∗, xj ≤ α. Consequently, the theorem allows for the reduction of CCC to a sequence
of minimum closure problems.

In case there are several optimal minimum closed sets, we define a minimal mini-
mum closed set as a minimum closed set that does not contain other minimum closed
sets. Similarly, a maximal minimum closed set is defined as a minimum closed set
that is not contained in another minimum closed set.

Theorem 5.1. Let wi = f ′i(α) be the weight assigned to node i, i = 1, . . . , n, in
a minimum closure problem defined on the directed graph G = (V,A). Let S∗ be the
minimal minimum weight closed set in this graph. Then an optimal solution x∗ to the
CCC problem satisfies x∗i > α if i ∈ S∗ and x∗i ≤ α if i ∈ S̄∗.

Proof. The proof is by contradiction. Let S∗ be the minimal minimum weight
closed set, and suppose there is a nonempty subset So ⊆ S∗ such that at an optimal
solution x∗, x∗j ≤ α for all j ∈ So.
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Since at the optimum x∗j > α for j ∈ S∗ \So, the set S∗ \So must be closed, as it
has no predecessors (larger values) in So. But this set is not a minimal minimum closed
set, as S∗ is minimal. Thus the weight of nodes in So—the total sum of subgradients—
must be negative,

∑
j∈So f ′j(α) < 0. Furthermore, increasing the values of all x∗j in

this set to α+ ε ≤ mini∈S∗\So x∗i for some ε > 0 does not violate feasibility, since the
values of their predecessors in S∗ \ So are all ≥ α + ε. Thus replacing x∗j for j ∈ So

by α is feasible and strictly reduces the weight of the closure compared to an optimal
solution. This contradicts the assumption that x∗ is optimal.

An analogous contradiction is reached if we assume that an optimal solution has
in the set S̄∗ a variable with value > α.

As a result of the theorem, we can decompose the set of nodes into subsets that
imply a narrowing of the interval in which the optimal value of the respective variable
is to be found: For a given value of α we solve the minimum closure problem with
wi = f ′i(α) for a minimal minimum closure S∗. For all i ∈ S∗ we conclude that
x∗i ∈ (max{	i, α}, ui] and for all j ∈ S̄∗, x∗j ∈ [	j ,min{α, uj}].

Concerning the value of M , it is sufficient to set M =
∑
imax{f ′i(ui), |f ′i(	i)|}.

We claim that for a feasible problem a node with weight M is never in a minimum
weight closed set, and a node with weight −M is always in a minimum weight closed
set. If that were not the case, then either we can generate a closed set of a strictly
lower value by including nodes of weight −M and excluding nodes of weight M or
else there is a node j of weight −M that has as its predecessor a node i of weight M .
But that means that the given value of α satisfies ui < α < 	j , and there is no feasible
solution where the value of xi ∈ [	i, ui] is at least as large as the value of xj ∈ [	j , uj ].

Indeed, the algorithm we employ to solve CCC can be used to verify feasibility as
well—for every value of α the nodes of weight M must be in the source set and the
nodes of weight −M must be in the sink set or else the problem is infeasible. Yet, if
the feasibility test of section 4 is used, then whenever the threshold theorem is invoked
in the algorithm the nodes of weight −M are known a priori to be in the minimum
closure and thus in the sink set, and those nodes of weight M are known to be in the
source set. This permits the “shrinking” of nodes of weight M with the source and
nodes of weight −M with the sink. The size of the graph is thus reduced and the
value of M is not explicitly used if the feasibility test is invoked as a preprocessing
step.

6. The algorithm. One obvious method of using the threshold theorem for
solving CCC is to perform a search by calling for the solution of the minimum closure
problem for all integer values of α in the interval (	, u). When done, the output of
such a process is a partition of the set of variables V into q sets, and the interval into
q disjoint intervals, so that all variables in the same set have their optimal values in
the same interval. The goal would be to find for each variable xj the largest value of
α for which it is still in the source set and to find the smallest value of α for which
it is no longer in the source set. With this information we narrow down the value of
xj at an optimal solution to an interval defined by these values. We later show that
once these intervals are identified, all variables assigned to the same interval assume
the same value in that interval, and that value is the lower end of the interval. One
drawback of the approach just described is that it makes U calls to a minimum cut
procedure and is thus pseudopolynomial.

It is easy to see that a binary search type approach could be used to implement
the procedure of identifying the intervals to a polynomial time procedure. Next we
show that one can do still better by implementing the process of identifying the set
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and interval partitioning in strongly polynomial time and in the complexity of solving
a single minimum cut problem.

The key to our approach is to utilize parametric minimum cut to generate all the
breakpoints of the decompositions. This can be done, as is shown here, by adapting
the method of Gallo, Grigoriadis, and Tarjan [7], which works in the same running
time as a single minimum cut procedure.

6.1. The parametric graph Gλ. We create a graph with parametric capaci-
ties, Gλ = (V ∪{s, t}, A). Each node j ∈ V has an incoming arc from s with capacity
max{0, f ′j(λ)} and an outgoing arc to the sink t with capacity −min{0, f ′j(λ)}. The
capacities of the arcs adjacent to the source in this graph are monotone nondecreasing
as a function of λ, and the arcs adjacent to the sink have capacities that are monotone
nonincreasing as a function of λ. Note that each node is connected with a positive
capacity arc, either to source, or to sink, but not to both. Denote the source set of a
minimum cut in the graph Gλ by Sλ.

Restating the threshold theorem in terms of the corresponding minimum cut for
the graph Gλ associated with the closure graph, any optimal solution x satisfies that
xj > λ for j ∈ S̄λ and xj ≤ λ for j ∈ Sλ, where Sλ is the maximal source set of a
minimum cut.

Let 	 be the lowest lower bound on any of the variables and u the largest up-
per bound. Consider varying the value of λ in the interval [	, u]. As the value of λ
increases, the sink set becomes smaller and contained in the previous sink sets cor-
responding to smaller values of λ, specifically, for some λ ≤ 	 Sλ = {s} and some
λ ≥ u Sλ = V ∪ {s}. We call each value of λ, where Sλ strictly increases, a node-
shifting breakpoint. For λ1 < · · · < λ� the set of all node-shifting breakpoints we get
a corresponding nested collection of source sets,

{s} = Sλ1 ⊂ Sλ2
⊂ · · · ⊂ Sλ�

= {s} ∪ V.

Our goal is to partition the variables into the subsets S(k) = Sλk
− Sλk−1

, k =
2, . . . , 	. The property of each subset S(k) is that all variables in the set have optimal
value in the interval (λk−1, λk]. As we prove next, the optimal value of all variables
in S(k) is x∗, where

x∗ = λk−1 + 1.

Lemma 6.1. For j ∈ S(k), the value of xj at an optimal solution, x
∗
j , is λk−1+1.

Proof. According to the threshold theorem, λk−1 is the largest value so that for
j ∈ S(k), xj > λk−1.

It follows that xj = λk−1 + 1.

6.2. Identifying an integer node-shifting breakpoint. Since we are inter-
ested only in integer valued solutions, we can consider the convex functions fj(x) to be
piecewise linear segments connecting the values of fj(k) on integer points 	j ≤ k ≤ uj .
For such functions the derivatives at the integer points are not well defined and in-
deed could be any subgradient of the function at the respective integer point. We
will consider the derivative f ′j(x) to be a step function with the value in the interval
(k − 1, k] equal to fj(k)− fj(k − 1).

We denote a maximal minimum cut source set in Gλ by Smax
λ and a minimal

minimum cut source set by Smin
λ .

The source set of a minimum cut of Gλ remains invariant for λ ∈ (k−1, k]. Thus,
in order to verify that λ is a node-shifting breakpoint, it suffices to compare Smax

λ
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with Smin
λ+ε for ε > 0 sufficiently small. In our case we consider only integer values of

λ, and ε = 1 is a small enough value. So if Smax
λ ⊂ Smin

λ+1, then λ is a node-shifting
breakpoint.

The existence of a breakpoint in an interval (λ1, λ2) is confirmed if and only if
Smax
λ1
⊂ Smin

λ2
.

6.2.1. Parametric analysis. Gallo, Grigoriadis, and Tarjan [7] devised a com-
plete parametric analysis algorithm using the push-relabel algorithm that runs in the
same time as a single push-relabel algorithm and identifies all node-shifting break-
points. The algorithm is applicable to graphs with source adjacent arcs having ca-
pacities monotone nondecreasing in the parameter λ and sink adjacent arcs having
capacities nonincreasing in λ. The running time of the algorithm for linear capacity

functions is O(mn log n
2

m ). The same result is achieved using the pseudoflow algorithm
[13] with a running time of O(mn log n). We let the generic run time be Qmn, where

Q is a constant times log n
2

m for push-relabel and a constant times logn for pseudo-
flow. Whenever we refer in the analysis below to a minimum cut algorithm it can
be either the push-relabel algorithm or the pseudoflow algorithm (and its variants).
Other minimum cut algorithms do not satisfy the necessary requirements to make
them amenable to the analysis of the parametric procedure.

We assume henceforth that the proceduremin-cut(Gλ) returns both the minimal
and maximal source sets of minimum cuts (if different), Smin

λ , Smax
λ , and Smin

λ+1. The
procedure also returns the state of the graph at the end of the run, which includes node
labels and preflows for the push-relabel algorithm and node labels and pseudoflows
for the pseudoflow algorithm.

For a given interval (λ1, λ2) we can find all node-shifting breakpoints by using
the procedure parametric. The input to the procedure includes R1 and R2, which
are runs of the minimum cut algorithm that are initiated on an s, t-graph G and the
reverse graph GR, respectively.

Procedure parametric (G,λ1, λ2, S
max
λ1

, Smin
λ2

, R1, R2).
Contract in G: s← s ∪ Smax

λ1
, t← t ∪ S̄min

λ2
. If V = {s, t}, or, if λ2 − λ1 ≤ 1, halt

“no breakpoints.”

Else, let λ∗ = �λ1+λ2

2 �.
Call min-cut(Gλ∗ , R1, R2) for the output S

min
λ∗ , Smax

λ∗ , and R∗.
If λ∗ is a breakpoint, output λ∗ and Smin

λ∗ .
Call parametric (G,λ1, λ

∗, Smax
λ1

, Smin
λ∗ , R1, R

∗).
Call parametric (G,λ∗, λ2, S

max
λ∗ , Smin

λ2
, R∗, R2).

end

The choice of λ∗ as the median in the interval (λ1, λ2) leads to an additional run
time of O(n log(λ1 − λ2)), where n is the number of adjusted capacity functions. For
specific capacity functions λ∗ is replaced by the intersection of the two cut capacity
functions.

The analysis of the complexity of the procedure follows arguments used in [7].1 It
is essential that the algorithm used in the runs for minimum cut satisfies the following
properties:

1The source of some of this analysis is from private communication of the first author with R.
Tarjan in 1996.
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• Reflectivity: The complexity of the algorithm remains the same whether run
on the graph or reverse graph.
• Monotonicity: Running the algorithm on a monotone sequence of parameter
values has the same complexity as a single run.

The main recursive procedure is min-cut(Gλ∗ , R1, R2), where R1 is the status
of the graph (labels assigned to nodes and flow values) Gλ1 after a minimum cut was
identified and R2 is the state of the graph after the minimum cut was found on the
reverse graph GR

λ2
.

The procedure is implemented as follows: Run a maximum flow algorithm on
Gλ∗ as a monotone continuation of the run R1. Concurrently, run a maximum flow
algorithm on GR

λ∗ as a monotone continuation of the run R2. Suppose that the
algorithm for the forward direction (on G) stops first (the other case is symmetric).
If |Smin

λ∗ | > n/2, complete the execution of the maximum flow algorithm on GR and
let R∗ be the resulting state of the graph.

Consider the execution that follows immediately of the recursive calls to para-
metric (G,λ1, λ

∗, Smax
λ1

, Smin
λ∗ , R1, R

∗), and to parametric (G,λ∗, λ2, S
max
λ∗ , Smin

λ2
,

R∗, R2). Consider graphs G(S̄min
λ∗ ) and G(Smax

λ∗ ) on which min-cut is called recur-
sively. Let R3 and R4, respectively, be the forward and backward runs on G(S̄min

λ∗ )
when min-cut is applied. Let R5 and R6, respectively, be the forward and backward
runs on G(Smax

λ∗ ) when min-cut is applied. We distinguish two cases.

Case 1. If n1 > n/2, we regard R4 as a continuation of R2, and regard R3 as a
restart of R1, that is, as a continuation of the run of which R1 was a continuation. We
must charge for R5 and R6 as starts of new runs. The 2Qm1n1 term in the recurrence
for T (m,n) below accounts for the new runs of the push-relabel algorithm that begin
with R5 and R6.

Case 2. Symmetrically, if n1 ≤ n/2, we regard R5 as a continuation of R1, and
regard R6 as a restart of R2. In this case, the 2Qm1n1 term in the recurrence for
T (m,n) below accounts for the new runs that begin with R3 and R4.

In Case 1, we still must account for the cost of R1. In Case 2, we still must account
for the cost of R2. Procedure min-cut runs R1 and R2 concurrently, stopping when
the first one stops. Suppose R1 stops first. Then the cost of R1 is covered by the cost
of R2, which takes care of Case 1. Note that in this case R2 is run to completion,
even though it takes longer than R1 (see implementation); R1 is the abandoned run,
but it is cheaper than R2, which is the good run. Suppose R1 stops first but we are
in Case 2. Although run R2 is abandoned, we have spent no more time on it than the
time spent running R1, which was a good run. In this case, the run of R1 covers the
time spent on (partially) running R2. The situation is symmetric if R2 stops first. In
every case the time spent on the completed good run is at least as much as the time
spent on partially or completely performing the run that is abandoned.

Throughout the procedure the total complexity of abandoned runs is at most
the complexity of one run with monotonically increasing (or decreasing) parameter
values. In addition, the total work for good runs on Gλ∗ and GR

λ∗ is at most twice the
complexity of one run on monotone parameter values. The total complexity charged
for these runs is at most that of three runs of the minimum cut algorithm, 3Qmn.

Let m1 +m2 ≤ m, n1 + n2 ≤ n, and n1 ≤ 1
2n. The running time T (m,n) is the

additional running time required by the algorithm, taking into account the new runs
initiated with each recursive call to min-cut. Let Q be a constant. Then

T (m,n) = T (m1, n1) + T (m2, n2) + 2Qm1n1.
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The solution to the recursion is T (m,n) = Qmn. Thus the overall run time of the

parametric procedure with the push-relabel algorithm is O(mn log n
2

m ). The run time
incurred in adjusting capacities is O(n logU) throughout the procedure.

6.3. The algorithm. Let 	 be the lowest lower bound on any of the variables
and u be the largest upper bound. Let U = u− 	.

Procedure convex cost closure (G, fj , j = 1, . . . , n).
Step 1: Call parametric (	, u, ∅, V ).

Let the output be a set of up to n breakpoints λ1, λ2, . . . , λ� and the corre-
sponding sets of source sets of minimum cuts S1 ⊂ S2 · · · ⊂ S�.

Step 2: Output the optimal solution x∗ where for j ∈ Sk − Sk−1, x
∗
j = λk−1 + 1.

The complexity of the algorithm is O(mn log n
2

m + n logU).

7. Special cases.

7.1. The quadratic CCC problem. Nonlinear and nonquadratic optimiza-
tion problems with linear constraints were proved impossible to solve in strongly
polynomial time in a complexity model of the arithmetic operations, comparisons,
and the rounding operation [11]. That negative result, however, is not applicable to
the quadratic case, and thus it may be possible to solve constrained quadratic op-
timization problems in strongly polynomial time. Yet, few quadratic optimization
problems are known to be solvable in strongly polynomial time. For instance, it is not
known how to solve the minimum quadratic cost network flow problem in strongly
polynomial time. For the convex quadratic cost closure problem our result adds to
the limited repertoire of quadratic problems solved in strongly polynomial time.

In the quadratic case our algorithm is implemented to run in strongly polynomial
time. This is easily achieved since the derivative functions are linear—a case that is

shown in [7] to be solved in O(mn log n
2

m ). Thus the overall run time of the algorithm
is dominated by the complexity of the minimum cut,

O

(
mn log

n2

m

)
.

7.2. Isotonic regression. The isotonic regression problem is a special case of
CCC in which the order is linear and the corresponding graph G = (V,A) is a path
from node n to node 1. In other words, the inequalities associated are of the type

xi ≤ xi+1 for all i = 1, . . . , n.

There are only n possible cuts in such a graph, each with a source set Si of the
form Si = {1, . . . , i}. Each cut is thus ({1, . . . , i}, {i + 1, . . . , n}). The minimum cut
for such graphs is trivially identified in O(n) time by comparing the capacities of
the n possible cuts. The capacity of cut (Si, S̄i) is computed in O(1) by subtracting
from the capacity of (Si−1, S̄i−1) the weight of node i, wi. Indeed, if the weight wi is
positive, then it contributes wi to the capacity of the cut (Si−1, S̄i−1) but not to the
capacity of the cut (Si, S̄i). If wi < 0, then node i contributes −wi to the capacity of
(Si, S̄i) but 0 to the capacity of (Si−1, S̄i−1).

Consider the closure graph in which each node has a weight f ′j(x) associated with
it for a given value of x. Minimizing the value of the cut is equivalent to minimizing
the sum of weights of the sink set (see section 3). Alternatively, the cut is minimized
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when the weight of the corresponding source set is maximized, thus seeking an index
i to maximize Fi(x) =

∑i
j=1 f

′
j(x). We thus conclude with the following.

Lemma 7.1. If
∑i
j=1 f

′
j(x) = maxk=1,...,n

∑k
j=1 f

′
j(x), then the minimum cut in

the graph Gx is (Si, S̄i).

Consider the partial sum functions

F1(x), F2(x), . . . , Fn(x),

where Fi(x) =
∑i
j=1 f

′
j(x). Recall that the functions f

′
j(x) are monotone nondecreas-

ing in x. Denote the roots of the partial sum functions by bi. Thus Fi(bi) = 0. If
the function is negative in the interval [	, u], then we let bi = u + 1. If the function
is positive throughout the interval, then we let bi = 	 − 1. Let bi1 = mini bi. Then
for x ≤ bi1 the optimal minimum cut is (∅, V ). For this cut, the maximum weight
source set is empty since all the partial sums of weights are nonpositive. The value
of λ1 = bi1 is thus a breakpoint beyond which, for x > bi1 , the source set of the
minimum cut is {1, . . . , i1}.

As the value of x increases sufficiently so that
∑i2
j=i1+1 f

′
j(x) = Fi2(x)−Fi1(x) ≥

0, the nodes {i1, . . . , i2} join the source set of the minimum cut. In other words, the
second breakpoint is the smallest value λ2 so that there is an index i2 > i1 such that

Fi2(λ2)− Fi1(λ2) ≥ 0.

The general procedure is as follows:

Procedure isotonic regression breakpoints.
i0 = 0, λ0 = 	− 1, k = 1
while ik−1 < n, do
Find smallest integer value of λk such that for ik > ik−1, Fik(λk)− Fik−1

(λk) ≥ 0.
k ← k + 1
repeat
Output λ1, . . . , λk.
end

A naive implementation of this algorithm has n iterations with each iteration in-
volving the finding of the roots of O(n) functions. The total complexity is O(n2 logU).
We can do better with the implementation of the parametric search algorithm that
requires the solution of the minimum cut problem for a specific parameter value in
O(n). However, each time the procedure calls for the minimum cut, the weights of
the nodes must be updated for the new parameter value. This update requires O(n)
operation. The additional work of finding the roots of the n functions adds up to a
total complexity of O(n2 + n logU).

To achieve an even better running time we investigate further the properties of the
partial sum functions Fi(x). These functions are obviously monotone nondecreasing
as sums of monotone nondecreasing functions. Another important property proved in
the next lemma is that each pair of such functions intersects at most once.

Lemma 7.2. For i < j and functions Fi and Fj, if for some value of the argument
λ, Fi(λ) < Fj(λ), then Fi(x) < Fj(x) for any x > λ.

Proof. Fj(x)−Fi(x) is a sum of monotone nondecreasing functions
∑j
k=i+1 f

′
k(x).

Thus the difference Fj(x) − Fi(x) > Fj(λ) − Fi(λ) > 0 and can increase only as
the value of x grows. Thus the two functions do not intersect for any value of
x > λ.
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An immediate corollary of the lemma is that any pair of functions Fi, Fj can
intersect at most once.

Consider the upper envelope of the functions Fi represented as an array of func-
tions and breakpoints (	, 0, bi1 , Fi1 , bi2 , Fi2 , . . . , bin , Fin , u). The functions on the en-
velope have the property that for all j,

Fik(x) ≥ Fj(x), x ∈ [bik−1, bik ].

From the lemma it follows that the upper envelope of the partial sums functions
has at most n breakpoints, where the function on the envelope changes. The first
breakpoint is bi1 . The next breakpoint occurs for a value of x when some function
Fi2(x) = Fi1(x). It is easy to see from Procedure isotonic regression breakpoints that
the list of breakpoints of this envelope is precisely the list of the breakpoints that
determine the sequence of cuts.

The following sweep algorithm may be used to find the upper or upper envelope
of a set of functions: Partition arbitrarily the set of functions into two equally sized
sets F1, F2. Compute recursively the upper envelopes of F1, F2. Let E1, E2 denote
the two resulting upper envelopes. Sweep the two upper envelopes E1, E2 from left
to right and compute the upper envelope of the two upper envelopes. For a detailed
description of the above algorithm the reader is referred to [22, pp. 134–136] and [5].

It remains to show how to implement the sweep algorithm for our particular set
of functions. Instead of partitioning arbitrarily the set of functions, we choose the
partition of F1 = {1, . . . , n} to {1, . . . , �n2 �} and F2 = {�n2 + 1, . . . , n�}. That is, one
set contains the lower half-set of indices and the other set contains the upper half-set
of indices.

Consider the first breakpoint in E1 and E2 (recall that at that point the partial
sum values are still 0). If the first breakpoint of E1 is larger than the first breakpoint
of E2, then the first portion of E1 is below the first portion of E2. From the lemma
we see that no pairs of functions from the two sets intersect, and the entire envelope
E1 lies below the envelope E2. Thus the merged envelope is E2.

If, on the other hand, the first breakpoint of E1 is smaller than the first breakpoint
of E2, then there could be a point where a function from F2 crosses a function from
F1. We consider the array of breakpoints of the envelope E1 for the last breakpoint,
where it is still above E2. Similarly, we search the array of breakpoints of the envelope
E2 for the last breakpoint, where it is still below E1. Since there are O(n) breakpoints
per envelope, the search for that breakpoint is done by binary search in O(log n) steps.
The intersection point is then to be determined between this breakpoint and the next
one on each envelope. Finding the intersection of Fi(x) and Fj(x) takes at most
O(logU) steps.

Thus the merger of two envelopes of functions is executed inO(log n+logU). Since
there are at most n mergers in the procedure, the total running time is O(n log n +
n logU).

Once all the upper envelopes have been identified we have the implied source sets
of the associated cuts:

{1, . . . , i1}, {1, . . . , i2}, . . . , {1, . . . , iq}.
If i ∈ {ik−1, . . . , ik}, then x∗i ∈ (bik−1

, bik ]. It remains to apply Lemma 6.1 in
order to determine an optimal solution:

x∗i = bik−1
+ 1.
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Thus the total complexity of the algorithm for the isotonic regression problem is
O(n(logU + log n)). In the quadratic case this leads to a complexity of O(n log n).

8. The continuous CCC problem. When solving the problem in continuous
variables, one has to determine how to output the solution. For instance, the minimum
of a cubic function can be irrational even if all coefficients are integers. To fully
provide the output would then require infinite complexity. To that end we employ
the ε-accurate complexity model introduced in [10]. According to this model a solution
x(ε) is specified as an integer multiple of ε; i.e., it lies on the so-called ε-grid. The
solution is such that there is an optimal vector x∗ so that

||x(ε) − x∗||∞ < ε.

The continuous problem can be solved using the same algorithm used for the
integer case. The only modification required is in the parametric analysis procedure
where the choice of λ∗ is such that a median point in the interval (λ1, λ2) lies on the
ε-grid. This is done in additional O(n log(U/ε) time. The complexity of the algorithm
is thus the complexity of finding the roots of the n functions plus the complexity of a

minimum cut, O(mn log n
2

m + n log(U/ε)).

9. Conclusions and extensions. The results here have been extended to a
problem that is more general than the CCC problem. The problem is the convex s-
excess problem which generalizes the s-excess problem discussed in [13]. The problem
is formulated as follows:

(Convex s-excess) Min
∑
j∈V fj(xj) +

∑
eijzij

subject to xi − xj ≤ zij for (i, j) ∈ A,
uj ≥ xj ≥ 	j , j = 1, . . . , n,
zij ≥ 0, (i, j) ∈ A.

This problem is solved with precisely the same complexity as the minimum closure
problem. To that end, we proved a generalization of the threshold theorem reported
in [15].

There are applications of the convex s-excess problem in the areas of image seg-
mentation and Markov random fields. The problem is of further interest because of
its relationship to the minimum cost network flow problem.

Notice that the terms associated with the variables zij are linear. This is signifi-
cant because the dual of the minimum cost network flow (MCNF) problem is

(Dual MCNF) Min
∑
j∈V bjxj +

∑
eijzij ,

subject to xi − xj ≤ cij + zij for (i, j) ∈ A,
uj ≥ xj ≥ 	j , j = 1, . . . , n,
zij ≥ 0, (i, j) ∈ A.

That is, the right-hand sides of the constraints have a constant term in addition to
the term zij . Thus, if one can solve the convex s-excess problem with convex function
term

∑
eij(zij), then it would have been possible to solve also the dual of the MCNF

in the same running time for a single application of maximum flow or minimum cut.

Notes added in proof. (1) The parametric algorithm was shown in [7] to work
in strongly polynomial time for linear capacity functions. Hochbaum and Hong [About
strongly polynomial time algorithms for quadratic optimization over submodular con-
straints, Math. Programming, 69 (1995), pp. 269–309] showed that the same run
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time applies when the monotone capacity functions are piecewise linear. The number
of pieces in the piecewise linear functions N adds O(Nn) to the complexity of the
parametric minimum cut procedure. Since for CCC the capacity functions are deriva-
tives of convex functions it follows that for convex functions that are piecewise linear
or piecewise quadratic the run time remains strongly polynomial.

(2) In [13] Hochbaum shows that the pseudoflow algorithm solves the maximum
flow minimum cut algorithm for tree graphs in O(n) steps. In tree graphs the set of
arcs other than those adjacent to source and sink form an (undirected) acyclic graph.
Thus when the partial order graph is a tree the CCC is solved in O(n logU) using the
procedure of [13] with the binary search algorithm described in section 6. This is an
alternative algorithm to solve the isotonic regression problem where the linear order
graph is a path and thus a tree.

Acknowledgments. The first author thanks Sariel Har-Peled for his input on
the state of the art of manipulating lower and upper envelopes of functions and for
pointing out references [5], [21], and [22]. The first author also is grateful to Günter
Rote for pointing out a simplification in the procedure.

REFERENCES

[1] R. K. Ahuja and J. B. Orlin, A fast scaling algorithm for minimizing separable convex func-
tions subject to chain constraints, Oper. Res., 49 (2001), pp. 784–789.

[2] R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin, A Cut Based Algorithm for the Convex Dual
of the Minimum Cost Network Flow Problem, manuscript.

[3] R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin, Solving the convex cost integer dual network
flow problem, Management Sci., to appear.

[4] R. E. Barlow, D. J. Bartholomew, J. M. Bremer, and H. D. Brunk, Statistical Inference
Under Order Restrictions, Wiley, New York, 1972.

[5] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geom-
etry: Algorithms and Applications, Springer-Verlag, Berlin, 1997.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1989.

[7] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan, A fast parametric maximum flow algorithm
and applications, SIAM J. Comput., 18 (1989), pp. 30–55.

[8] A. V. Goldberg and R. E. Tarjan, A new approach to the maximum flow problem, J. Assoc.
Comput. Mach., 35 (1988), pp. 921–940.

[9] D. S. Hochbaum and J. Naor, Simple and fast algorithms for linear and integer programs with
two variables per inequality, SIAM J. Comput., 23 (1994), pp. 1179–1192.

[10] D. S. Hochbaum and J. G. Shanthikumar, Convex separable optimization is not much harder
than linear optimization, J. Assoc. Comput. Mach., 37 (1990), pp. 843–862.

[11] D. S. Hochbaum, Lower and upper bounds for allocation problems, Math. Oper. Res., 19 (1994),
pp. 390–409.

[12] D. S. Hochbaum, Solving integer programs over monotone inequalities in three variables: A
framework for half integrality and good approximations, European J. Oper. Res., 140 (2002),
pp. 291–321.

[13] D. S. Hochbaum, The Pseudoflow Algorithm for the Maximum Flow Problem, manuscript.
[14] D. S. Hochbaum, Efficient algorithms for the inverse spanning tree problem, Oper. Res., to

appear.
[15] D. S. Hochbaum, An efficient algorithm for image segmentation, Markov random fields and

related problems, J. Assoc. Comput. Mach., 48 (2001), pp. 686–701.
[16] W. L. Maxwell and J. A. Muckstadt, Establishing consistent and realistic reorder intervals

in production/distribution systems, Oper. Res., 33 (1985), pp. 1316–1341.
[17] J. C. Picard, Maximal closure of a graph and applications to combinatorial problems, Man-

agement Sci., 22 (1976), pp. 1268–1272.
[18] J.-C. Picard and M. Queyranne, Selected applications of minimum cuts in networks,

INFOR—Canad. J. Oper. Res. Inform. Process., 20 (1982), pp. 394–422.
[19] J. C. Picard and M. Queyranne, Integer Minimization of a Separable Convex Function Sub-

ject to Variable Upper Bound Constraints, manuscript.



MINIMIZING A CONVEX COST CLOSURE SET 207

[20] R. Roundy, A 98%-effective integer-ratio lot-sizing for one-warehouse multi-retailer systems,
Management Sci., 31 (1985), pp. 1416–1430.

[21] M. I. Shamos and D. Hoey, Geometric intersection problems, in Proc. 17th Ann. Symp. on
Foundations of Computer Science, IEEE, Long Beach, CA, 1976, pp. 208–215.

[22] M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applica-
tions. Cambridge University Press, New York, 1995.

[23] P. T. Sokkalingam, R. Ahuja, and J. B. Orlin, Solving inverse spanning tree problems
through network flow techniques, Oper. Res., 47 (1999), pp. 291–298.

[24] A. F. Veinott, Jr., Least d-majorized network flows with inventory and statistical applications,
Management Sci., 17 (1971), pp. 547–567.



ON GENERALIZED DELANNOY PATHS∗

JEAN-MICHEL AUTEBERT† AND SYLVIANE R. SCHWER‡

SIAM J. DISCRETE MATH. c© 2003 Society for Industrial and Applied Mathematics
Vol. 16, No. 2, pp. 208–223

Abstract. A Delannoy path is a minimal path with diagonal steps in Z
2 between two arbitrary

points. We extend this notion to the n dimensions space Z
n and identify such paths with words on

a special kind of alphabet: an S-alphabet. We show that the set of all the words corresponding to
Delannoy paths going from one point to another is exactly one class in the congruence generated by a
Thue system that we exhibit. This Thue system induces a partial order on this set that is isomorphic
to the set of ordered partitions of a fixed multiset where the blocks are sets with a natural order
relation. Our main result is that this poset is a lattice.

Key words. Delannoy path, Thue system, lattice
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1. Introduction. A Delannoy path [11] is given as a path that can be drawn on
a rectangular grid, starting from the southwest corner, going to the northeast corner,
using only three kinds of elementary steps: north, east, and northeast. Hence they
are minimal paths with diagonal steps. We generalize the notion of a Delannoy path
to the hyperspace Z

n, considering a hyperparallelipedic grid as a set of elementary
steps: a step in each direction and the combinations of several of them, the diagonal
steps.
We prove that, in a very natural way, an S-alphabet can be associated with

the possible elementary steps in a Delannoy path in Z
n, and consequently S-words

with Delannoy paths themselves. These notions were introduced by Schwer [8], in a
completely different context, for treating simultaneity problems.
We then define a Thue system on the set of S-words that turns out to be noethe-

rian and confluent. This Thue system induces both an ordering on S-words and a
congruence. Our main goal is to prove that each equivalence class for this congruence
is with this order relation a lattice (Theorem 5.5). (This lattice is a nondistributive
lattice as soon as n > 2.)
An equivalence class can be viewed as the set of all ordered partitions of a fixed

multiset where the blocks are sets (not multisets). There is a transparent bijection
between an equivalence class and an element of this set, and the order relation over
partitions derived is a very natural one. In [9] are given some links between S-words
and others mathematical objects.
Moreover, we exhibit a characterization of the S-words of a class (and so of gen-

eralized Delannoy paths going from a point to another) with a family of matrices
having its coefficients in {−1, 0, 1} (Theorem 4.2), and we prove that the order on
S-words can be exactly transposed as the componentwise order on matrices induced
by −1 < 0 < 1 (Theorem 4.6).
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2. Recalls. Concerning lattices, the notations follow [10, 4]. Recall that a lattice
is an ordered set such that each pair of elements has a least upper bound and a greatest
lower bound. A subset of a lattice is a sublattice if for the same order relation it is a
lattice. It is a distributive lattice if the two operations associating, respectively, with
two elements, their least upper bound and a greatest lower bound, are distributive
with respect to each other. A lattice ordered by ≤ is modular if for all triples of
elements (a, b, c) with a ≤ c the least upper bound of a and of the greatest lower
bound of b and c is equal to the greatest lower bound of c and of the least upper
bound of a and b. It is known [10] that every distributive lattice is modular and that
the different chains going from one element to another all have the same length in a
modular lattice.
Concerning formal languages, we follow [1, 5].
Let X be an alphabet, let X∗ be the set of words over X, and let ε be the empty

word. If f is a word in X∗, then |f | is the length of f . A word g is a prefix of f if
some word u exists such that f = gu.
Let R be a finite relation overX∗. The Thue system generated by R is the relation

over X∗, denoted −→, that is the smallest relation containing R and compatible with
the concatenation product: (u, v) ∈ R =⇒ ∀f, g ∈ X∗, fug −→ fvg.
We use freely the usual notions and notations, as can be found, for example, in [1]

or [6]. In particular, ←− denotes the symmetric relation of −→, ←→ the symmetric
closure of −→, and −→∗ its reflexive and transitive closure. Let set [f ] = {g ∈
X∗ | f ←→∗ g} and 〈f〉 = {g ∈ X∗ | f −→∗ g}. These notations are extended to
languages [L] =

⋃
f∈L[f ] and 〈L〉 = ⋃f∈L〈f〉.

We just recall here the properties [1] of Thue systems that we shall make use
of: A noetherian system is a system for which no infinite chain exists. A system is
confluent if f −→∗ u and f −→∗ v implies the existence of g such that u −→∗ g and
v −→∗ g. An element f is an irreducible element for −→ if no other element g exists
such that f −→ g.
In this paper, we make use of the notions of S-alphabet and S-word introduced

by Schwer [8, 9].
Let X be an alphabet. An S-alphabet issued from X is a nonempty subset of

X̂ = {P ∈ 2X | P = ∅}. X̂ is itself an S-alphabet. The elements of an S-alphabet

are called S-letters. Let Y be an S-alphabet subset of X̂; the alphabet {x ∈ X | ∃y ∈
Y : x ∈ y} is the underlying alphabet of Y . An S-word is a word written over an
alphabet of S-letters. So we may make use of all the usual notations and definitions
of the languages theory for S-words. It is, however, useful to introduce notations that
put in relation S-words with the underlying alphabet.
Let X = {a1, a2, . . . , an}, we define the homomorphism ψ : X̂∗ −→ N

n by ψ(P ) =
(χP (a1), . . . , χP (an)), where χP is the characteristic function of P . This extends the
usual notion of Parikh mapping [5]. The ith component of ψ(f) is denoted ψi(f).

We also define the homomorphism ν : X̂∗ −→ N by ν(P ) = Card(P ), i.e.,
ν(f) = Σ1≤i≤nψi(f). So ν is the number of occurrences of letters appearing in all the
S-letters of the S-word.
Let ψ(f) = (p1, p2, . . . , pn); for m ≤ n, and for l ≤ pm, we name position of the

lth occurrence of the letter am the integer 1 + ν(g), where g is the S-word that is the
longest prefix of f such that ψm(g) < l.
To simplify the exposition of the examples, we write the different letters in a

S-letter one after the other, without commas to separate them, and we write them in
increasing order on the indices.

Example 2.1. On the alphabet X̂ issued from X = {a1, a2, a3}, consider the
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word f = {a1a2}{a3}{a1}{a1a3}{a1a2a3}{a2}{a2}. It is such that ψ(f) = (4, 4, 3).
For the letter a1, the longest prefixes gl of f such that ψ1(gl) < l when l equals

1, 2, 3, and 4 are, respectively, g1 = ε, g2 = {a1a2}{a3}, g3 = {a1a2}{a3}{a1},
and g4 = {a1a2}{a3}{a1}{a1a3}, and we have ν(g1) = 0, ν(g2) = 3, ν(g3) = 4, and
ν(g4) = 6. The respective positions of the four occurrences of a1 are then 1, 4, 5,
and 7.

For the letter a2, the longest prefixes gl of f such that ψ2(gl) < l when l equals
1, 2, 3, and 4 are, respectively, g1 = ε, g2 = {a1a2}{a3}{a1}{a1a3}, g3 =
{a1a2}{a3}{a1}{a1a3}{a1a2a3}, and g4 = {a1a2}{a3}{a1}{a1a3}{a1a2a3}{a2}, and
we have ν(g1) = 0, ν(g2) = 6, ν(g3) = 9, and ν(g4) = 10. The respective positions of
the four occurrences of a2 are then 1, 7, 10, and 11.

For the letter a3, the longest prefixes gl of f such that ψ3(gl) < l when l equals
1, 2, and 3 are, respectively, g1 = {a1a2}, g2 = {a1a2}{a3}{a1}, and g3 =
{a1a2}{a3}{a1}{a1a3}, and we have ν(g1) = 2, ν(g2) = 4, and ν(g4) = 6. The
respective positions of the three occurrences of a3 are then 3, 5, and 7.

3. The Thue system. We extend Delannoy paths to the hyperplane Z
n; i.e.,

we consider minimal paths with diagonal steps between two arbitrary points.
We associate with each dimension a letter of an alphabet X = {a1, a2, . . . , an}

and construct the S-alphabet X̂ = {P ∈ 2X | P = ∅}.
The interpretation is the following: the letter {ai} is a step in the dimension i,

and more generally the letter P ∈ X̂ is a simultaneous step in each of the dimensions
indicated by the letters of X that belong to P , called diagonal step if Card(P ) ≥ 2.
Let us give an arbitrary order over the letters of X by a1 < a2 < · · · < an. This

induces over the S-letters a partial order P < Q ⇐⇒ [∀x ∈ P,∀y ∈ Q : x < y].

We then define the Thue system, relation denoted −→ on X̂∗, by the following:
∀P,Q,R ∈ X̂ such that P < Q and R = P ∪Q, set PQ −→ R and R −→ QP .
Note that P and Q are disjoint.
In the case where n = 2, with X = {a, b}, we get X̂ = {{a}, {b}, {a, b}}, and

renaming, respectively, a, b, and c these three letters, the obtained system is precisely
the system studied in [2].
Note that doing the bijection of X in itself, which maps ai on an+1−i, or reversing

the order over the letters of X, which leads exactly to the same relation, one gets←−,
the symmetric relation of −→. Each property of −→ is also a property of ←− (and
the converse).

Lemma 3.1. If f and g are two words in the same class, their image under ψ is
the same.

Proof. By induction, it is sufficient to ensure that each application of a rule
preserves the image under ψ.

Lemma 3.2. The set of all irreducible words for this Thue system is Irr =
{an}∗ . . . {a2}∗{a1}∗. Symmetrically, the set of all irreducible words for the inverse
Thue system is {a1}∗{a2}∗ . . . {an}∗.

Proof. Clearly, a word in Irr has no subword being a left factor of a couple in the
relation defining the Thue system, and so Irr is a set of irreducible words. Conversely,
let f be an S-word not in Irr; then there is either in f an S-letter R containing at least
two letters or there are two S-letters {ai} and {aj} with i < j and {ai} is situated
before {aj}. In the latter case, there exist two such S-letters being consecutive, and
the rule {ai}{aj} −→ {aiaj} may be applied to f , which is not an irreducible word.
In the former case, R can be partitioned between two subsets P and Q so that all the
indices of the elements of P are smaller than the indices of the elements of Q, and
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the rule R −→ QP may be applied to f , which is not an irreducible word.
Corollary 3.3. For each word, there is at most one irreducible word.
Proof. It is sufficient to check that, among all words having the same image

under ψ, there is only one belonging to Irr.
Lemma 3.4. The Thue system is noetherian. As a consequence, the relation

−→∗ is an order relation.
Proof. Let f be an S-word, and let P be an occurrence of one of its S-letters. Let

Post(P, f) denote the set of S-letters situated after P in f . To each letter am in P is
attached the integer Card({i > m | ai ∈ P}) + 2.∑Q∈Post(P,f) Card({i > m | ai ∈
Q}), and let σ(f) be the sum of these integers for all the occurrences of letters in f .
It is easy to check that f −→ g =⇒ σ(f) > σ(g). As a consequence, the Thue system
is noetherian. The relation −→∗ , which is by definition reflexive and transitive, is
antisymmetric as well. It is so an order relation.

Corollary 3.5. The Thue system is confluent.
Proof. Let f and g be two congruent words. As the system is noetherian, they

each have an irreducible, and as they are congruent these irreducibles are but one.
The two words can be derived on the same word.

Corollary 3.6. The following equality holds: [f ] = {g ∈ X̂∗ | ψ(g) = ψ(f)}.
Proof. The inclusion [f ] ⊂ {g ∈ X̂∗ | ψ(g) = ψ(f)} has already been established.

Conversely, if two words have the same image under ψ, they have the same irreducible,
and so are congruent.
The n-uple (p1, p2, . . . , pn) is characteristic of the class of words f satisfying

ψ(f) = (p1, p2, . . . , pn). This class is denoted L(p1, p2, . . . , pn). The quotient X̂
∗/←→∗

is isomorphic to N
n with componentwise addition.

Altogether, the following holds:

L(p1, p2, . . . , pn) = {g ∈ X̂∗ | {a1}p1{a2}p2 . . . {an}pn−→∗ g−→∗ {an}pn . . . {a1}p1}.

In other words, 〈X̂∗,−→∗ 〉 is a set with a partial order whose set of minimal elements
is {a1}p1{a2}p2 . . . {an}pn and set of maximal elements is {an}pn . . . {a2}p2{a1}p1 .
As noticed before, the set L(p1, p2, . . . , pn) is isomorphic to the set of ordered

partitions (B1, . . . , Bk) of the multiset {1p1 . . . , npn} where the Bi are sets. The
covering relation is given by

(B1, . . . , Bk) −→ (B1, . . . , Bi−2, Bi−1 ∪Bi, Bi+1, . . . , Bk)

if maxBi−1 < minBi and

(B1, . . . , Bi−2, Bi−1 ∪Bi, Bi+1, . . . , Bk) −→ (B1, . . . , Bk)

if maxBi < minBi−1.
We proved formerly in [2] that L(p1, p2) with the order relation −→∗ is a dis-

tributive lattice.
The main difference between the case when n = 2 and the general case treated

here when n > 2 is the following: though the order a < b over X = {a, b} can easily
be extended to a total order over the S-alphabet by setting {a} < {a, b} < {b}, the
natural generalization of this last: P < R < Q if ∀x ∈ P,∀y ∈ Q : x < y and if
R = P ∪Q, is not a linear order. This deeply changes the nature of the structure of
L(p1, p2, . . . , pn) with the order relation −→∗ .
For instance, the following example shows that L(p1, p2, . . . , pn) is not, in general,

a distributive lattice.
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Fig. 3.1. L(1, 1, 1).

Example 3.1. The lattice of L(1, 1, 1), represented in Figure 3.1, is not modular;
hence it is not distributive.
Nevertheless, it has been announced in [7] that, in the case where all pi are equal

to 1, L(1, 1, . . . , 1) is a lattice. We prove here that it is also true in the general case.

4. The matrix associated to an S-word of L(p1, p2, . . . , pn). In what
follows, all the S-words are words of L(p1, p2, . . . , pn), and we set s = Σpi.
It has already been indicated that the smallest word of L(p1, p2, . . . , pn) is the

word fmin = {a1}p1{a2}p2 . . . {an}pn . For an integer i such that 1 ≤ i ≤ ν(f), we
consider the occurrence of the letter in ith position in fmin: it is, for some integers l
and m, the lth occurrence of a letter am. Thus an integer i determines two integers l
and m, defined by the relation i = l+Σ1≤s<m ps with l ≤ pm. We call letter of rank
i in a word f ∈ L(p1, p2, . . . , pn) the occurrence of the lth letter am where l and m
have been so determined. We set m = r(i).

Example 4.1. Let X = {a1, a2, a3}. Considering as in the preceding example
the word f = {a1a2}{a3}{a1}{a1a3}{a1a2a3}{a2}{a2}, this word is such that ψ(f) =
(4, 4, 3) and ν(f) = 11.

The letters of ranks 1, 2, 3, and 4 are occurrences of the letter a1, the letters of
ranks 5, 6, 7, and 8 are occurrences of the letter a2, and the letters of ranks 9, 10, and
11 are occurrences of the letter a3.

The letter of rank 6 is thus the second occurrence of the letter a2 belonging to the
S-letter {a1a2a3} that immediately follows the prefix {a1a2}{a3}{a1}{a1a3} of f ; its
position is 7.

Table 4.1 gives explicitly the letters of all ranks and their positions.
Definition 4.1. Let f be a word of L(p1, p2, . . . , pn). The matrix associated
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Table 4.1

Rank Letter S-letter Former prefix Position

1 a1 {a1a2} ε 1
2 a1 {a1} {a1a2}{a3} 4
3 a1 {a1a3} {a1a2}{a3}{a1} 5
4 a1 {a1a2a3} {a1a2}{a3}{a1}{a1a3} 7
5 a2 {a1a2} ε 1
6 a2 {a1a2a3} {a1a2}{a3}{a1}{a1a3} 7
7 a2 {a2} {a1a2}{a3}{a1}{a1a3}{a1a2a3} 10
8 a2 {a2} {a1a2}{a3}{a1}{a1a3}{a1a2a3}{a2} 11
9 a3 {a3} {a1a2} 3
10 a3 {a1a3} {a1a2}{a3}{a1} 5
11 a3 {a1a2a3} {a1a2}{a3}{a1}{a1a3} 7

with f , denoted M(f), is the matrix ν(f)× ν(f) whose element M(f)[i, j] of the ith
row and of the jth column is

• −1 if the position in f of the letter of rank i is smaller than the position in f
of the letter of rank j;

• 0 if the position in f of the letter of rank i is equal to the position in f of the
letter of rank j;

• 1 if the position in f of the letter of rank i is greater than the position in f of
the letter of rank j.

Example 4.2. Going further with the preceding example, the matrix associated
to the word f = {a1a2}{a3}{a1}{a1a3}{a1a2a3}{a2}{a2} is

1 2 3 4 5 6 7 8 9 10 11

1 0 −1 −1 −1 0 −1 −1 −1 −1 −1 −1
2 1 0 −1 −1 1 −1 −1 −1 1 −1 −1
3 1 1 0 −1 1 −1 −1 −1 1 0 −1
4 1 1 1 0 1 0 −1 −1 1 1 0
5 0 −1 −1 −1 0 −1 −1 −1 −1 −1 −1
6 1 1 1 0 1 0 −1 −1 1 1 0
7 1 1 1 1 1 1 0 −1 1 1 1
8 1 1 1 1 1 1 1 0 1 1 1
9 1 −1 −1 −1 1 −1 −1 −1 0 −1 −1
10 1 1 0 −1 1 −1 −1 −1 1 0 −1
11 1 1 1 0 1 0 −1 −1 1 1 0

.

A word f is thus associated with a ν(f)×ν(f) matrix with coefficients in {−1, 0, 1}.
Conversely, the matrix associated with a word f characterizes this word: it describes
which occurrences of letters are situated in the same S-letter and the order of the
occurrences of the letters with respect to each other.
The matrix associated with a word owns numerous properties. We list several of

them:
• Constructively, a matrix M(f) associated with a word f has only 0’s in its

diagonal and verifies tM(f) = −M(f).
Denote by M the set of s × s matrices M with entries in {−1, 0, 1} verifying

tM = −M (and hence M [i, i] = 0 ∀i).
Moreover, the coefficients of the strict upper triangular part share two other

properties:
• The first property, called the commutativity property, comes out from the com-

mutativity of the occurrences of the same letter between themselves. This property
leads us to divide the matrix in submatrices pi × pj , just as we did on the example,
indicating the orders in the positions of the occurrences of a same letter ai with those
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Fig. 4.1. The lattice of transitivity.

of another letter aj . Denote Mi,j the submatrix concerning the relationships between
letters ai and aj .
This commutativity implies that, inside a submatrix Mi,j , supposing i < j,
(i) if i1 and i2 are the ranks of two letters ai, and j1 the rank of a letter aj , then

i1 < i2 and (M [i1, j1] = 0 or M [i1, j1] = 1) =⇒ M [i2, j1] = 1;
(ii) if i1 is the rank of a letter ai, and j1 and j2 the ranks of two letters aj , then

j1 < j2 and (M [i1, j1] = 0 or M [i1, j1] = −1) =⇒ M [i1, j2] = −1.
In the case where i = j, i.e., for the submatrix Mi,i (square and centered on the
diagonal), as we know that the diagonal is made of 0, the upper triangular part is
then made of −1.
In what follows, M(p1, . . . , pn) denotes the set of matrices in M verifying the

commutativity property.
• The second property, called the transitivity property, comes from the transitivity

of the order relation over the letters of the underlying alphabet: if ai < aj and aj < ak,
then ai < ak and so the comparisons of the positions of the letters of ranks i and j on
one hand, and j and k on the other hand, have an influence upon those of i and k. More
precisely, ∀i, j, k such that i < j < k, the triple (M(f)[i, j],M(f)[i, k],M(f)[j, k]),
which we represent under the triangular shape under which it appears in the matrix
M(f)[i, j] M(f)[i, k]

M(f)[j, k]
belongs to the following set T13 of triples:{ −1 −1

−1 ,
0 −1

−1 ,
1 −1

−1 ,
1 0

−1 ,
1 1

−1 ,
1 1
0

,
0 0
0

,
−1 −1

0
,

−1 −1
1

,
−1 0

1
,
−1 1

1
,
0 1
1

,
1 1
1

}
,

which, ordered by the componentwise order on integers, is a lattice too (cf. Figure 4.1).
One should remark that it is the same lattice as L(1, 1, 1).
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In what follows, M∗(p1, . . . , pn) denotes the set of matrices in M(p1, . . . , pn)
verifying the transitivity property.
We shall prove that these conditions do characterize the matrices associated with

words f such that ψ(f) = (p1, . . . , pn) (and that, consequently, this association is a
bijection between [f ] andM(p1, . . . , pn)), establishing the following theorem:

Theorem 4.2. Let M be a matrix of M. It is the matrix associated with a word
f ∈ L(p1, . . . , pn) if and only if it belongs to M∗(p1, . . . , pn).
Let M be a matrix of M(p1, . . . , pn), and let s = Σj≤npn. For all i such that

1 ≤ i ≤ s, let pri be the number of integers j > i such that M [i, j] = 1, and poi
the number of integers k < i such that M [k, i] = −1, and we evaluate the integer
pli = pri + poi.

Lemma 4.3. For all i ≤ s, the number of integers j verifying plj < pli is
exactly pli.

Proof. Let i and j be two indices such that i < j. These two indices define an
integer x =M [i, j] and the following six vectors: Vi is the vectorM [h, i] for 1 ≤ h < i ;
V ′j is the vector M [h, j] for 1 ≤ h < i ; V ′′j is the vector M [h, j] for i < h < j ; H ′i is
the vector M [i, h] for i < h < j ; H ′′i is the vector M [i, h] for j < h ≤ s ; and Hj is
the vector M [j, h] for j < h ≤ s, as indicated in Table 4.2.

Table 4.2

i j

Vi V ′
j

i 0 H′
i x H′′

i

V ′′
j

j 0 Hj

Let A be a vector; |A|1 denotes the number of 1’s in A and |A|−1 denotes the
number of −1’s in A. In each case, we compare |H ′′i |1 and |Hj |1 on one hand, |Vi|−1

and |V ′j |−1 on the other hand, and finally |H ′i|1 and |V ′′j |−1, comparisons between
vectors of same lengths.
Let i and j be two indices such that r(i) < r(j) (and hence i < j).
— In the case where x = M [i, j] = 1, one gets pri = |H ′i|1 + 1 + |H ′′i |1 and

poi = |Vi|−1, and prj = |Hj |1 and poi = |V ′j |−1 + |V ′′j |−1.
The transitivity property implies, ∀h > j, M [j, h] = 1 =⇒ M [i, h] = 1, and hence

|H ′′i |1 ≥ |Hj |1, ∀h < i, M [j, h] = −1 =⇒ M [i, h] = −1, and hence |Vi|−1 ≥ |V ′j |−1,
and ∀i < h < j, M [j, h] = −1 =⇒ M [h, i] = 1, and hence |H ′i|1 ≥ |V ′′j |−1. So
pli > plj .
— In the case where x = M [i, j] = −1, one gets pri = |H ′i|1 + |H ′′i |1 and poi =

|Vi|−1, and prj = |Hj |1 and poi = |V ′j |−1 + 1 + |V ′j |−1.
In the same way, the transitivity property implies |H ′′i |1 ≤ |Hj |1, |Vi|−1 ≤ |V ′j |−1,

and |H ′i|1 ≤ |V ′′j |−1. So pli < plj .
— In the case where x =M [i, j] = 0, one gets pri = |H ′i|1+|H ′′i |1 and poi = |Vi|−1,

and prj = |Hj |1 and poi = |V ′j |−1 + |V ′j |−1.
In the same way, the transitivity property implies |H ′′i |1 = |Hj |1, |Vi|−1 = |V ′j |−1,
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and |H ′i|1 = |V ′′j |−1. So pli = plj .
If i1 and i2 are two indices such that r(i1) = r(i2) (corresponding to the same i)

with i1 < i2, then, in the same way, following (i) one gets pri1 ≤ pri2 , and following
(ii) poi1 ≤ poi2 , and hence pli1 < pli2 .
To verify the lemma, it is sufficient now for a fixed i to count down.
To prove Theorem 4.2, it remains only to prove that the condition is sufficient.

Let M be a matrix in M∗(p1, . . . , pn); we are able to calculate for all i such that
1 ≤ i ≤ s the integer pli. A word f ∈ L(p1, . . . , pn) is then constructed by setting its
letter of rank i to the position 1 + pli.
As the matrices associated with congruent words have the same size, they can be

ordered by the comparison componentwise of the coefficients of these matrices.
Definition 4.4. Let f and g be two congruent words of X∗, and let s = ν(f) =

ν(g). f is dominated by g, which is denoted f � g, if, for all integers i, j such that
0 < i < j ≤ s, M(f)[i, j] ≤ M(g)[i, j] holds.
In the same way, M and N being two matrices ofM, the matrix M is dominated

by N (or N dominates M), which is denoted M � N , if, for all integers i, j such that
0 < i < j ≤ s, M [i, j] ≤ N [i, j] holds.
We introduce a distance between words in L(p1, . . . , pn).
Definition 4.5. Let d be the application from L(p1, . . . , pn)

2 to N, with s = Σpi,
defined by

d(f, g) =
∑

0≤i<j≤s
|M(f)[i, j]−M(g)[i, j]|.

This application is clearly a distance.
The next theorem is crucial.
Theorem 4.6. 〈f〉 = {g ∈ [f ] | f � g}.
Proof.
— Let us first prove the inclusion 〈f〉 ⊆ {g ∈ [f ] | f � g}.
It is sufficient to prove that if f −→ g, then f � g, since an easy induction on

the number of rewriting rules applied to obtain a word g ∈ 〈f〉 from f then gives the
result.

• If the applied rule is PQ −→ R (with R = P ∪Q and [∀x ∈ P,∀y ∈ Q : x < y]),
then let i be the rank of a letter in P and j the rank of a letter in Q; then i < j and
M(f)[i, j] = −1, and M(g)[i, j] = 0. As these coefficients are the only ones that are
changed, ∀i < j,M(f)[i, j] ≤ M(g)[i, j] holds.

• If the applied rule is R −→ QP (with R = P ∪Q and [∀x ∈ P,∀y ∈ Q : x < y]),
then let i be the rank of a letter in P and j the rank of a letter in Q; then i < j and
M(f)[i, j] = 0, and M(g)[i, j] = 1. As these coefficients are the only ones that are
changed, ∀i < j,M(f)[i, j] ≤ M(g)[i, j] holds.
— Let us now prove the converse inclusion.
The distance between words will allow us to make an induction on the distance

between a word of the set {g ∈ [f ] | f � g} and f itself.

Let Sn be the following property: {∀f ∈ X̂∗,∀g ∈ [f ] | f � g and d(f, g) ≤
n} =⇒ g ∈ 〈f〉. We have to prove Sn for all integer n.
Let g ∈ [f ] be such that f � g, and let n = d(f, g).
— If n equals 0, since d is a distance, g = f and f−→∗ f holds. So S0 is true.
— Suppose that n > 0 and that Sn−1 is true. Since f � g, there must exist two

indices i and j with 1 ≤ i < j ≤ s such that M(f)[i, j] < M(g)[i, j].
Case 1. There are two indices i and j with 1 ≤ i < j ≤ s such that M(f)[i, j] = 0
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and M(g)[i, j] = 1.
In this case, let R be the S-letter of f containing the two letters of ranks i and

j; among the occurrences of letters in R, there are two verifying the same property
as i and j and such that no letter in R has a rank which is an integer between their
respective ranks; let P be the set of the letters in R of rank smaller or equal to the
smallest of their two ranks, and let Q be the set of the others; R −→ QP is then a
rule of the Thue system. Then let f ′ be the word obtained from f by substituting to
the occurrence of the S-letter R the two S-letters word QP .

Case 2. It is not the case.
Then ∃i and j with 1 ≤ i < j ≤ s such that M(f)[i, j] = −1 and M(g)[i, j] ≥ −1;

we first show that there exist two such indices with, moreover, the condition that the
letters of rank i and j are in two consecutive S-letters of f : if not, let k be the rank of a
letter inside an intermediate S-letter; if i < k < j, then M(f)[i, k] =M(f)[k, j] = −1
and either M(g)[i, k] > −1, or M(g)[k, j] > −1, and so we have the same situation
for letters in S-letters that are strictly nearer; if i < j < k, then M(f)[k, j] = 1,
and according to the transitivity property M(f)[i, k] = −1, and since M(g)[k, j] >
M(f)[k, j], M(g)[k, j] = 1, and according to the transitivity property M(g)[i, k] = 1,
and also in this case we have the same situation for letters in S-letters that are strictly
nearer; if k < i < j symmetrically we get the same result.
Supposing now that the letters of rank i and j verifying 1 ≤ i < j ≤ s,

M(f)[i, j] = −1, and M(g)[i, j] > −1 are in two consecutive S-letters in f , say P and
Q, and that j − i is the smallest possible, let us show now that i is the largest among
the ranks of letters in P : if there is in P a letter of rank i′ > i, thenM(g)[i, i′] = 0 be-
cause otherwise (ifM(g)[i, i′] = 1) we would be in Case 1 and if i′ > j,M(f)[i′, j] = 1,
hence M(g)[i′, j] = 1, and according to the transitivity property M(g)[i, i′] = 1, and
again we would be in Case 1, and if i′ ≤ j, M(g)[i′, j] ≥ −1 would contradict j− i the
smallest possible, and M(g)[i′, j] = −1 implies according to the transitivity property
M(g)[i, i′] = 1, and again we would be in Case 1.
Symmetrically, one can prove that j is the smallest among the ranks of letters

in Q, and so if R = P ∪ Q, PQ −→ R is a rule of the Thue system. Then let f ′ be
a word obtained from the word f replacing the occurrence of the two S-letters word
PQ by the S-letter R.
In the two cases, clearly f −→ f ′ (and hence g ∈ [f ′]), and f ′ is dominated by g

and d(f ′, g) < n; hence, according to the induction hypothesis, f ′−→∗ g. So f−→∗ g
holds, and Sn is true.
Noticing that the triples of T13 are precisely the upper triangular parts of the

matrices attached to the S-words of L(1, 1, 1), we have just proved that the order
between S-words of L(1, 1, 1) and the order between the triples of T13 are in a complete
correspondence, justifying our former remark that it is the same lattice.

5. L(p1, p2, . . . , pn) is a lattice. Let f and g be two congruent S-words:
f←→∗ g with ν(f) = ν(g) = s. Since the relation −→∗ is confluent, 〈f〉 ∩ 〈g〉 = ∅
holds. Let h be an S-word in 〈f〉 ∩ 〈g〉. The matrix associated with h verifies the
following: ∀i < j,M(f)[i, j] ≤ M(h)[i, j] and ∀i < j,M(g)[i, j] ≤ M(h)[i, j]. Let
U be the matrix of M having in its upper triangular part the following coefficients:
∀i < j, U [i, j] = Max{M(f)[i, j],M(g)[i, j]}. This matrix has ipso facto the commu-
tativity property of matrices in M(p1, . . . , pn), but it may not have the transitivity
property, and so it may not be a matrix inM∗(p1, . . . , pn).

Example 5.1. Let f = {a1a4}{a2a3a4}{a3} and g = {a1a3a4}{a3}{a2a4}.
Their associated matrices are
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M(f) =

1 2 3 4 5 6

1 0 −1 −1 −1 0 −1
2 1 0 0 −1 1 0
3 1 0 0 −1 1 0
4 1 1 1 0 1 1
5 0 −1 −1 −1 0 −1
6 1 0 0 −1 1 0

and M(g) =

1 2 3 4 5 6

1 0 −1 0 −1 0 −1
2 1 0 1 1 1 0
3 0 −1 0 −1 0 −1
4 1 −1 1 0 1 −1
5 0 −1 0 −1 0 −1
6 1 0 1 1 1 0

and the matrix U is

1 2 3 4 5 6

1 0 −1 0 −1 0 −1
2 1 0 1 1 1 0
3 0 −1 0 −1 1 0
4 1 −1 1 0 1 1
5 0 −1 −1 −1 0 −1
6 1 0 0 −1 1 0

.

One can remark that, for example, the triple

U [1, 3] U [1, 5]
U [3, 5]

=
0 0
1

does not belong to the set T13.
However, since U comes from matrices having this transitivity property through

the Max operation, among the 14 triples contradicting this property, half of them
cannot be in U , namely, the triples
0 0

−1 ,
0 1
0
,
0 1

−1 ,
−1 0

0
,

−1 0
−1 ,

−1 1
0
,

−1 1
−1 .

Let us verify for example that 0 0
−1
cannot be in U : this triple comes from

two triples of T13
x y
−1
and x′ y′

−1
with x, x′, y, y′ ≤ 0. Hence y = y′ = −1,

and so we get a contradiction with 0 = Max{y, y′} = −1.
The other triples receive an analogous treatment.
So the only triples not in T13 that can be found in U are the following 7:
0 0
1
,
0 −1

0
,
0 −1

1
,
1 0
0
,
1 0
1
,
1 −1

0
,
1 −1

1
.

They are the inverses of the others.
Let T20 be the set of triples obtained adding these seven triples to T13.
If T is a subset of the set T27 of all the possible triples, letMT (p1, . . . , pn) be the

set of matrices M inM(p1, . . . , pn) such that all the triples (M [i, j],M [i, k],M [j, k])
belong to T . In particular,MT27(p1, . . . , pn) =M(p1, . . . , pn) andMT13(p1, . . . , pn) =
M∗(p1, . . . , pn).
It is remarkable that, for each of the seven new triples there exists, in the set T13

of allowed triples, a unique minimum triple that is bigger than it, respectively:

0 1
1
,
0 0
0
,
0 1
1
,
1 1
0
,
1 1
1
,
1 1
0
,
1 1
1
.

Let � be the operation over {−1, 0, 1} defined by the table

� −1 0 1
−1 −1 −1 −1
0 −1 0 1
1 −1 1 1

.
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We define an operation
⊙
over the matrices in M by the following: M

⊙
N is

the matrix in M whose coefficients of the upper triangular part are M
⊙

N [i, k] =
Maxi≤j≤kM [i, j]�N [j, k].

Example 5.2. Going further with the preceding example, we obtain for U
⊙

U

1 2 3 4 5 6

1 0 −1 0 −1 1 0
2 1 0 1 1 1 1
3 0 −1 0 −1 1 0
4 1 −1 1 0 1 1
5 −1 −1 −1 −1 0 −1
6 0 −1 0 −1 1 0

Lemma 5.1. Let M be a matrix of M(p1, . . . , pn). M
⊙

M is a matrix dominat-
ing M belonging to M(p1, . . . , pn).

Proof.
— M

⊙
M dominates M .

Since ∀i and j such that i < k, M
⊙

M [i, k] = Maxi≤j≤kM [i, j] � M [j, k] =
Max{M [i, i]�M [i, k],Maxi<j≤kM [i, j]�M [j, k]} holds, and sinceM [i, i] = 0,M [i, i]�
M [i, k] =M [i, k].
— M

⊙
M has the commutativity property.

First, clearly in a submatrix Mi,i the coefficients above the diagonal have value
−1; moreover, in a submatrix Mi,k with i < k, if i1 and i2 are the ranks of two letters
ai, and k1 is the rank of a letter ak, since M

⊙
M [i1, k1] = 0 or M

⊙
M [i1, k1] = 1

=⇒ ∃j | i1 ≤ j ≤ k1 andM [i1, j] = 0 orM [i1, j] = 1 andM [j, k1] = 0 orM [j, k1] = 1;
butM having itself the commutativity property, if i1 < i2, (M [i1, j] = 0 orM [i1, j] =
1) =⇒ M [i2, j] = 1, and hence M [i2, j]�M [j, k1] = 1, and M

⊙
M [i2, k1] = 1; in the

same way, if i1 is the rank of a letter ai, and k1 and k2 are the ranks of two letters
ak, k1 < k2 and M

⊙
M [i1, k1] = 0 or M

⊙
M [i1, k1] = −1 =⇒ M

⊙
M [i1, k2] =

−1.
Setting U (1) = U and U (i+1) = U (i)

⊙
U (i), starting from U and iterating the

operation as long as the obtained matrix does not have the transitivity property,
we get a strictly increasing (for the order �) sequence of matrices inM(p1, . . . , pn):
U (1) ≺ U (2) ≺ . . .. The process stops after repeating a finite number of times the
operation, and one gets a matrix, denoted U∗, belonging toM∗(p1, . . . , pn).
According to Theorem 4.2, there exists a word of L(p1, p2, . . . , pn) having this

matrix as its associated matrix. Let f � g be this word. It is a word in the class of f
and g.

Example 5.3. Going further with the preceding example, U
⊙

U owns the tran-
sitivity property. Hence we get U∗ = U

⊙
U which is the matrix associated to the

word f � g = {a4}{a1a3a4}{a3}{a2}.
Lemma 5.2. Let M be a matrix of MT20(p1, . . . , pn). M

⊙
M belongs to

MT20(p1, . . . , pn).
Proof. According to the preceding lemma, M

⊙
M ∈ MT27(p1, . . . , pn). Let us

review the seven possible cases of triples M 	M [i, j] M 	M [i, k]
M 	M [j, k]

that do not belong

to T20.
— Case where M

⊙
M [i, j] = −1, M⊙

M [i, k] > −1 and M
⊙

M [j, k] < 1.
In this case, M [i, j] = −1, and since M⊙

M [i, k] > −1, there exists j′ = j such
that M [i, j′] > −1 and M [j′, k] > −1. Suppose that j′ < j. Since M

⊙
M [i, k] > −1,

M [j′, j] = −1 holds. ButM [j, k] < 1, and so the triple M [j′, j] M [j′, k]
M [j, k]

is not in T20,

a contradiction. If j′ > j, since M [i, j] = −1 and M [i, j′] > −1, M [j, j′] = 1 holds
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because this triple is in T20, or M [j, j
′] = 1 and M [j′, k] > −1 implies M⊙

M [j, k] =
1, a contradiction.
— Case where M

⊙
M [i, j] = 0, M

⊙
M [i, k] > −1, and M

⊙
M [j, k] = −1.

In this case, M [j, k] = −1, and since M⊙
M [i, k] > −1, there exists j′ = j such

thatM [i, j′] > −1 andM [j′, k] > −1. Suppose that j < j′. SinceM
⊙

M [j, k] = −1,
M [j, j′] = −1 holds. But M [i, j] < 1, and so the triple M [i, j] M [i, j′]

M [j, j′] is not in T20,

a contradiction. If j > j′, since M [j, k] = −1 and M [j′, k] > −1, M [j′, j] = 1 holds
because this triple is in T20, orM [j

′, j] = 1 andM [i, j′] > −1 impliesM⊙
M [i, j] = 1,

a contradiction.
— Case where M

⊙
M [i, j] = 0, M

⊙
M [i, k] = 1 and M

⊙
M [j, k] = 0.

In this case, M [i, j] < 1 and M [j, k] < 1, and since M
⊙

M [i, k] = 1, there exists
j′ = j such that M [i, j′] = 1 and M [j′, k] ≥ 0 or the converse. Suppose that j′ < j.
Since M

⊙
M [i, j] = 0, if M [i, j′] = 1, M [j′, j] = −1 holds. But M [j, k] < 1, and

so the triple M [j′, j] M [j′, k]
M [j, k]

is not in T20, a contradiction, and if M [i, j
′] = 0, and

hence M [j′, k] = 1, which with M [j, k] < 1 implies M [j′, j] = 1. Then M [i, j′] = 0
and M [j′, j] = 1 and hence M

⊙
M [i, j] = 1, a contradiction with the hypothesis.

If j′ > j, then M [j′, k] > −1 and M
⊙

M [j, k] = 0 implies that M [j, j′] < 1, which
with M [i, j] < 1 implies either M [i, j′] = −1, a contradiction with the hypothesis,
or M [i, j] = M [j, j′] = M [i, j′] = 0 ; but M [i, j′] = 0 =⇒ M [j′, k] = 1, which with
M [j, j′] = 0 implies M

⊙
M [j, k] = 1, a contradiction with the hypothesis.

Lemma 5.3. If M is a matrix of M∗(p1, . . . , pn) and N is a matrix of
MT20(p1, . . . , pn) that does not have the transitivity property, then M � N =⇒ M �
N
⊙

N .
Proof. Suppose that M does not dominate N

⊙
N . Then there exist i and k

such that i < k and N [i, k] ≤ M [i, k] < N
⊙

N [i, k]. Hence, there exists an integer
j with i < j < k such that N

⊙
N [i, k] = N [i, j] � N [j, k] > N [i, k]. So, the triple

N [i, j] N [i, k]
N [j, k]

does not belong to T13. Let us review the seven possible cases:

— If N [j, k] = 1 and hence N [i, j] > −1, then M [j, k] = 1 and M [i, j] > −1
because M dominates N , and M [i, k] < N

⊙
N [i, k] = 1. In all cases, the triple

M [i, j] M [i, k]
M [j, k]

does not belong to T13, a contradiction with M ∈ M∗(p1, . . . , pn).

— If N [i, j] = 1 and N [j, k] = 0, then M [i, j] = 1 and M [j, k] > −1 because M

dominates N , and M [i, k] < N
⊙

N [i, k] = 1. In all cases, the triple M [i, j] M [i, k]
M [j, k]

does not belong to T13, a contradiction with M ∈ M∗(p1, . . . , pn).
— Last, if N [i, j] = N [j, k] = 0 and hence N [i, k] > −1, then N

⊙
N [i, k] = 0 and

M [i, k] < N
⊙

N [i, k] =⇒ M [i, k] = −1, and M dominates N implies M [i, j] > −1
and M [j, k] > −1. In all cases, the triple M [i, j] M [i, k]

M [j, k]
does not belong to T13, a

contradiction with M ∈ M∗(p1, . . . , pn).
Proposition 5.4. ∀h ∈ 〈f〉 ∩ 〈g〉, f � g � h holds.
Proof. Per absurdo, let h ∈ 〈f〉 ∩ 〈g〉 be such that h = f � g, and let M(h) be

its associated matrix. So M(h) dominates U . Hence M(h) � U (1). If U (1) shares
the transitivity property, U (1) = U∗ holds, and hence M(h) � U∗. Otherwise, the
preceding lemma shows that M(h) � U (2), and iterating until U (i) = U∗, in all
cases, M(h) � U∗ holds. U∗ being the matrix associated with f � g, f � g � h
is true.
We can now state the following theorem.
Theorem 5.5. The relation −→∗ gives to L(p1, p2, . . . , pn) a structure of lattice.
Proof. Proposition 5.4 means that the word f �g is a least upper bound of f and

g over [f ], and L(p1, p2, . . . , pn) has a structure of semilattice.
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Symmetrically, −→∗ confers to L(p1, p2, . . . , pn) a structure of lattice.
As soon as n > 2, the lattice L(p1, p2, . . . , pn) has got L(1, 1, 1) as a sublattice.

So it is not a modular lattice, hence not a distributive lattice.
Remarks. Since taking the inverse order on the letters of the underlying alphabet

leads to the inverse relation of −→∗ , the least upper bound of the mirror images of
two congruent S-words is the mirror image of the greatest lower bound of these two
words.
Concerning the calculus of matrix U∗, recall that the operation

⊙
replaces a

triple in T20\T13 by the triple in T13 that is the smallest bigger than itself and that
this is always done by only increasing the value of the right upper element of the
triangle given by the triple. As a consequence, the entries in the matrix that are just
above the diagonal are unchanged by the operation, and clearly with each iteration
at least one new parallel to the diagonal is definitively set. If s is the dimension of
the matrix and if i is the integer for which U∗ = U (i), i ≤ s− 2 holds.
In [3], we present a complete C program, taking advantage of these remarks,

computing the least upper bound and the greatest lower bound of two S-words with
the method developed in this paper.

6. Conclusion. We have presented the formalism of S-words that we think is
beneficial for treating Delannoy paths. The S-alphabets allow us to describe exactly
the set of considered elementary steps. If someone would change the rule allowing
only a part of the set of diagonal steps (for instance, only diagonal steps over the faces
of a cube), one has only to consider the corresponding S-alphabet, a subalphabet of
the S-alphabet we considered, and to proceed to the intersection with the set of words
over this subalphabet.
We have associated with S-words, and hence to Delannoy paths, matrices that

characterize them. Whatever the rule is, this allows us to order these Delannoy paths
by means of the “domination” order, which is nothing more than the componentwise
natural order, restricted to the upper triangular part, over these matrices.
The rules could be changed even more drastically to give the possibility of having

diagonal steps composed of several elementary steps in a dimension. To describe such
paths one has only to make use of multi-S-alphabets, i.e., multisets of letters. In this
case, the commutativity property of the associated matrices would be weakened to
the following:
In a submatrix Mi,j , supposing i < j,
(i) if i1 and i2 are the ranks of two letters ai, and j1 the rank of a letter aj , then

i1 < i2 =⇒ M [i1, j1] ≤ M [i2, j1];
(ii) if i1 is the rank of a letter ai, and j1 and j2 the ranks of two letters aj , then

j1 < j2 =⇒ M [i1, j1] ≥ M [i1, j2].
An essential part of our work was to exhibit a Thue system that allows us to

define the set of Delannoy paths going from one point to another as a class for the
congruence generated by the system and to prove that the rewriting process defines
an order that coincides with the one of the associated matrices. We think that, if
necessary, it would be possible for other rules to exhibit such a Thue system.

Appendix. Table of the sets of triples T13, T20, and T27. We represent a
triple (M [i, j],M [i, k],M [j, k]) under the triangular shape it appears in the matrices:
M [i, j] M [i, k]

M [j, k]
.
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T27

0 0
-1

0 1
-1

-1 0
0

-1 1
0

-1 0
-1

-1 1
-1

0 1
0

T20

0 0
1

0 -1
1

1 0
0

1 -1
0

1 0
1

1 -1
1

0 -1
0

T13

-1 -1
-1

0 -1
-1

-1 -1
0

1 -1
-1

1 0
-1

1 1
-1

1 1
0

-1 -1
1

-1 0
1

-1 1
1

0 1
1

0 0
0

1 1
1

��

❅❅

��

❅❅

��

❅❅

Fig. A.1. The triples of T13, T20, and T27.

The triples of T20\T13 are connected to the triples of T13 that cover them. These
latter are obtained by replacing the right upper element by the value given by the
operation � applied to the other two elements of the triple.
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CONTRAST OPTIMAL THRESHOLD VISUAL CRYPTOGRAPHY
SCHEMES∗
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Abstract. A (k, n)-threshold visual cryptography scheme (VCS) is a method to encode a secret
image SI into n shadow images called shares such that any k or more shares enable the “visual” recov-
ery of the secret image. However, by inspecting less than k shares one cannot gain any information on
the secret image. The “visual” recovery consists of copying the shares onto transparencies and then
stacking them. Any k shares will reveal the secret image without any cryptographic computation. In
this paper we analyze the contrast of the reconstructed image for a (k, n)-threshold VCS. We define
a canonical form for a (k, n)-threshold VCS and provide a characterization of a (k, n)-threshold VCS.
We completely characterize a contrast optimal (n−1, n)-threshold VCS in canonical form. Moreover,
for n ≥ 4, we provide a contrast optimal (3, n)-threshold VCS in canonical form. We first describe
a family of (3, n)-threshold VCS achieving various values of contrast and pixel expansion. Then we
prove an upper bound on the contrast of any (3, n)-threshold VCS and show that a scheme in the
described family has optimal contrast. Finally, for k = 4, 5 we present two schemes with contrast
asymptotically equal to 1/64 and 1/256, respectively.

Key words. visual cryptography, secret sharing schemes

AMS subject classification. 94A60

PII. S0895480198336683

1. Introduction. A (k, n)-threshold visual cryptography scheme (VCS) for a
set P of n participants is a method to encode a secret image SI into n shadow images
called shares, where each participant in P receives one share. Any (qualified) set
of k or more participants can “visually” recover the secret image, but (forbidden)
sets of participants of cardinality less than k have no information (in an information-
theoretic sense) on SI. A “visual” recovery for a set X ⊆ P consists of copying the
shares given to the participants in X onto transparencies and then stacking them.
The participants in a qualified set X will be able to see the secret image without any
knowledge of cryptography and without performing any cryptographic computation.
VCS are characterized by two parameters: the pixel expansion, which is the number of
subpixels that each pixel of the original image is encoded into, and the contrast, which
measures the “difference” between a black pixel and a white pixel in the reconstructed
image.

This cryptographic paradigm was introduced by Naor and Shamir [12]. Further
results on (k, n)-threshold VCS can be found in [1, 3, 5, 7, 9, 16]. The model by Naor
and Shamir has been extended in [1, 3] to general access structures (an access structure
is a specification of all qualified and forbidden subsets of participants), where general
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techniques to construct VCS for any access structure have been proposed. Droste [7]
gave an algorithm to construct (k, n)-threshold VCS. In [3] the authors provide the
first construction for (2, n)-threshold VCS having the best possible contrast for any
n ≥ 2. In [5], for any n, is provided a complete characterization of (2, n)-threshold
VCS having optimal contrast and minimum pixel expansion in terms of certain bal-
anced incomplete block designs. The authors of [9] showed that by solving a suitable
linear program one can compute the best contrast achievable in any (k, n)-threshold
VCS. In [9], for the cases k = 2 with n even and k = 3 with n divisible by 4, a
(k, n)-threshold VCS achieving the best possible contrast is described.

For a simple and nontechnical introduction to visual cryptography see [15].
In implementing VCS it would be useful to conceal the existence of the secret

message; namely, the shares given to participants in the scheme should not appear as
random pixels, but recognizable images (a house, a dog, a tree, etc.). Naor and Shamir
[12] first considered the problem of concealing the existence of the secret message for
the case of 2 out of 2 threshold VCS. In [2] the authors gave a general technique
to implement VCS with such an extended capability. Droste [7] also considered the
problem of concealing the existence of the secret message and presented a technique
to implement such schemes.

Alternative reconstruction methods for VCS based on “opaque” shares [13] and
on polarized filters [4] have been recently proposed. Both models make assumptions
different from ours on the way the shares combine. VCS to encrypt colored images are
given in [10, 14, 16]. Recently, authentication and identification methods for human
users based on VCS have been considered [11]. The authors of [6] analyze the amount
of randomness needed to visually share a secret image.

In this paper we analyze the contrast for (k, n)-threshold VCS. We are mainly
interested in schemes achieving the maximum possible contrast for any fixed values
of k and n. We refer to such schemes as contrast optimal. We define a canonical
form for (k, n)-threshold VCS and characterize (k, n)-threshold VCS (see Lemmas 3.9
and 3.10). We completely characterize contrast optimal (n − 1, n)-threshold VCS in
canonical form. Moreover, for n ≥ 4, we present a contrast optimal (3, n)-threshold
VCS in canonical form. We first describe a family of (3, n)-threshold VCS achieving
various values of contrast and pixel expansion. Then we prove an upper bound on
the contrast of any (3, n)-threshold VCS and show that a scheme in the described
family has optimal contrast. Finally, for k = 4 and k = 5 we present two schemes
with contrast asymptotically equal to 1/64 and 1/256, respectively.

2. The model. We assume that the secret image consists of a collection of
black and white pixels. Each pixel appears in n versions called shares, one for each
transparency. Each share is a collection ofm black and white subpixels. The resulting
structure can be described by an n×m boolean matrix S = [sij ] where sij = 1 if and
only if the jth subpixel in the ith transparency is black. Therefore the grey level of
the combined shares obtained by stacking the transparencies i1, . . . , is is proportional
to the Hamming weight w(V ) of the m-vector V = OR(ri1 , . . . , ris), where ri1 , . . . , ris
are the rows of S associated with the transparencies we stack. This grey level is
interpreted by the visual system of the participants as black or white according to
some rule of contrast.

Definition 2.1. Let k and n be two integers such that k ≤ n and let P be a
set of n participants. Two collections (multisets) of n ×m boolean matrices C0 and
C1 constitute a (k, n)-threshold VCS with pixel expansion m if there exist the value α
and the set {(X, tX)}X⊆P:|X|=k satisfying the following:
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1. Any (qualified) set X = {i1, i2, . . . , ik} ⊆ P can recover the shared image by
stacking its transparencies. Formally, for any M ∈ C0, the OR V of rows i1, i2, . . . , ik
satisfies w(V ) ≤ tX − α ·m, whereas for any M ∈ C1 we have w(V ) ≥ tX .

2. Any (forbidden) set X = {i1, i2, . . . , ip} ⊆ P, with p < k, has no infor-
mation on the shared image. Formally, the two collections of p × m matrices Dt,
with t ∈ {0, 1}, obtained by restricting each n ×m matrix in Ct to rows i1, i2, . . . , ip,
are indistinguishable in the sense that they contain the same matrices with the same
frequencies.

Each pixel of the original image will be encoded into n pixels, each of which
consists of m subpixels. To share a white (resp., black) pixel, the dealer randomly
chooses one of the matrices in C0 (resp., C1,) and distributes row i to participant
i. Thus, the chosen matrix defines the m subpixels in each of the n transparencies.
Notice that, in the previous definition, C0 is a multiset of n × m boolean matrices.
Therefore we allow a matrix to appear more than once in C0 (resp., C1). Finally,
observe that the sizes of the collections C0 and C1 do not need to be the same.

The first property is related to the contrast of the image. It states that when
any k participants stack their transparencies they can correctly recover the image
shared by the dealer. The value α is called the contrast of the image, and the set
{(X, tX)}X⊆P:|X|=k is called the set of thresholds. (We use a slightly different ter-
minology from [12], where the contrast is called relative difference and the quantity
α ·m is called the contrast of the scheme.) We want the product of the contrast times
the pixels expansion to be as large as possible and at least 1, that is, α ≥ 1/m. The
second property is called security since it implies that, even by inspecting all their
shares, any set of less than k participants cannot gain any information to help in
deciding whether the shared pixel was white or black.

Notice that if a set of participants X is a superset of a qualified set X ′, then the
participants can recover the shared image by considering only the shares of the set
X ′. This does not rule out the possibility that stacking all the transparencies of the
participants in X will not reveal any information about the shared image. A strong
(k, n)-threshold VCS is a (k, n)-threshold VCS in which property 1 of Definition 2.1
is satisfied for any set X of cardinality at least k; that is, the image is visible if and
only if k or more participants stack their transparencies.

There are few differences between the model of visual cryptography we propose
and the one presented by Naor and Shamir [12]. Our model is a generalization of the
one proposed in [12] since with each set X of size k we associate a (possibly) different
threshold tX . Nevertheless, all the (k, n)-threshold VCS given in this paper have the
property that for any X,X ′ ⊆ P with |X| = |X ′| ≥ k, we have tX = tX′ .

2.1. Basis matrices. In this paper we consider only (k, n)-threshold VCS in
which the collections C0 and C1 have the same size, i.e., |C0| = |C1| = r. Actually,
this is not a restriction at all. Indeed, in section 2.1 of [1] it has been shown how to
obtain, from an arbitrary (k, n)-threshold VCS, a VCS having the same parameters
m, α, and {(X, tX)}X⊆P:|X|=k, with equally sized C0 and C1.

All of the constructions in this paper are realized using two n ×m matrices, S0

and S1, called basis matrices, satisfying the following definition.
Definition 2.2. Let k and n be two integers such that k ≤ n and let P be a

set of n participants. A (k, n)-threshold VCS with contrast α and set of thresholds
{(X, tX)}X⊆P:|X|=k is realized using the two n ×m basis matrices S0 and S1 if the
following two conditions hold:

1. If X = {i1, i2, . . . , ik} ⊆ P, (i.e., if X is a qualified set), then the OR V of
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rows i1, i2, . . . , ik of S
0 satisfies w(V ) ≤ tX−α·m, whereas for S1 we have w(V ) ≥ tX .

2. If X = {i1, i2, . . . , ip} ⊆ P and p < k (i.e., if X is a forbidden set), then the
two p ×m matrices obtained by restricting S0 and S1 to rows i1, i2, . . . , ip are equal
up to a column permutation.

The collections C0 and C1 are obtained by permuting the columns of the corre-
sponding basis matrix (S0 for C0, and S1 for C1) in all possible ways. Note that in this
case, the size of the collections C0 and C1 is the same (equal to m!) and is denoted by
r. This technique has been introduced in [12]. The algorithm for the VCS based on
the previous construction of the collections C0 and C1 has small memory requirements
(it keeps only the basis matrices S0 and S1) and it is efficient (to choose a matrix in
C0 (resp., C1) it only generates a permutation of the columns of S0 (resp., S1)).

3. Canonical (k, n)-threshold VCS. Most of the constructions found in the
literature for (k, n)-threshold VCS are realized by using basis matrices. Among these
constructions there are a few having the property that all the columns of a given
weight appear with the same multiplicity in the basis matrices (see, for instance,
[12, 3, 1, 7, 5, 9, 16]). Because of the relevance of this property, we review in (i)–(iv)
below some of the constructions for (k, n)-threshold VCS having such a property.

(i) Naor and Shamir [12] proposed a (k, k)-threshold VCS obtained by con-
struction of the basis matrices S0 and S1 defined as follows: S0 is the matrix whose
columns are all the boolean k-vectors having an even number of 1’s, and S1 is the
matrix whose columns are all the boolean k-vectors having an odd number of 1’s. In
[12] the basis matrices of (2, n)-threshold VCS are realized as follows: S0 contains
n − 1 columns of weight 0 and one column of weight n, whereas S1 contains all the
columns of weight 1. Naor and Shamir [12] also proposed a (3, n)-threshold VCS
whose basis matrices are realized as follows: S0 contains n − 2 columns of weight 0
and all the columns of weight n− 1, whereas S1 contains all the columns of weight 1
and n− 2 columns of weight n.

(ii) In [3] the authors showed how to construct a (2, n)-threshold VCS that is
optimal with respect to the contrast. The basis matrix S1 of such a scheme is realized
by considering all the columns of weight �n/2�, whereas the basis matrix S0 contains(
n−1
�n/2	

)
columns of weight 0 and

(
n−1
�n/2	−1

)
columns of weight n.

(iii) Droste [7] gave an algorithm to construct basis matrices of any (k, n)-
threshold VCS. The basis matrices realized by such an algorithm are constructed by
adding or deleting all the columns of particular weights to or from the basis matrices.

(iv) Other (k, n)-threshold VCS in which all the columns of a given weight
appear in the basis matrices can be found in [5]. For instance, when k|n, setting

� = n!/ ((n/k)!)
k
, we have that, for j = 0, . . . , �k/2�, the basis matrix S1 is realized

by considering all the columns of weight (2j+1)n/k, each appearing with multiplicity
�, and the basis matrix S0 contains all the columns of weight 2jn/k, each appearing
with multiplicity �.

(v) In [9] basis matrices containing all the columns of a given weight, each
occuring with the same frequency, are referred to as totally symmetric matrices. The
authors analyzed (k, n)-threshold VCS having totally symmetric basis matrices. They
gave explicit constructions for k = 2, 3, n.

(vi) In [16] the authors proposed two constructions for (k, n)-threshold VCS
whose parameters are connected to notions in finite geometry and coding theory. The
basis matrices derived from such constructions contain all the columns of a given
weight.
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In this section we consider basis matrices containing all the columns of a given
weight, each occurring with the same frequency, with few additional properties (see
Definition 3.1). We refer to such matrices as canonical. We show how to construct
for any (k, n)-threshold VCS a canonical scheme preserving the contrast. Since we
are interested in optimizing the contrast, we focus our attention only on the canonical
form.

Before we state our results we need to set up our notation. Let M be an n ×m
matrix and let X ⊆ {1, . . . , n} and Z ⊆ {1, . . . ,m}. Let M [X][Z] denote the |X|×|Z|
matrix obtained from M by considering its restriction to rows and columns indexed
by X and Z, respectively. Let M be a matrix in the collection C0 ∪ C1 of a (k, n)-
threshold VCS on a set of participants P. For X ⊆ P, let MX denote the m-
vector obtained by considering the OR of the rows corresponding to participants in
X, whereas M [X] = M [X][{1, . . . ,m}] denotes the |X| × m matrix obtained from
M by considering only the rows corresponding to participants in X. Let M be a
matrix and let D be a submatrix of M having the same number of rows; we denote
by M\D the matrix obtained from M by removing all the columns of the matrix D.
For sets X and Y and for elements x and y, to avoid overburdening the notation we
will often write x for {x}, xy for {x, y}, xY for {x}∪Y , and XY for X ∪Y . Let c be
a boolean vector. We denote by c the vector obtained from c by complementing all
its entries, whereas we denote by M the matrix obtained from M by complementing
all its entries. For i = 0, 1, we denote by fc,i the multiplicity of the column c in Si;
that is, fc,i is the number of times column c appears in Si. By abusing notation, we
write c ∈M to denote the fact that c is a column of the matrix M .

Definition 3.1. Let (S0, S1) be the basis matrices of a (k, n)-threshold VCS.
They are in canonical form if, for i = 0, 1, the following two properties are satisfied:

1. For any columns c and c′ such that w(c) = w(c′), we have fc,i = fc′,i.
2. For any column c, we have

fc,i =

{
fc,i if k is even,
fc,1−i if k is odd.

A (k, n)-threshold VCS whose basis matrices are in canonical form is referred to
as a canonical (k, n)-threshold VCS.

To prove some of our results we need the following theorem.
Theorem 3.2 (see [5]). Let S0 and S1 be two n × m boolean matrices. The

matrices S0 and S1 are basis matrices of a (k, n)-threshold VCS with pixel expansion
m and contrast α if and only if for all subsets X consisting of k rows there exist a
boolean matrix D[X] and an integer z

X
≥ α ·m such that D[X] is a submatrix of both

S0[X] and S1[X], all the even columns appear in S0[X]\D[X] with multiplicity z
X
,

and all the odd columns appear in S1[X]\D[X] with multiplicity z
X
.

Theorem 3.2 follows directly from Theorem 7.1 of [5] and Lemma 3.5 of [1]. More
precisely, Theorem 7.1 of [5] establishes that a pair of basis matrices (T 0, T 1), such
that the same column does not appear in both, realizes a (k, k)-threshold VCS if
and only if there is an integer h for which T 0 contains all the even columns with
multiplicity h, and T 1 contains all the odd columns with the same multiplicity h.
Since, for any subset X of k rows, the restriction (S0[X], S1[X]) of (S0, S1) defines
a pair of basis matrices realizing a (k, k)-threshold VCS, then, from Lemma 3.5 of
[1], S0[X] and S1[X] have the following structure: There are a matrix D[X] and
an integer zX such that D[X] is a submatrix of both S0[X] and S1[X], all the even
columns appear in S0[X]\D[X] with multiplicity zX , and all the odd columns appear
in S1[X]\D[X] with the same multiplicity zX .
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Example 3.3. Let

S0 =





0 0 0 1 1 1 1 0
0 0 0 1 1 1 0 1
0 0 0 1 1 0 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1




, S1 =





1 1 1 0 0 0 0 1
1 1 1 0 0 0 1 0
1 1 1 0 0 1 0 0
1 1 1 0 1 0 0 0
1 1 1 1 0 0 0 0





be two basis matrices realizing a (3, 5)-threshold VCS. If we look at the restrictions to
the first three rows of these matrices, then it is easy to see that S0[X] (resp., S1[X])
contains all the even (resp., odd) columns once and that the common matrix, up to a
column permutation, is

D[X] =




1 1 0 0
1 1 0 0
1 1 0 0



 .

We will use the next lemma to prove that if there exists a (k, n)-threshold VCS
with contrast α, then there exists a canonical (k, n)-threshold VCS having the same
contrast α. A weaker version of the result stated by the next lemma was independently
proved in [16, Thm. 5.7].

Lemma 3.4. Let (S0, S1) be the basis matrices of a (k, n)-threshold VCS with
pixel expansion m and contrast α. The matrices (B0, B1), defined as

(B0, B1) =

{
(S1, S0) if k is odd,

(S0, S1) if k is even,

are the basis matrices of a (k, n)-threshold VCS with pixel expansion m and contrast
α.

Proof. Assume that k is odd and let B0 = S1 and B1 = S0. Since (S0, S1) are
basis matrices of a (k, n)-threshold VCS, then, from Theorem 3.2, for all subsets X
consisting of k rows there exist a boolean matrix DX and an integer z

X
≥ α ·m such

that DX is a submatrix of both S0[X] and S1[X], all the even columns appear in
S0[X]\DX with multiplicity z

X
, and all the odd columns appear in S1[X]\DX with

multiplicity z
X
. Hence, for all subsets X consisting of k rows there exist a boolean

matrix GX = DX and an integer z
X

such that GX is a submatrix of both B0[X] and
B1[X], all the even columns appear in B0[X]\GX with multiplicity z

X
, and all the

odd columns appear in B1[X]\GX with multiplicity z
X
. Therefore, from Theorem 3.2,

we get that (B0, B1) are basis matrices of a (k, n)-threshold VCS. We immediately
see that the contrast of the (k, n)-threshold VCS having basis matrices (B0, B1) is
the same as the contrast of the scheme with which we started.

The proof for the case k even is analogous to the one for k odd.
In [5] it was shown that if there exists a (k, n)-threshold VCS Σ realized using

collections of n×m boolean matrices C0 and C1 having contrast α, then there exists
a (k, n)-threshold VCS realized by using basis matrices having the same contrast as
Σ. We state this result as a lemma.

Lemma 3.5. Let C0 and C1 be the collections of matrices of a (k, n)-threshold
VCS with contrast α. Then, there exists a (k, n)-threshold VCS realized by using basis
matrices having contrast α.

Proof. Without loss of generality we can assume that r = |C0| = |C1| (see section
2.1 of [1]). Suppose that C0 = {M0,1, . . . ,M0,r} and C1 = {M1,1, . . . ,M1,r}, where
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◦ denotes the concatenation of two matrices. We can immediately check that S0 =
M0,1 ◦ · · · ◦M0,r and S1 = M1,1 ◦ · · · ◦M1,r constitute the basis matrices of a (k, n)-
threshold VCS having the same contrast as Σ.

The next lemma holds.
Lemma 3.6. Let C0 and C1 be the collections of matrices of a (k, n)-threshold

VCS with contrast α. Then there exists a canonical (k, n)-threshold VCS realized by
basis matrices (S0, S1) having contrast α.

Proof. Assume k odd. Let Σ be a (k, n)-threshold VCS with pixel expansion
m and contrast α. Suppose that Σ is realized using collections of n × m boolean
matrices C0 and C1. By Lemma 3.5 there exists a (k, n)-threshold VCS realized by
using basis matrices (S0, S1) having the same contrast α as Σ. For i = 0, 1, let Di
be the collection of boolean matrices obtained from Si by permuting its rows. Now,
construct a new pair of matrices D0 and D1 by concatenating all the matrices in
D0 and D1, respectively. We can immediately see that D0 and D1 constitute basis
matrices of a (k, n)-threshold VCS having the same contrast as Σ. At this point, we
have that if a column of weight w appeared in S0 (S1), then all the columns of weights
w appear in D0 (resp., D1). Finally, let B0 = D1 and B1 = D0. By Lemma 3.4, the
pair (B0, B1) represents the basis matrices of a (k, n)-threshold VCS having contrast
α. It is straightforward to check that A0 = B0 ◦D0 and A1 = B1 ◦D1 are the basis
matrices of a canonical (k, n)-threshold VCS having contrast α.

The proof for the case k even is analogous to the one for k odd.
Notice that the authors of [9] considered totally symmetric matrices which satisfy

only property 1 of Definition 3.1 and they proved the analogous result of Lemma 3.6.
In any canonical (k, n)-threshold VCS, by property 1 of Definition 3.1 all the

columns of a given weight appear with the same multiplicity. Therefore, we define the
multiplicity of a column of weight j in Si as hj,i, i.e., hj,i = fc,i if w(c) = j. Hence,
any canonical (k, n)-threshold VCS can be simply described by the pair of vectors
(h0,0, . . . , hn,0) and (h0,1, . . . , hn,1). Clearly, the pixel expansion m of a canonical
(k, n)-threshold VCS is equal to

m =

n∑

j=0

hj,0

(
n

j

)
=

n∑

j=0

hj,1

(
n

j

)
.

Moreover, it is easy to see that in a canonical (k, n)-threshold VCS, for anyX,X ′ ⊆ P,
with |X| = |X ′| = k, we have that tX = tX′ , as in the original definition by Naor and
Shamir [12]. This also means that the optimal contrast is the same in our definition
as in the Naor–Shamir definition (however, the minimal pixel expansion need not be
the same).

The next corollary is a consequence of Definition 3.1.
Corollary 3.7. Let Σ be a (k, n)-threshold VCS in canonical form. If k is odd,

then for j = 0, . . . , n we have that hj,0 = hn−j,1, whereas if k is even, for j = 0, . . . , n,
we have that hj,0 = hn−j,0 and hj,1 = hn−j,1.

There is another equality relating the hi,j ’s that is based on the security of the
(k, n)-threshold VCS. From condition 2 of Definition 2.2 in [1], for j = 0, . . . , n, it has
to be that w(S0[j]) = w(S1[j]), from which one gets that

n∑

i=1

hi,0

(
n− 1

i− 1

)
=

n∑

i=1

hi,1

(
n− 1

i− 1

)
.

Hence, in any canonical (k, n)-threshold VCS all the rows of the basis matrices have
the same weight. The next corollary is an immediate consequence of the previous
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observation and of Lemma 3.6.
Corollary 3.8. The pixel expansion of any canonical (k, n)-threshold VCS is

twice the weight of any row of a basis matrix.
Proof. Suppose n is odd (resp., n is even) and let (S0, S1) be the basis matrices

of a canonical (k, n)-threshold VCS. From Corollary 3.7 we have that S1−i = Si

(Si = Si) for i = 0, 1. Hence, as in any canonical (k, n)-threshold VCS where all the
rows of the basis matrices have the same weight, we have that the weight of any row
of a basis matrix is half of the pixel expansion of the scheme.

Notice that if (A0, A1) and (B0, B1) are (k, n)-threshold VCS having contrast
α, then (A0 ◦ B0, A1 ◦ B1), where ◦ denotes the operator “concatenation” of two
matrices, is a (k, n)-threshold VCS having contrast α. Hence, if (h0,0, . . . , hn,0) and
(h0,1, . . . , hn,1) are a pair of vectors describing a canonical (k, n)-threshold VCS hav-
ing contrast α, then, for any positive integer �, the vectors (� · h0,0, . . . , � · hn,0) and
(�·h0,1, . . . , �·hn,1) again describe a canonical (k, n)-threshold VCS having contrast α.
Therefore, if we want to minimize the pixel expansion m for a given value of the con-
trast α, we consider values h0,0, . . . , hn,0, h0,1, . . . , hn,1 such that gcd(h0,0, . . . , hn,0) =
gcd(h0,1, . . . , hn,1) = 1.

Suppose that n ≥ 2 is an integer and that 2 ≤ k ≤ n. For i = 0, 1, let hi =
(h0,i, . . . , hn,i) be an (n+ 1)-tuple of nonnegative integers. For i = 0, 1, define S(hi)
to be the matrix in which every binary n-tuple of weight j occurs exactly hj,i times as
a column (0 ≤ j ≤ n). In the following we provide a necessary and sufficient condition
for the existence of (k, n)-threshold VCS realized by such matrices S(h0) and S(h1).
The following lemma holds.

Lemma 3.9. S(h0) and S(h1) are basis matrices of a (k, n)-threshold VCS with
pixel expansion m and contrast α if and only if the following properties are satisfied:

1.
∑n
j=0

(
n
j

)
hj,0 =

∑n
j=0

(
n
j

)
hj,1 = m.

2.
∑n−p+p′
j=p′

(
n−p
j−p′

)
hj,0 =

∑n−p+p′
j=p′

(
n−p
j−p′

)
hj,1 for 1 ≤ p ≤ k − 1 and 0 ≤ p′ ≤ p.

3.
∑n−k
j=0

(
n−k
j

)
(hj,0 − hj,1) = α ·m.

Proof. Suppose that S(h0) and S(h1) are basis matrices for a VCS with the stated
parameters. The number of columns in S(hi) (i = 0, 1) is

n∑

j=0

(
n

j

)
hj,i.

Therefore property 1 holds.
Next, let c be a binary column p-tuple, where 0 ≤ p ≤ k − 1. Suppose that the

weight of c is p′ (note that p′ ≤ p). Fix p rows of S(h0) and S(h1), say the first p
rows. The number of occurrences of c as a column of S(hi)[{1, . . . , p}] is

n−p+p′∑

j=p′

(
n− p

j − p′

)
hj,i

for i = 0, 1. Therefore property 2 holds.
Finally, we look at the weight of the OR of k rows of S(h0) and S(h1), say the

first k rows. If we let X = {1, . . . , k}, then

w(S(h1)X)− w(S(h0)X) ≥ α ·m.
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Let εi denote the number of occurrences of (0, . . . , 0)T as a column of S(hi)[X] for
i = 0, 1. It is easy to see that

w(S(hi)X) = m− εi

for i = 0, 1. Hence,

w(S(hi)X) = m−
n−k∑

j=0

(
n− k

j

)
hj,i

for i = 0, 1. Therefore property 3 holds.
Conversely, if properties 1–3 hold, it is easy to see that S(h0) and S(h1) are basis

matrices for a VCS with the stated parameters.
We can in fact simplify the statement of the above lemma by observing that many

of the conditions are redundant. More precisely, property 2 of Lemma 3.9 considers,
for each 1 ≤ p ≤ k − 1, the restriction of the basis matrices to p rows and requires
that the same subcolumns appear with the same frequencies. However, we can simply
check if the subcolumns of weight 1 ≤ p′ ≤ k − 1 appear with the same frequencies
in S(h0) and S(h1). Indeed, if this property is satisfied, the symmetric structure of
the matrices ensures that any restriction of S(h0) and S(h1) to 1 ≤ p ≤ k − 1 rows
contains the same subcolumns with the same frequencies.

From a mathematical point of view, by repeated application of Pascal’s identity
for binomial coefficients to property 2 of Lemma 3.9, we obtain the following equivalent
formulation.

Lemma 3.10. S(h0) and S(h1) are basis matrices of a (k, n)-threshold VCS with
pixel expansion m and contrast α if and only if the following properties are satisfied:

1.
∑n
j=0

(
n
j

)
hj,0 =

∑n
j=0

(
n
j

)
hj,1 = m.

2. For 1 ≤ p′ ≤ k − 1,
∑n−p′
j=0

(
n−p′
j

)
hj,0 =

∑n−p′
j=0

(
n−p′
j

)
hj,1.

3.
∑n−k
j=0

(
n−k
j

)
(hj,0 − hj,1) = α ·m.

Example 3.11. Suppose k = 2 and n = 4. The following example is from [5]. Let
h0 = (3, 0, 0, 0, 3) and let h1 = (0, 0, 1, 0, 0). This defines a (2, 4)-threshold VCS with
m = 6 and contrast α = 1/3:

4∑

j=0

(
4

j

)
hj,0 =

(
4

0

)
3 +

(
4

4

)
3 = 6,

4∑

j=0

(
4

j

)
hj,1 =

(
4

2

)
1 = 6,

3∑

j=0

(
3

j

)
hj,0 =

(
3

0

)
3 = 3,

3∑

j=0

(
3

j

)
hj,1 =

(
3

2

)
1 = 3,

2∑

j=0

(
2

j

)
(hj,0 − hj,1) =

(
2

0

)
3−

(
2

2

)
1 = 2.
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Example 3.12. Suppose k = 3 and n = 7. The following example is an application
of a construction we give in section 4.2. Let h0 = (9, 0, 0, 0, 0, 1, 0, 0) and let h1 =
(0, 0, 1, 0, 0, 0, 0, 9). This defines a (3, 7)-threshold VCS with m = 30 and contrast
α = 1/10:

7∑

j=0

(
7

j

)
hj,0 =

(
7

0

)
9 +

(
7

5

)
1 = 30,

7∑

j=0

(
7

j

)
hj,1 =

(
7

2

)
1 +

(
7

7

)
9 = 30,

6∑

j=0

(
6

j

)
hj,0 =

(
6

0

)
9 +

(
6

5

)
1 = 15,

6∑

j=0

(
6

j

)
hj,1 =

(
6

2

)
1 = 15,

5∑

j=0

(
5

j

)
hj,0 =

(
5

0

)
9 +

(
5

5

)
1 = 10,

5∑

j=0

(
5

j

)
hj,1 =

(
5

2

)
1 = 10,

4∑

j=0

(
4

j

)
(hj,0 − hj,1) =

(
4

0

)
9−

(
4

2

)
1 = 3.

The characterization of (k, n)-threshold VCS provided by Lemma 3.10, because of
Lemma 3.6, gives rise to a natural and simple formulation for computing their optimal
contrast for any fixed n and k in terms of linear programming. We set m = 1 without
loss of generality since α is unchanged if all the hj,i’s are multiplied by a constant
factor. The resulting linear program has only 2n+ 2 variables.

Maximize

α =

n−k∑

j=0

(
n− k

j

)
(hj,0 − hj,1)

subject to

n∑

j=0

(
n

j

)
hj,0 = 1,

n∑

j=0

(
n

j

)
hj,1 = 1,

n−p′∑

j=0

(
n− p′

j

)
(hj,0 − hj,1) = 0 for p′ = 1, . . . , k − 1,

hj,0 ≥ 0 for j = 0, . . . , n,

hj,1 ≥ 0 for j = 0, . . . , n.
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It is worthwhile to notice that our linear program is equivalent to, but simpler
than, the one given in [9]. In Appendix B, the entries of Figures B.1–B.3 have been
filled in by solving the previous linear programming problem for 2 ≤ k ≤ n ≤ 11.
Also in [9] are tabulated some values of the contrast.

We can further simplify the previous linear program formulation by taking into
account Corollary 3.7. For odd values of k the linear program formulation can be
written as follows:

Maximize

α =

n−k∑

j=0

(
n− k

j

)
(hj,0 − hn−j,0)

subject to

n∑

j=0

(
n

j

)
hj,0 = 1,

n−p′∑

j=0

(
n− p′

j

)
(hj,0 − hn−j,0) = 0 for p′ = 1, . . . , k − 1,

hj,0 ≥ 0 for j = 0, . . . , n.

For even values of k the linear program formulation can be obtained similarly.
This new linear program formulation is clearly simpler than the previous one, as it
uses only half of the variables and reduces the number of constraints.

In view of Lemma 3.6, if we are interested in obtaining schemes with a given
contrast or bound on the contrast itself, then we can restrict our attention to canonical
(k, n)-threshold VCS. Henceforth, unless otherwise specified, all (k, n)-threshold VCS
we consider or analyze are canonical (k, n)-threshold VCS.

4. Contrast optimal (k, n)-threshold VCS. We recall that, for fixed values
of k and n, a contrast optimal scheme is a scheme achieving the maximum possible
contrast over all (k, n)-threshold VCS. Contrast optimal (k, n)-threshold VCS for
k = 2 and k = n already have been extensively studied (see [5, 12]). It is interesting
that the basis matrices realizing the (k, k)-threshold VCS described in [12], and the
basis matrices of the first construction proposed in [5] for (2, n)-threshold VCS, are
both in canonical form.

Notice that the same column cannot appear in both basis matrices of a contrast
optimal (k, n)-threshold VCS. This property is easy to verify. Indeed, if the same
column appears in both basis matrices, then by removing it we obtain a new scheme
having a contrast better than the one with which we started. This property implies
the following fact.

Fact 4.1. In any contrast optimal (k, n)-threshold VCS whose basis matrices are
in canonical form, for j = 0, . . . , n and i = 0, 1, it holds that

1. if hj,1−i > 0, then hj,i = 0.
2. if k is even, then hj,i = hn−j,i.
3. if k is odd, then hj,i = hn−j,1−i.

As a consequence of this fact and Corollary 3.7, we have that if n is even and k
is odd, then hn/2,0 = hn/2,1 = 0.
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4.1. Contrast optimal (n−1, n)-threshold VCS. In this section we charac-
terize contrast optimal (n−1, n)-threshold VCS whose basis matrices are in canonical
form.

The next lemma holds.
Lemma 4.2. Let n ≥ 3. In any contrast optimal (n− 1, n)-threshold VCS whose

basis matrices are in canonical form, the hj,i’s satisfy the following:
1. hj,0 > 0 if and only if either j < n/2 with j even or j > n/2 with j odd.
2. hj,1 > 0 if and only if either j < n/2 with j odd or j > n/2 with j even.
Proof. Let (S0, S1) be the basis matrices of a canonical (n− 1, n)-threshold VCS

which is contrast optimal. It holds that

if j is odd and hj,1 = 0, then hj+1,1 > 0,
whereas if j is even and hj,0 = 0, then hj+1,0 > 0;

(1)

otherwise we have hj,1 = hj+1,1 = 0 which is impossible as, by Theorem 3.2, all the
columns of weight j have to appear among the columns of S1[X], where X is a subset
of {1, . . . , n} of cardinality n−1. Similarly, we can prove that if j is even and hj,0 = 0,
then it holds that hj+1,0 > 0.

We will prove that for any integer j < n/2 it holds that

if j is even, then hj,0 > 0, whereas if j is odd, then hj,1 > 0.(2)

Therefore, applying Corollary 3.7, the lemma holds.
Now assume that n is even and j < n/2. Suppose by contradiction that hj,0 = 0.

From (1) and by Fact 4.1 we have hj+1,0 > 0 and hj+1,1 = 0. Applying again (1) and
Fact 4.1 we get hj+2,1 > 0 and hj+2,0 = 0. Iterating the previous argument we get
that either hn/2,0 > 0 or hn/2,1 > 0, depending on whether n/2 is even or odd, which
is a contradiction (recall that hn/2,0 = hn/2,1 = 0). If j is odd, then we repeat the
proof for the case j even mutatis mutandis.

If n is odd, then by Corollary 3.7 we have that h(n−1)/2,i = h(n+1)/2,i, where
i = 0, 1. At this point we repeat the proof for the case n even mutatis mutandis. We
get that either h(n−1)/2,0 = 0 and h(n+1)/2,0 > 0 or h(n−1)/2,1 = 0 and h(n+1)/2,1 > 0,
which is a contradiction. Thus, the lemma holds.

The next lemma states the exact value of the hj,i of any contrast optimal (n−1, n)-
threshold VCS whose basis matrices are in canonical form.

Lemma 4.3. Let n ≥ 3. In any contrast optimal (n− 1, n)-threshold VCS whose
basis matrices are in canonical form, the hj,i’s satisfy the following:

(i) If n is even, then for j = 0, . . . , �(n − 2)/4�, we have h2j,0 = hn−2j,1 =
(n/2) − 2j, whereas for j = 0, . . . , �(n − 4)/4�, we have h2j+1,1 = hn−(2j+1),0 =
(n/2)− (2j + 1).

(ii) If n is odd, then for j = 0, . . . , �n/4�, we have h2j,0 = hn−2j,0 = n − 4j,
whereas for j = 0, . . . , �(n− 5)/4�, we have h2j+1,1 = hn−(2j+1),1 = n− (4j + 2).

Proof. Let Σ be a contrast optimal (n− 1, n)-threshold VCS. Let (S0, S1) be the
n×m basis matrices of Σ and let α be its contrast. Let X be a subset of {1, . . . , n}
of cardinality n− 1 and let c be a column of weight j, where n/2 ≤ j < n. Suppose j
is even. According to Theorem 3.2, the column c has to appear at least α ·m times
more in S0[X] than in S1[X]. Therefore, since Σ is contrast optimal, by Lemma 4.2
we have that hj+1,0−hj,1 = α ·m. A similar argument applies when j is odd. In this
case we obtain hj+1,1 − hj,0 = α ·m. For n even, recalling Lemma 4.2 and setting,
without loss of generality, α ·m = 1, we get the following n/2 linear equations in n
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unknowns:

hn−2j,1 − hn−(2j+1),0 = 1 for j = 0, . . . , �(n− 2)/4�,
hn−(2j+1),0 − hn−(2j+2),1 = 1 for j = 0, . . . , �(n− 4)/4�.(3)

Summing up (3) and recalling that hn/2,0 = hn/2,1 = 0, we get that hn = n/2 from
which we can compute the value of the other unknowns. Therefore, we obtain that
if n is even, then for j = 0, . . . , �(n − 2)/4�, we have h2j,0 = hn−2j,1 = (n/2) − 2j;
whereas, for j = 0, . . . , �(n− 4)/4�, we have h2j+1,1 = hn−(2j+1),0 = (n/2)− (2j +1).

If n is odd, then we set α ·m = 2 and repeat the proof for the case n even mutatis
mutandis.

The results of the above lemma can be summarized as follows: If n is even, then,
for j = 0, . . . , n,

hj,0 = hn−j,1 =






(n/2)− j if j is even and j < n/2,

j − (n/2) if j is odd and j > n/2,

0 otherwise.

If n is odd, then, for j = 0, . . . , �n/2�,

hj,0 = hn−j,0 =

{
n− 2j if j is even and j < n/2,

0 otherwise,

and

hj,1 = hn−j,1 =

{
n− 2j if j is odd and j < n/2,

0 otherwise.

The next lemma holds.
Lemma 4.4. For any n ≥ 3 and for any contrast optimal canonical (n − 1, n)-

threshold VCS the pixel expansion m is given by

m =






(n/4)
(
n
n/2

)
if n is even,

n
(

n−1
(n−1)/2

)
if n is odd.

Proof. Assume n is even. We have that,

m =
n∑

j=0

hj,0

(
n

j

)

=

� (n−2)
4 	∑

j=0

(n
2
− 2j

)( n

2j

)
+

� (n−4)
4 	∑

j=0

(n
2
− (2j + 1)

)( n

2j + 1

)

=

n
2−1∑

j=0

(n
2
− j

)(n
j

)
.

Since for any even integer r and any integer g it holds that (see [8, p. 166])

g∑

j=0

(r
2
− j

)(r
j

)
=

g + 1

2

(
r

g + 1

)
,
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then

m =
n

4

(
n
n
2

)
.

On the other hand, if n is odd, then

m =
n∑

j=0

hj,0

(
n

j

)
= 2

�n/4	∑

j=0

(n− 4j)

(
n

2j

)
.

We begin by simplifying the sum as follows:

�n4 	∑

j=0

(n− 4j)

(
n

2j

)
=

�n4 	∑

j=0

(
(n− 2j)

(
n

n− 2j

)
− 2j

(
n

2j

))

=

�n4 	∑

j=0

(
n

(
n− 1

n− 2j − 1

)
− n

(
n− 1

2j − 1

))

= n




�n4 	∑

j=0

(
n− 1

2j

)
−
�n4 	∑

j=1

(
n− 1

2j − 1

)

 .

Recall that

�n−1
2 	∑

j=0

(
n− 1

2j

)
=

�n2 	∑

j=1

(
n− 1

2j − 1

)
= 2n−2

for any positive integer n. Suppose n ≡ 1 mod 4. Then we have the following:

�n−1
2 	∑

j=0

(
n− 1

2j

)
=

�n4 	∑

j=0

(
n− 1

2j

)
+

�n−1
2 	∑

j=�n4 	

(
n− 1

2j

)
−
(
n− 1
n−1

2

)

=

�n4 	∑

j=0

(
n− 1

2j

)
+

�n4 	∑

i=0

(
n− 1

2
(�n4 �+ i

)
)
−
(
n− 1
n−1

2

)

=

�n4 	∑

j=0

(
n− 1

2j

)
+

�n4 	∑

j=0

(
n− 1

n− 1− 2j

)
−
(
n− 1
n−1

2

)

= 2

�n4 	∑

j=0

(
n− 1

2j

)
−
(
n− 1
n−1

2

)
.

Suppose n ≡ 3 mod 4. Then we have the following:

�n−1
2 	∑

j=0

(
n− 1

2j

)
=

�n4 	∑

j=0

(
n− 1

2j

)
+

�n−1
2 	∑

j=�n4 	+1

(
n− 1

2j

)

=

�n4 	∑

j=0

(
n− 1

2j

)
+

�n4 	∑

i=0

(
n− 1

2
(�n4 �+ 1 + i

)
)
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=

�n4 	∑

j=0

(
n− 1

2j

)
+

�n4 	∑

j=0

(
n− 1

n− 2j

)

= 2

�n4 	∑

j=0

(
n− 1

2j

)
.

Therefore, for n odd we have

�n4 	∑

j=0

(
n− 1

2j

)
=






1
2

(
2n−2 +

(n−1
n−1

2

))
if n ≡ 1 mod 4,

1
2

(
2n−2

)
if n ≡ 3 mod 4.

Similarly,

�n4 	∑

j=1

(
n− 1

2j − 1

)
=

{ 1
2

(
2n−2

)
if n ≡ 1 mod 4,

1
2

(
2n−2 − (n−1

n−1
2

))
if n ≡ 3 mod 4.

Hence, for n odd,

�n4 	∑

j=0

(n− 4j)

(
n

2j

)
=

n

2

(
n− 1
n−1

2

)
.

Thus, the theorem holds.
Theorem 4.5. For any n ≥ 3 and for any canonical (n − 1, n)-threshold VCS

the maximum contrast α is given by

α =






[
n
4

(
n
n
2

)]−1

if n is even,

[
n
2

( n−1
(n−1)

2

)]−1

if n is odd.

Proof. In the proof of Lemma 4.3, to compute the value of the hj,i’s of any
contrast optimal (n − 1, n)-threshold VCS, for n even, we set α ·m = 1, whereas for
n odd, we set α ·m = 2. Therefore, applying Lemma 4.4 the theorem holds.

It is worthwhile to notice that according to the previous lemma, in any contrast
optimal (n − 1, n)-threshold VCS, α = Θ(2−nn−1/2). This contrast is lower than an
(n, n)-threshold VCS.

4.2. Contrast optimal (3, n)-threshold VCS. In this section we provide,
for n ≥ 4, a contrast optimal (3, n)-threshold VCS which is also strong and has its
basis matrices in canonical form. We first describe a family of (3, n)-threshold VCS
achieving various values of contrast and pixel expansion. Then, for any fixed n ≥ 4,
we determine the scheme in this family having the best contrast. Finally, we prove
that the scheme has optimal contrast among all (3, n)-threshold VCS by proving an
upper bound on the contrast of any (3, n)-threshold VCS.

For any n ≥ 4 and any integer 1 ≤ g < n/2, consider the VCS whose basis matrices
are in canonical form, denoted by S(3, n, g), described by the following hj,i’s:

h0,0 = hn,1 =

(
n− 1

g

)
−
(
n− 1

g − 1

)
and hn−g,0 = hg,1 = 1,(4)
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whereas all the remaining hj,i’s are equal to zero. This is a strong (3, n)-threshold
VCS, as shown by Theorem 4.7.

Example 4.6. If n = 5, then g can be either 1 or 2. Let g = 1. Then, h0,0 =
h5,1 =

(
5−1
1

)− (
5−1
1−1

)
= 3, and h4,0 = h1,1 = 1. The corresponding basis matrices are

S0 =





0 0 0 0 1 1 1 1
0 0 0 1 0 1 1 1
0 0 0 1 1 0 1 1
0 0 0 1 1 1 0 1
0 0 0 1 1 1 1 0




, S1 =





1 1 1 1 0 0 0 0
1 1 1 0 1 0 0 0
1 1 1 0 0 1 0 0
1 1 1 0 0 0 1 0
1 1 1 0 0 0 0 1




.

Let g = 2. Then, h0,0 = h5,1 =
(
5−1
2

) − (
5−1
2−1

)
= 2, and h3,0 = h2,1 = 1. The

corresponding basis matrices are

S0 =





0 0 1 1 1 1 0 0 0 0 0 0
0 0 1 0 0 0 1 1 1 0 0 0
0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 0 1 0 0 1 0 1 1




,

S1 =





1 1 0 0 0 0 1 1 1 1 1 1
1 1 0 1 1 1 0 0 0 1 1 1
1 1 1 0 1 1 0 1 1 0 0 1
1 1 1 1 0 1 1 0 1 0 1 0
1 1 1 1 1 0 1 1 0 1 0 0




.

Theorem 4.7. For any n ≥ 4 and any integer 1 ≤ g < n/2, the scheme S(3, n, g)
described by (4) is a strong (3, n)-threshold VCS having pixel expansion and contrast
equal to

m = 2

(
n− 1

g

)
and α =

g(n− 2g)

2(n− 1)(n− 2)
,

respectively.
Proof. Let hi = (h0,i, . . . , hn,i) for i = 0, 1, where the hj,i’s are given by (4), and

let Sg(h0) and Sg(h1) be binary matrices in which, for i = 0, 1, every binary n-tuple
of weight j occurs exactly hj,i times as a column of Sg(hi). Then, Sg(h0) and Sg(h1)
satisfy the conditions of Lemma 3.10, where

α =

(
n−3
g−1

)− (
n−3
g−2

)

2
(
n−1
g

) =
g(n− 2g)

2(n− 1)(n− 2)
and m = 2

(
n− 1

g

)
.(5)

Indeed, we can immediately verify that

n∑

j=0

(
n

j

)
hj,0 =

(
n− 1

g

)
−
(
n− 1

g − 1

)
+

(
n

n− g

)
= 2

(
n− 1

g

)

and

n∑

j=0

(
n

j

)
hj,1 =

(
n

g

)
+

(
n− 1

g

)
−
(
n− 1

g − 1

)
= 2

(
n− 1

g

)
.
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Hence, condition 1 of Lemma 3.10 is satisfied. Condition 2 is also satisfied because of

n−1∑

j=0

(
n− 1

j

)
hj,0 =

(
n− 1

g

)
−
(
n− 1

g − 1

)
+

(
n− 1

n− g

)
=

(
n− 1

g

)
=

n−1∑

j=0

(
n− 1

j

)
hj,1

and

n−2∑

j=0

(
n− 2

j

)
hj,0 =

(
n− 1

g

)
−
(
n− 1

g − 1

)
+

(
n− 2

n− g

)
=

(
n− 1

g

)
−
(
n− 2

g − 1

)

=

(
n− 2

g

)
=

n−2∑

j=0

(
n− 2

j

)
hj,1.

Now, we prove that condition 3 of Lemma 3.10 is satisfied, where α and m are as
given by (5). We have that

n−3∑

j=0

(
n− 3

j

)
(hj,0 − hj,1) =

(
n− 1

g

)
−
(
n− 1

g − 1

)
−
(
n− 3

g

)
+

(
n− 3

n− g

)

=

(
n− 2

g

)
+

(
n− 2

g − 1

)
−
(
n− 1

g − 1

)
−
(
n− 3

g

)
+

(
n− 3

g − 3

)

=

(
n− 3

g − 1

)
−
(
n− 2

g − 2

)
+

(
n− 3

g − 3

)

=

(
n− 3

g − 1

)
−
(
n− 3

g − 2

)
= α ·m.

This proves that condition 3 of Lemma 3.10 holds.
Finally, we prove that the scheme S(3, n, g) is strong. For any 3 ≤ � ≤ n and

for any Y ⊆ {1, . . . , n} such that |Y | = �, the number of zero columns in Sg(h0)[Y ]
(Sg(h1)[Y ]) does not depend on the particular set Y but only on its size � since the
basis matrices are in canonical form. Hence, we refer to such a quantity as χ0

� (resp.,
χ1
�). We have that

χ0
� =

(
n− 1

g

)
−
(
n− 1

g − 1

)
+

(
n− �

n− g

)
and χ1

� =

(
n− �

g

)
.

Notice that when � > g, then
(
n−�
n−g

)
= 0, whereas

(
n−�
g

)
= 0 when g > n − �. We

define the function β(�), for 3 ≤ � ≤ n, as β(�)


= χ0

� − χ1
� ; that is,

β(�) =

(
n− 1

g

)
−
(
n− 1

g − 1

)
+

(
n− �

n− g

)
−
(
n− �

g

)
.

To prove that the scheme is strong, it is enough to show that β(�) ≥ α · m for
3 ≤ � ≤ n. We next show that the function β(�) is nondecreasing by proving that
β(�+ 1)− β(�) ≥ 0. Indeed, this difference can be written as

β(�+ 1)− β(�) =

(
n− �− 1

n− g

)
−
(
n− �

n− g

)
+

(
n− �

g

)
−
(
n− �− 1

g

)

=

(
n− �− 1

g − 1

)
−
(
n− �− 1

n− g − 1

)
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=

(
n− �− 1

g − 1

)
−
(
n− �− 1

g − �

)
.

Notice that if � > g, then
(
n−�−1
g−�

)
= 0 and β(�+ 1)− β(�) ≥ 0. Assume � = g. Then

β(�+1)−β(�) = (
n−�−1
g−1

)− 1. Since g < n/2 and � = g, then g− 1 ≤ n− �− 1. Thus,

β(�+ 1)− β(�) ≥ 0. Finally, assume � < g. Then

β(�+ 1)− β(�) =
(n− �− 1)!

(g − 1)! · (n− �− g)!
− (n− �− 1)!

(g − �)! · (n− g − 1)!

=
(n− �− 1)!

(g − �)! · (n− �− g)!
· Π

�−1
j=1(n− g − j)−Π�−1

j=1(g − j)

Π�−1
j=1(n− g − j) · (g − j)

.

The above quantity is nonnegative, as n − g − j ≥ g − j for g ≤ n/2. Therefore,
the function β(�) is a nondecreasing function. Hence, since β(3) ≥ α ·m, the scheme
S(3, n, g) is strong.

From the arguments used in the proof of the above theorem one can see that,
by stacking together more than three transparencies from the scheme S(3, n, g), the
image we recover becomes more visible (i.e., the difference between a white and a
black pixel is larger when we stack together more than three transparencies). When
we stack n − g < � ≤ n transparencies we have that β(�) =

(
n−1
g

) − (
n−1
g−1

)
. Since

m = 2
(
n−1
g

)
, we get that the “contrast” in this case is equal to

β(�)

m
=

(
n−1
g

)− (
n−1
g−1

)

2
(
n−1
g

) =
n− 2g

2(n− g)
.

Notice that for fixed n, the contrast of the scheme given by Theorem 4.7 depends only
on the parameter g. Hence, the scheme achieving the best contrast among the schemes
S(3, n, g) is obtained by choosing the integer g in the interval [1, n/2[ in such a way
that the quantity (n− 2g)g is maximized. For real g the function (n− 2g)g is convex
∩ and reaches its maximum at g = n/4. Since g has to be an integer, simple algebra
shows that the quantity (n− 2g)g reaches its maximum at g = �(n+1)/4�. Thus, for
any n ≥ 4, the following hj,i’s describe a strong (3, n)-threshold VCS achieving the
best contrast among the family of schemes S(3, n, g):

h0,0 = hn,1 =

(
n− 1⌊
n+1

4

⌋
)
−
(

n− 1⌊
n+1

4

⌋− 1

)
and hn−�n+1

4 �,0 = h�n+1
4 �,1 = 1,(6)

whereas all the remaining hj,i’s are equal to zero. The contrast of the scheme described
by the above hj,i’s is equal to

(
n− 2�n+1

4 �
) �n+1

4 �
2(n− 1)(n− 2)

.(7)

We now show that the schemes described by (6) are indeed a contrast optimal (3, n)-
threshold VCS.

Theorem 4.8. Let n ≥ 4. In any (3, n)-threshold VCS it holds that

α ≤
(
n− 2�n+1

4 �
) �n+1

4 �
2(n− 1)(n− 2)

.
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Proof. Let S0 and S1 be the n ×m basis matrices in canonical form of a (3, n)-
threshold VCS with contrast α. Since our aim is to prove an upper bound on the
contrast, we do not lose generality by considering basis matrices in such a form (see
Lemma 3.6). Let T = {2, . . . , n} and Zi = {j : Si[1][j] = 0}; that is, Zi denotes the
set of indices of columns of Si having a zero as first entry. Finally, let A0 = S0[T ][Z0]
and A1 = S1[T ][Z1]. In other words, the pair of matrices A = (A0, A1) is constituted
by the submatrices of S0 and S1 obtained by removing all the columns having a 1
as a first entry and removing the first row. Hence, up to a column permutation, the
basis matrices S0 and S1 are of the following form:

S0 =

[
0 · · · 0 1 · · · 1
A0 B0

]
, S1 =

[
0 · · · 0 1 · · · 1
A1 B1

]
,

where B0 and B1 are boolean matrices. It is known (see Theorem 6.1 and Corollary
6.2 of [5]) that A0 and A1 are basis matrices of a (2, n−1)-threshold VCS. Now, denote
by α(A) the contrast of the (2, n − 1)-threshold VCS with basis matrices (A0, A1).
Since by Corollary 3.8 m = 2w(S0[1]), it is easy to see that the contrast α of the
scheme represented by (S0, S1) is equal to

α =
α(A)

2
,(8)

while the pixel expansion is equal to m = 2m′, where m′ is the pixel expansion of the
scheme having basis matrices (A0, A1), that is, m′ =

∑
j∈J hj,1

(
n−1
j

)
, where J is the

set of indices j for which hj,1 > 0 and j < n in A1. Let X be a set of two rows. We
have that

α(A) ≤ w(A1
X)− w(A0

X)

m′
.

Since w(A1[i]) = w(A0[i]), for i = 1, . . . , n− 1, we have that w(A1
X)−w(A0

X) is equal

to the number of columns [
1
0
] in A1[X] minus the number of columns [

1
0
] in A0[X].

Therefore, we get that

w(A1
X)− w(A0

X) =
∑

j∈J

[
hj,1

(
n− 3

j − 1

)
− hn−j,0

(
n− 3

n− j − 1

)]

=
∑

j∈J
hj,1

[(
n− 3

j − 1

)
−
(
n− 3

j − 2

)]
.

Hence,

α(A) ≤

∑

j∈J
hj,1

[(
n− 3

j − 1

)
−
(
n− 3

j − 2

)]

∑

j∈J
hj,1

(
n− 1

j

) .(9)

Notice that for any function g(x), for any positive function f(x), and for any non-
empty set D which is a subset of both functions’ domain, it holds that

∑

x∈D
g(x)

∑

x∈D
f(x)

≤ max
x∈D

g(x)

f(x)
.
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Therefore, since J ⊆ {0, . . . , n− 1}, we have that

∑

j∈J
hj,1

[(
n−3
j−1

)− (
n−3
j−2

)]

∑

j∈J
hj,1

(
n−1
j

) ≤ max
j∈J

(
n−3
j−1

)− (
n−3
j−2

)
(
n−1
j

) = max
j∈J

(n− 2j)j

(n− 1)(n− 2)
.

We have already seen earlier in this section that the function (n − 2j)j reaches its
maximum over the integers j ∈ {0, . . . , n− 1} at j = �(n+ 1)/4�. Therefore,

α(A) ≤
(
n− 2�n+1

4 �
) �n+1

4 �
(n− 1)(n− 2)

.

The theorem then follows by (8).
Let α3(n) be the expression (7). It is easy to see that limn→∞ α3(n) = 1/16.

Therefore, the construction for (3, n)-threshold VCS given at the end of section 5 in
[5] has nearly optimal contrast asymptotically, as well as a small pixel expansion.

5. A canonical (4, n)-threshold VCS. In this section we provide, for n ≥ 4,
a class of strong (4, n)-threshold VCS whose basis matrices are in canonical form. We
first describe a family of (4, n)-threshold VCS achieving various values of contrast and
pixel expansion. Then, for any fixed n ≥ 4, we determine the scheme in this family
having the best contrast.

For any even n ≥ 4 and any integer 1 ≤ g < n/2, consider the VCS whose basis
matrices are in canonical form, denoted by S(4, n, g), described by the following hj,i’s:

h0,0 = hn,0 =

(
n− 3

n/2− 1

)
tn,g (n− 1)(n− 2g)2

ng(n− g)
,

hn/2,0 = t
n,g and hg,1 = hn−g,1 =

(
n−3
n/2−1

)
(
n−2
g−1

) · tn,g ,

(10)

where t
n,g =

(
n−2
g−1

)/
gcd{(n−2

g−1

)
,
(
n−3
n/2−1

)} and all the remaining hj,i’s are equal to zero.

This is a strong (4, n)-threshold VCS as shown by the following theorem.
Theorem 5.1. For any even integer n ≥ 4 and any integer 1 ≤ g < n/2, the

scheme S(4, n, g) is a strong (4, n)-threshold VCS having pixel expansion and contrast
equal to

m =
2nt

n,g (n− 1)

g(n− g)

(
n− 3

n/2− 1

)
and α =

g(n− g)(n− 2g)2

4n(n− 1)(n− 2)(n− 3)
,

respectively.
Proof. Let hi = (h0,i, . . . , hn,i), for i = 0, 1, where the hj,i’s are given by (10), and

let Sg(h0) and Sg(h1) be binary matrices in which, for i = 0, 1, every binary n-tuple
of weight j occurs exactly hj,i times as a column of Sg(hi). Then, Sg(h0) and Sg(h1)
satisfy the conditions of Lemma 3.10. Indeed, we immediately verify that

n∑

j=0

(
n

j

)
hj,0 =

[
2

(
n− 3

n/2− 1

)
(n− 1)(n− 2g)2

ng(n− g)
+

(
n

n/2

)]
t
n,g

=

(
n− 3

n/2− 1

)[
2(n− 1)(n− 2g)2

ng(n− g)
+

8n(n− 1)(n− 2)

n2(n− 2)

]
t
n,g
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=
2ntn,g (n− 1)

g(n− g)

(
n− 3

n/2− 1

)

and

n∑

j=0

(
n

j

)
hj,1 =

(
n−3
n/2−1

)
(
n−2
g−1

)
(
n

g

)
t
n,g

+

(
n−3
n/2−1

)
(
n−2
g−1

)
(

n

n− g

)
t
n,g

=
2ntn,g

(n− 1)

g(n− g)

(
n− 3

n/2− 1

)
.

Hence, condition 1 of Lemma 3.10 is satisfied. To prove that condition 2 of Lemma 3.10
is satisfied we have to show that, for � = 1, 2, 3, the following identity holds:

n−�∑

j=0

(
n− �

j

)
hj,0 =

n−�∑

j=0

(
n− �

j

)
hj,1.(11)

Notice that, for � = 1, we have

n−�∑

j=0

(
n− �

j

)
hj,0 = t

n,g

(
n− 3

n/2− 1

)
(n− 1)(n− 2g)2

ng(n− g)
+ t

n,g

(
n− 1

n/2

)

= t
n,g

(
n− 3

n/2− 1

)[
(n− 1)(n− 2g)2

ng(n− g)
+

4(n− 1)

n

]

= t
n,g

(
n− 3

n/2− 1

)
n(n− 1)

g(n− g)

and

n−�∑

j=0

(
n− �

j

)
hj,1 =

tn,g

(
n−3
n/2−1

)
(
n−2
g−1

)
[(

n− 1

g

)
+

(
n− 1

g − 1

)]

=
tn,g

(
n−3
n/2−1

)(
n
g

)
(
n−2
g−1

)

= tn,g

(
n− 3

n/2− 1

)
n(n− 1)

g(n− g)
.

Therefore, for � = 1, we have that identity (11) holds. (The cases � = 2 and � = 3 are
considered in Appendix A.) Now we prove that Condition 3 of Lemma 3.10, where α
and m are as given by (5), that is,

n−4∑

j=0

(
n− 4

j

)
(hj,0 − hj,1) =

tn,g (n− 2g)2

2(n− 2)(n− 3)

(
n− 3

n/2− 1

)
,(12)

is satisfied. We have that

n−4∑

j=0

(
n− 4

j

)
(hj,0 − hj,1)

= tn,g

(
n− 3

n/2− 1

)[
(n− 1)(n− 2g)2

ng(n− g)
+

(
n−4
n/2

)
(
n−3
n/2−1

) −
(
n−4
g

)
+
(
n−4
n−g

)
(
n−2
g−1

)
]
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= t
n,g

(
n− 3

n/2− 1

)[
(n− 1)(n− 2)2

ng(n− g)
+

(n− 4)(n− 6)

2n(n− 3)

− (n− g − 1)(n− g − 2)(n− g − 3)

g(n− 2)(n− 3)
− (g − 1)(g − 2)(g − 3)

(n− g)(n− 2)(n− 3)

]

=
t
n,g (n− 2g)2

2(n− 2)(n− 3)

(
n− 3

n/2− 1

)
.

This proves that condition 3 of Lemma 3.10 holds.
Finally, we prove that the scheme S(4, n, g) is strong. For any 4 ≤ � ≤ n and

for any Y ⊆ {1, . . . , n} such that |Y | = �, the number of zero columns in Sg(h0)[Y ]
(Sg(h1)[Y ]) does not depend on the particular set Y but only on its size � since the
basis matrices are in canonical form. Hence, we refer to such a quantity as χ0

� (χ1
�).

We have that

χ0
� =

tn,g
(n− 1)(n− 2g)2

ng(n− g)

(
n− 3

n/2− 1

)
+ t

n,g

(
n− �

n/2

)

and

χ1
� = t

n,g

(
n−3
n/2−1

)
(
n−2
g−1

)
[(

n− �

g

)
+

(
n− �

n− g

)]
.

Notice that when � > g, then
(
n−�
n−g

)
= 0, whereas

(
n−�
g

)
= 0 when g > n − �. We

define the function β(�), for 4 ≤ � ≤ n, as β(�)


= χ0

� − χ1
� ; that is,

β(�)=
tn,g (n− 1)(n− 2g)2

ng(n− g)

(
n− 3

n/2− 1

)
+ t

n,g

(
n− �

n/2

)
− t

n,g

(
n−3
n/2−1

)
(
n−2
g−1

)
[(

n− �

g

)
+

(
n− �

n− g

)]
.

To prove that the scheme is strong it is enough to show that β(�) ≥ α·m for 4 ≤ � ≤ n.
Next we show that the function β(�) is nondecreasing by proving that β(�+1)−β(�) ≥
0. Indeed, this difference can be written as

β(�+ 1)−β(�)=
[(

n− �− 1

g − 1

)
+

(
n− �− 1

n− g − 1

)] ( n−3
n/2−1

)
(
n−2
g−1

) tn,g −
(
n− �− 1

n/2− 1

)
tn,g .

Assume � ≤ g. Then, after some algebra, to prove β(�+1)−β(�) ≥ 0 is equivalent to
proving that

�−1∏

j=1

(n− g − j) +

�−1∏

j=1

(g − j)− 2

�−1∏

j=1

(n
2
− j

)

2

�−1∏

j=1

(n
2
− j

) ≥ 0.

Since j < � ≤ g < n/2, we have that the denominator is positive. Therefore, we have
to show that the numerator is nonnegative. To this aim we need some definitions and
properties of combinatorial quantities (see [8, pp. 47–48]). For any integer s ≥ 0 and
real x, the rising factorial power xs is defined as xs = x(x + 1) · · · (x + s − 1). The
rising factorial power is strictly related to the Stirling numbers of first kind. For any
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integers n and k such that n ≥ k ≥ 0 and n > 0, the Stirling numbers of first kind,
denoted by [nk ], count the number of ways to arrange n objects into k cycles and are
defined as
[
n
k

]
= (n− 1)

[
n− 1
k

]
+

[
n− 1
k − 1

]
with

[
0
0

]
= 1 and

[
n
0

]
= 0.

The Stirling numbers of first kind and the rising factorial powers are related by

xn =

n∑

k=0

[
n
k

]
xk.

Using the rising factorial powers and the above identity, we have that

�−1∏

j=1

(n− g − j) +

�−1∏

j=1

(g − j)− 2

�−1∏

j=1

(n
2
− j

)

= (n− g − �+ 1)�−1 − 2
(n
2
− �+ 1

)�−1

+ (g − �+ 1)�−1

=

�−1∑

p=1

[
�− 1
p

]
(n− g − �+ 1)p − 2

�−1∑

p=1

[
�− 1
p

](n
2
− �+ 1

)p

+

�−1∑

p=1

[
�− 1
p

]
(g − �+ 1)p

=

�−1∑

p=1

[
�− 1
p

](
(n− g − �+ 1)p − 2

(n
2
− �+ 1

)p
+ (g − �+ 1)p

)
.

By induction on p, we immediately see that (n− g − �+ 1)p − 2(n/2− �+ 1)p + (g −
�+ 1)p ≥ 0. Indeed, setting a = n/2− �+ 1 and d = n/2− g, we have to prove that
(a + d)p − 2ap + (a − d)p ≥ 0. (Notice that a > d > 0.) For p = 1, the basis of the
induction is true. By an inductive hypothesis, assume that (a+d)p−2ap+(a−d)p ≥ 0
for some p ≥ 1. We have that

(a+ d)p+1 + (a− d)p+1 = a[(a+ d)p + (a− d)p] + d[(a+ d)p − (a− d)p]

≥ a[(a+ d)p + (a− d)p]

≥ 2ap+1 (by the inductive hypothesis).

Hence, for � ≤ g, we have that β(�+ 1)− β(�) ≥ 0.
Assume now g < � ≤ n/2. Then, to prove that β(�+ 1)− β(�) ≥ 0 is equivalent

to proving that

�−1∏

j=1

(n− g − j)− 2

�−1∏

j=1

(n
2
− j

)

2

�−1∏

j=1

(n
2
− j

) ≥ 0.

Since j < � ≤ n/2, we have that the denominator of the above expression is a positive
quantity, while the numerator can be written as
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(n− g − �+ 1)�−1 − 2(n2 − �+ 1)�−1

=

�−1∑

p=1

[
�− 1
p

]
(n− g − �+ 1)p − 2

�−1∑

p=1

[
�− 1
p

](n
2
− �+ 1

)p

=

�−1∑

p=1

[
�− 1
p

](
(n− g − �+ 1)p − 2

(n
2
− �+ 1

)p)
.

By induction on p, one can see that (n− g− �+1)p− 2(n/2− �+1)p ≥ 0. Therefore,
for g < � ≤ n/2 we have that β(�+ 1)− β(�) ≥ 0.

Finally, assume that � > n/2. Then,

β(�+ 1)− β(�) =
tn,g
· (n−�−1

g−1

)(
n−3
n/2−1

)
(
n−2
g−1

) ≥ 0.

Therefore, the function β(�) is nondecreasing. Hence, since β(4) ≥ α ·m, the scheme
S(4, n, g) is strong.

Notice that, for fixed n, the contrast of the scheme given by Theorem 5.1 depends
only on the parameter g. Hence, for fixed n, the scheme achieving the best contrast
among the schemes S(4, n, g) is obtained by choosing the integer g in the interval
[1, n/2[ in such a way that the quantity

α4(g, n) =
g(n− g)(n− 2g)2

4n(n− 1)(n− 2)(n− 3)

is maximized. For real g and for fixed n, simple algebra shows that the function g(n−
g)(n−2g)2, with g ∈ [1, n/2[, is convex ∩ and reaches its maximum at g = (2−√2)n/4.
Since g has to be an integer, we have that g can be either equal to �(2−√2)n/4� or
equal to �(2−√2)n/4�. For any fixed n ≥ 4, let gn ∈

{�(2−√2)n/4�, �(2−√2)n/4�}
be the integer which maximizes α4(g, n). One can easily see that limn→∞ α4(gn, n) =
1/64.

Remark 5.2. Theorem 5.1 holds only when n is even. If n is odd, then, by applying
the technique given in Theorem 5.1, we construct a (4, n+1)-threshold VCS, and then
we consider only the first n rows of the basis matrices of such a scheme. Therefore,
for any odd n ≥ 4 and any integer 1 ≤ g < n/2, there exists a strong (4, n)-threshold
VCS having pixel expansion and contrast equal to

m =
2ntn,g (n+ 1)

g(n+ 1− g)

(
n+ 1− 3

(n+ 1)/2− 1

)
and α =

g(n+ 1− g)(n+ 1− 2g)2

4n(n+ 1)(n− 1)(n− 2)
,

respectively.

6. A canonical (5, n)-threshold VCS. In this section we provide, for n ≥ 5, a
class of (5, n)-threshold VCS whose basis matrices are in canonical form. Similarly to
the previous cases, we first describe a family of (5, n)-threshold VCS achieving various
values of contrast and pixel expansion. Then, for any fixed n ≥ 5 we determine which
scheme in this family has the best contrast.

For any two integers � and g such that 1 ≤ � < g < n/2, the (5, n)-threshold VCS
whose basis matrices are in canonical form, denoted by S(5, n, �, g), is described by
the following hj,i’s:

hg,0 = hn−g,1 = t
(n,�,g)

, hn−�,0 = h�,1 = s
(n,�,g)

, and h0,0 = hn,1 = r
(n,�,g)

,
(13)
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where

t
(n,�,g)

=

(
n−4
�−1

)− (
n−4
�−3

)

gcd
{(

n−4
�−1

)− (
n−4
�−3

)
,
(
n−4
g−1

)− (
n−4
g−3

)} , s
(n,�,g)

= t
(n,�,g)

[(
n−4
g−1

)− (
n−4
g−3

)]

[(
n−4
�−1

)− (
n−4
�−3

)] ,

r
(n,�,g)

= s
(n,�,g)

[(
n− 4

�

)
−
(
n− 4

�− 4

)]
− t

(n,�,g)

[(
n− 4

g

)
−
(
n− 4

g − 4

)]
,

and all the remaining hj,i’s are equal to zero.
Theorem 6.1. For any two integers � and g such that 1 ≤ � < g < n/2, the

scheme S(5, n, �, g) is a canonical (5, n)-threshold VCS having pixel expansion and
contrast equal to

m = s
(n,�,g)

[(
n

�

)
+

(
n− 4

�

)
−
(
n− 4

�− 4

)]
+ t

(n,�,g)

[(
n

g

)
+

(
n− 4

g − 4

)
−
(
n− 4

g

)]

and

α =
�(g − �)(n− g)(n− 2g)(n− 2�)

2(n+ 2�− 2g)(n− 1)(n− 2)(n− 3)(n− 4)
,

respectively.
Proof. It is easy to see that condition 1 of Lemma 3.10 is satisfied, as the basis

matrices of the scheme S(5, n, �, g) are complements of each other. To prove that
condition 2 of Lemma 3.10 is satisfied we have to show that, for 1 ≤ q ≤ 4, the
following equality holds:

n−q∑

j=0

(
n− q

j

)
hj,1 =

n−q∑

j=0

(
n− q

j

)
hj,0.(14)

We have that

n−q∑

j=0

(
n− q

j

)
hj,1 = t

(n,�,g)

(
n− q

�

)(n−4
g−1

)− (
n−4
g−3

)
(
n−4
�−1

)− (
n−4
�−3

) + t
(n,�,g)

(
n− q

n− g

)

and

n−q∑

j=0

(
n− q

j

)
hj,0 = t

(n,�,g)

(
n−4
g−1

)− (
n−4
g−3

)
(
n−4
�−1

)− (
n−4
�−3

)
[(

n− 4

�

)
−
(
n− 4

�− 4

)
+

(
n− q

n− �

)]

− t
(n,�,g)

[(
n− 4

g

)
−
(
n− 4

g − 4

)]
+ t

(n,�,g)

(
n− q

g

)
.

Therefore, equality (14) is satisfied if and only if the quantity

A(n, �, g)


=

(
n−4
g−1

)− (
n−4
g−3

)
(
n−4
�−1

)− (
n−4
�−3

)
[(

n− 4

�

)
−
(
n− 4

�− 4

)]
−
[(

n− 4

g

)
−
(
n− 4

g − 4

)]
(15)

is equal to

B(n, �, g, q)


=

(
n−4
g−1

)− (
n−4
g−3

)
(
n−4
�−1

)− (
n−4
�−3

)
[(

n− q

�

)
−
(
n− q

n− �

)]
−
[(

n− q

g

)
−
(
n− q

n− g

)]
.(16)
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If we substitute q for 4 in (16) we get expression (15). Therefore, (14) is satisfied
for q = 4. We will prove that equality (14) holds when q = 1 and 4 ≤ � < g. (The
remaining cases are analyzed in Appendix A.)

Note that A(n, �, g) can be written as

(
n−4
g−3

) [ (n−g−1)(n−g−2)
(g−1)(g−2) − 1

]

(
n−4
�−3

) [ (n−�−1)(n−�−2)
(�−1)(�−2) − 1

]
(
n− 4

�− 3

)[
(n− �− 1)(n− �− 2)(n− �− 3)

�(�− 1)(�− 2)
− �− 3

n− �

]

−
(
n− 4

g − 3

)[
(n− g − 1)(n− g − 2)(n− g − 3)

g(g − 1)(g − 2)
− g − 3

n− g

]

which is equal to

(
n− 4

g − 3

)




[
(n−g−1)(n−g−2)

(g−1)(g−2) − 1
] [

(n−�−1)(n−�−2)(n−�−3)
�(�−1)(�−2) − �−3

n−�
]

[
(n−�−1)(n−�−2)

(�−1)(�−2) − 1
]

− (n− g − 1)(n− g − 2)(n− g − 3)

g(g − 1)(g − 2)
+

g − 3

n− g

}
.

After some algebra, we get that the above expression is reduced to

(
n− 4

g − 3

)
(n− 1)(n− 2)(n− 3)(n− 2g)(g − �)(n− �− g)

g�(g − 1)(g − 2)(n− �)(n− g)
.(17)

We can rewrite B(n, �, g, 1) as

(
n−4
g−3

) [ (n−g−1)(n−g−2)
(g−1)(g−2) − 1

]

(
n−4
�−3

) [ (n−�−1)(n−�−2)
(�−1)(�−2) − 1

]
(
n− 4

�− 3

)[
(n− 1)(n− 2)(n− 3)

�(�− 1)(�− 2)
− (n− 1)(n− 2)(n− 3)

(�− 1)(�− 2)(n− �)

]

−
(
n− 4

g − 3

)[
(n− 1)(n− 2)(n− 3)

g(g − 1)(g − 2)
− (n− 1)(n− 2)(n− 3)

(g − 1)(g − 2)(n− g)

]

which is equal to

(
n− 4

g − 3

)




[
(n−g−1)(n−g−2)

(g−1)(g−2) − 1
] [

(n−1)(n−2)(n−3)
�(�−1)(�−2) − (n−1)(n−2)(n−3)

(�−1)(�−2)(n−�)
]

[
(n−�−1)(n−�−2)

(�−1)(�−2) − 1
]

−
[
(n− 1)(n− 2)(n− 3)

g(g − 1)(g − 2)
− (n− 1)(n− 2)(n− 3)

(g − 1)(g − 2)(n− g)

]}
.

Simple algebra shows that the above expression reduces to (17). Therefore, when
q = 1 and 4 ≤ � < g equality (14) is satisfied.

To prove that condition 3 of Lemma 3.10 is satisfied we have to show that

n−5∑

j=0

(
n− 5

j

)
(hj,0 − hj,1) = α ·m.(18)

We show that (18) holds for 4 ≤ � < g. (The cases 1 ≤ � < g ≤ 3 and 1 ≤ � ≤ 3 with
g ≥ 4 are considered in Appendix A.) We see immediately that (18) is satisfied if and
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only if

n−5∑

j=0

(
n− 5

j

)
(hj,0 − hj,1)

m
=

�(g − �)(n− g)(n− 2g)(n− 2�)

2(n+ 2�− 2g)(n− 1)(n− 2)(n− 3)(n− 4)
.(19)

We have that

n−5∑

j=0

(
n− 5

j

)
(hj,0 − hj,1)

m

=
s(n,�,g)

[(
n−4
�

)
−
(
n−4
n−�

)
+
(
n−5
n−�

)
−
(
n−5
�

)]
− t(n,�,g)

[(
n−4
g

)
−
(
n−4
n−g

)
+
(
n−5
g

)
−
(
n−5
n−g

)]

s(n,�,g)

[(
n
�

)
+
(
n−4
�

)
−
(
n−4
�−4

)]
+ t(n,�,g)

[(
n
g

)
+
(
n−4
g−4

)
−
(
n−4
g

)]

=
s(n,�,g)

[(
n−5
�−1

)
−
(
n−5
�−4

)]
− t(n,�,g)

[(
n−5
g−1

)
−
(
n−5
g−4

)]

s(n,�,g)

[(
n
�

)
+
(
n−4
�

)
−
(
n−4
�−4

)]
+ t(n,�,g)

[(
n
g

)
+
(
n−4
g−4

)
−
(
n−4
g

)] .

Let

a


= s

(n,�,g)

[(
n−5
�−1

)− (
n−5
�−4

)]
, b



= t

(n,�,g)

[(
n−5
g−1

)− (
n−5
g−4

)]
,

c


= s

(n,�,g)

[(
n
�

)
+
(
n−4
�

)− (
n−4
�−4

)]
, d



= t

(n,�,g)

[(
n
g

)
+
(
n−4
g−4

)− (
n−4
g

)]
.

It is easy to check that the following three equalities hold:

a

c
=

�(n− 2�)(n2 − n�− 6n+ �2 + 11)

2(n− 3)(n− 4)(n2 − n�− 3n+ 2�2 + 2)
,

b

a
=

(n2 − ng − 6n+ g2 + 11)

(n2 − n�− 6n+ �2 + 11)
,

d

c
=

�(n− 2�)(2n2 − 3ng − 3n+ 2g2 + 2)

(n− 2g)(n− g)(n2 − n�− 3n+ 2�2 + 2)
.

Since (a− b)/(c+ d) = a(1−b/a)
c(1+d/c) we have that

s(n,�,g)

[(
n−5
�−1

)− (
n−5
�−4

)]− t(n,�,g)

[(
n−5
g−1

)− (
n−5
g−4

)]

s(n,�,g)

[(
n
�

)
+
(
n−4
�

)− (
n−4
�−4

)]
+ t(n,�,g)

[(
n
g

)
+
(
n−4
g−4

)− (
n−4
g

)]

can be rewritten as

�(n− 2�)(n2 − n�− 6n+ �2 + 11)

2(n− 3)(n− 4)(n2 − n�− 3n+ 2�2 + 2)
·


 1 − (n2−ng−6n+g2+11)
(n2−n�−6n+�2+11)

1 + �(n−2�)(2n2−3ng−3n+2g2+2)
(n−2g)(n−g)(n2−n�−3n+2�2+2)



 .

It is simple, but tedious, to check that the previous expression reduces to

�(g − �)(n− g)(n− 2g)(n− 2�)

2(n+ 2�− 2g)(n− 1)(n− 2)(n− 3)(n− 4)
.
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Therefore, (18) is satisfied and the theorem holds.
Notice that for fixed n, the contrast of the scheme given in the above theorem

depends only on the parameters � and g. Therefore, if we want to obtain from the
construction given by Theorem 6.1 the scheme achieving the best contrast, we have
to choose, for a fixed n, the integers � and g, where 1 ≤ � < g < n/2, in such a way
that the quantity

α5(�, g, n) =
�(g − �)(n− g)(n− 2g)(n− 2�)

2(n+ 2�− 2g)(n− 1)(n− 2)(n− 3)(n− 4)

is maximized. Choosing � and g proportional to n, setting � = γ · n and g = δ · n,
where γ and δ are constants to be determined later such that 0 < γ < δ < 1, we have
that

α5(γ · n, δ · n, n) = γ(δ − γ)(1− δ)(1− 2δ)(1− 2γ)n5

2(1 + 2γ − 2δ)n(n− 1)(n− 2)(n− 3)(n− 4)
.

One can easily see that

lim
n→∞α5(γ · n, δ · n, n) = γ(δ − γ)(1− δ)(1− 2δ)(1− 2γ)

2(1 + 2γ − 2δ)
.

For real γ and δ, with 0 < γ < δ < 1, by using the system Mathematica, we see that,
for fixed n, the function γ(δ − γ)(1 − δ)(1 − 2δ)(1 − 2γ)/2(1 + 2γ − 2δ) reaches its
maximum at (γ, δ) = (0.0954913, 0.345492) and the above limit is equal to

lim
n→∞α5(γ · n, δ · n, n) = 1

256
.

Therefore, there are (5, n)-threshold VCS that, for large n, have contrast of almost
1/256.

7. Conclusion. In this paper we have analyzed the contrast of the reconstructed
image for (k, n)-threshold VCS. We have defined a canonical form for such VCS and we
have also provided a characterization of (k, n)-threshold VCS. Several open problems
arise. For instance, we conjecture that the (k, n)-threshold VCS, for k = 4 and k = 5,
has an optimal contrast. Moreover, further research could be done in finding a closed
formula for the optimal contrast for general (k, n)-threshold VCS.

Appendix A. In the following we show the computation omitted from the proof
of Theorem 5.1.

(i) Proof that equality (11) in Theorem 5.1 is satisfied for the case � = 2.
We have that

n−�∑

j=0

(
n− �

j

)
hj,0 = tn,g

[(
n− 3

n/2− 1

)
(n− 1)(n− 2g)2

ng(n− g)
+

(
n− 2

n/2

)]

= tn,g

(
n− 3

n/2− 1

)[
(n− 1)(n− 2g)2

ng(n− g)
+

2(n− 2)

n

]

= t
n,g

(
n− 3

n/2− 1

)
n2 − 2ng − n+ 2g2

g(n− g)

and

n−�∑

j=0

(
n− �

j

)
hj,1 = tn,g

(
n− 3

n/2− 1

)(n−2
g

)
+
(
n−2
n−g

)
(
n−2
g−1

)
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= t
n,g

(
n− 3

n/2− 1

)[
(n− g − 1)

g
+

g − 1

n− g
.

]

= t
n,g

(
n− 3

n/2− 1

)
n2 − 2ng − n+ 2g2

g(n− g)
.

Therefore, for � = 2, we have that identity (11) in Theorem 5.1 holds.
(ii) Proof that equality (11) in Theorem 5.1 is satisfied for the case � = 3.

We have that

n−�∑

j=0

(
n− �

j

)
hj,0 = t

n,g

[(
n− 3

n/2− 1

)
(n− 1)(n− 2g)2

ng(n− g)
+

(
n− 3

n/2

)]

= t
n,g

(
n− 3

n/2− 1

)[
(n− 1)(n− 2g)2

ng(n− g)
+
n− 4

n

]

and

n−�∑

j=0

(
n− �

j

)
hj,1

=

(
n− 3

n/2− 1

)
(n− 1)(n− 2g)2

ng(n− g)
+

(
n− 3

n/2

)
=

(
n− 3

g

)( n−3
n/2−1

)
(
n−2
g−1

) +

(
n− 3

n− g

)( n−3
n/2−1

)
(
n−2
g−1

) ,

that is,

(n− 1)(n− 2g)2

ng(n− g)
+
n/2− 2

n/2
=

(
n−3
g

)
+
(
n−3
n−g

)
(
n−2
g−1

) ,

which turns out to be equivalent to

(n− 1)(n− 2g)2

ng(n− g)
+
n− 4

n
=

(n− g − 1)(n− g − 2)

g(n− 2)
+

(g − 1)(g − 2)

(n− g)(n− 2)
.

Simple algebra shows that the above equality holds.
In the following we show the computations omitted from the proof of Theorem 6.1.

Recall that equality (14) holds if and only if (15) is equal to (16). Now, we show that
equality (14) is always satisfied.

(i) For q = 2 and 4 ≤ � < g, we must show that

A(n, �, g) = B(n, �, g, 2).

In Theorem 6.1 we proved that A(n, �, g) is equal to (17). Notice that B(n, �, g, 2) can
be written as

(
n−4
g−3

) [ (n−g−1)(n−g−2)
(g−1)(g−2) − 1

]

(
n−4
�−3

) [ (n−�−1)(n−�−2)
(�−1)(�−2) − 1

]
(
n− 4

�− 3

)[
(n− �− 1)(n− 2)(n− 3)

�(�− 1)(�− 2)
− (n− 2)(n− 3)

(�− 2)(n− �)

]

−
(
n− 4

g − 3

)[
(n− g − 1)(n− 2)(n− 3)

g(g − 1)(g − 2)
− (n− 2)(n− 3)

(g − 2)(n− g)

]
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which is equal to

(
n− 4

g − 3

)




[
(n−g−1)(n−g−2)

(g−1)(g−2) − 1
] [

(n−�−1)(n−2)(n−3)
�(�−1)(�−2) − (n−2)(n−3)

(�−2)(n−�)
]

[
(n−�−1)(n−�−2)

(�−1)(�−2) − 1
]

−
[
(n− g − 1)(n− 2)(n− 3)

g(g − 1)(g − 2)
− (n− 2)(n− 3)

(g − 2)(n− g)

]}
.

Simple algebra shows that the above expression can be reduced to (17). Therefore,
equality (14) is satisfied when q = 2 and 4 ≤ � < g.

(ii) For q = 3 and 4 ≤ � < g, we must show that

A(n, �, g) = B(n, �, g, 3).

In Theorem 6.1 we proved that A(n, �, g) is equal to (17). Note that B(n, �, g, 3) can
be rewritten as

(
n−4
g−3

) [ (n−g−1)(n−g−2)
(g−1)(g−2) − 1

]

(
n−4
�−3

) [ (n−�−1)(n−�−2)
(�−1)(�−2) − 1

]
(
n− 4

�− 3

)[
(n− �− 1)(n− �− 2)(n− 3)

�(�− 1)(�− 2)
− (n− 3)

(n− �)

]

−
(
n− 4

g − 3

)[
(n− g − 1)(n− g − 2)(n− 3)

g(g − 1)(g − 2)
− (n− 3)

(n− g)

]

which is equal to

(
n− 4

g − 3

)




[
(n−g−1)(n−g−2)

(g−1)(g−2) − 1
] [

(n−�−1)(n−�−2)(n−3)
�(�−1)(�−2) − (n−3)

(n−�)
]

[
(n−�−1)(n−�−2)

(�−1)(�−2) − 1
]

−
[
(n− g − 1)(n− g − 2)(n− 3)

g(g − 1)(g − 2)
− (n− 3)

(n− g)

]}
.

Simple algebra shows that the above expression can be reduced to (17). Therefore,
equality (14) holds for q = 3 when 4 ≤ � < g.

(iii) For q = 1, � = 1, and g = 2, we have that

A(n, 1, 2) =
(n− 3)(n− 4)

2
and B(n, 1, 2, 1) =

(n− 3)(n− 4)

2
.

Therefore, A(n, 1, 2) = B(n, 1, 2, 1) and equality (14) in Theorem 6.1 is satisfied.
(iv) For q = 1, � = 1, and g = 3, we have that

A(n, 1, 3) =
(n− 2)(n− 4)(n− 6)

3
and B(n, 1, 3, 1) =

(n− 2)(n− 4)(n− 6)

3
.

Therefore, A(n, 1, 3) = B(n, 1, 3, 1) and equality (14) in Theorem 6.1 is satisfied.
(v) For q = 1, � = 2, and g = 3, we have that

A(n, 2, 3) =
(n− 1)(n− 5)(n− 6)

12
and B(n, 2, 3, 1) =

(n− 1)(n− 5)(n− 6)

12
.

Therefore, A(n, 2, 3) = B(n, 2, 3, 1) and equality (14) in Theorem 6.1 is satisfied.
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(vi) For q = 2, � = 1, and g = 2, we have that

A(n, 1, 2) =
(n− 3)(n− 4)

2
and B(n, 1, 2, 2) =

(n− 3)(n− 4)

2
.

Therefore, A(n, 1, 2) = B(n, 1, 2, 2) and equality (14) in Theorem 6.1 is satisfied.
(vii) For q = 2, � = 1, and g = 3, we have that

A(n, 1, 3) =
(n− 2)(n− 4)(n− 6)

3
and B(n, 1, 3, 2) =

(n− 2)(n− 4)(n− 6)

3
.

Therefore, A(n, 1, 3) = B(n, 1, 3, 2) and equality (14) in Theorem 6.1 is satisfied.
(viii) For q = 2, � = 2, and g = 3, we have that

A(n, 2, 3) =
(n− 1)(n− 5)(n− 6)

12
and B(n, 2, 3, 2) =

(n− 1)(n− 5)(n− 6)

12
.

Therefore, A(n, 2, 3) = B(n, 2, 3, 2) and equality (14) in Theorem 6.1 is satisfied.
(ix) For q = 3, � = 1, and g = 2, we have that

A(n, 1, 2) =
(n− 3)(n− 4)

2
and B(n, 1, 2, 3) =

(n− 3)(n− 4)

2
.

Therefore, A(n, 1, 2) = B(n, 1, 2, 3) and equality (14) in Theorem 6.1 is satisfied.
(x) For q = 3, � = 1, and g = 3, we have that

A(n, 1, 3) =
(n− 2)(n− 4)(n− 6)

3
and B(n, 1, 3, 3) =

(n− 2)(n− 4)(n− 6)

3
.

Therefore, A(n, 1, 3) = B(n, 1, 3, 3) and equality (14) in Theorem 6.1 is satisfied.
(xi) For q = 3, � = 2, and g = 3, we have that

A(n, 2, 3) =
(n− 1)(n− 5)(n− 6)

12
and B(n, 2, 3, 3) =

(n− 1)(n− 5)(n− 6)

12
.

Therefore, A(n, 2, 3) = B(n, 2, 3, 3) and equality (14) in Theorem 6.1 is satisfied.
(xii) For q = 1, � = 1, and g ≥ 4, we must show that A(n, 1, g) = B(n, 1, g, 1).

Notice that

A(n, 1, g) =

(
n− 4

g − 3

){[
(n− g − 1)(n− g − 2)

(g − 1)(g − 2)
− 1

]
(n− 4)

−
[
(n− g − 1)(n− g − 2)(n− g − 3)

g(g − 1)(g − 2)
− (g − 3)

(n− g)

]}

and

B(n, 1, g, 1) =

(
n− 4

g − 3

){[
(n− g − 1)(n− g − 2)

(g − 1)(g − 2)
− 1

]
(n− 2)

−
[
(n− 1)(n− 2)(n− 3)

g(g − 1)(g − 2)
− (n− 1)(n− 2)(n− 3)

(g − 1)(g − 2)(n− g)

]}
.

After some algebra, A(n, 1, g) and B(n, 1, g, 1) can be reduced to
(
n− 4

g − 3

)
(n− 2)(n− 3)(n− 2g)(n− g − 1)

g(g − 2)(n− g)
.

Therefore, equality (14) in Theorem 6.1 is satisfied when q = 1, � = 1, and g ≥ 4.
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(xiii) For q = 1, � = 2, and g ≥ 4, we must show that A(n, 2, g) = B(n, 2, g, 1).
Notice that

A(n, 2, g) =

(
n− 4

g − 3

)




[
(n−g−1)(n−g−2)

(g−1)(g−2) − 1
]

(n− 4)

(n− 4)(n− 5)

2

−
[
(n− g − 1)(n− g − 2)(n− g − 3)

g(g − 1)(g − 2)
− (g − 3)

(n− g)

]}

and

B(n, 2, g, 1) =

(
n− 4

g − 3

)




[
(n−g−1)(n−g−2)

(g−1)(g−2) − 1
] [

(n−1)(n−2)
2 − (n− 1)

]

(n− 4)

−
[
(n− 1)(n− 2)(n− 3)

g(g − 1)(g − 2)
− (n− 1)(n− 2)(n− 3)

(g − 1)(g − 2)(n− g)

]}
.

After some algebra, A(n, 2, g) and B(n, 2, g, 1) can be reduced to
(
n− 4

g − 3

)
(n− 1)(n− 3)(n− 2g)(n− g − 2)

2g(g − 1)(n− g)
.

Therefore, equality (14) in Theorem 6.1 is satisfied when q = 1, � = 2, and g ≥ 4.
(xiv) For q = 1, � = 3, and g ≥ 4, we must show that A(n, 3, g) = B(n, 3, g, 1).

Notice that

A(n, 3, g) =

(
n− 4

g − 3

)




[
(n−g−1)(n−g−2)

(g−1)(g−2) − 1
]

(n−4)(n−5)(n−6)
6

(n−4)(n−5)
2 − 1

− (n− g − 1)(n− g − 2)(n− g − 3)

g(g − 1)(g − 2)
+

(g − 3)

(n− g)

}

and

B(n, 3, g, 1) =

(
n− 4

g − 3

)




[
(n−g−1)(n−g−2)

(g−1)(g−2) − 1
] [

(n−1)(n−2)(n−3)
6 − (n−1)(n−2)

2

]

(n−4)(n−5)
2 − 1

− (n− 1)(n− 2)(n− 3)

g(g − 1)(g − 2)
+

(n− 1)(n− 2)(n− 3)

(g − 1)(g − 2)(n− g)

}
.

After some algebra, A(n, 3, g) and B(n, 3, g, 1) can be reduced to
(
n− 4

g − 3

)
(n− 1)(n− 2)(g − 3)(n− 2g)(n− g − 3)

3g(g − 1)(g − 2)(n− g)
.

Therefore, equality (14) in Theorem 6.1 is satisfied for q = 1, � = 3, and g ≥ 4.
(xv) For q = 2, � = 1, and g ≥ 4, we must show that A(n, 1, g) = B(n, 1, g, 2).

Notice that

B(n, 1, g, 2) =

(
n− 4

g − 3

){[
(n− g − 1)(n− g − 2)

(g − 1)(g − 2)
− 1

]
(n− 2)

−
[
(n− g − 1)(n− 2)(n− 3)

g(g − 1)(g − 2)
− (n− 2)(n− 3)

(g − 2)(n− g)

]}
.
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After some algebra, B(n, 1, g, 2) can be reduced to

(
n− 4

g − 3

)
(n− 2)(n− 3)(n− 2g)(n− g − 1)

g(g − 2)(n− g)
.

Therefore, equality (14) in Theorem 6.1 is satisfied when q = 2, � = 1, and g ≥ 4.
(xvi) For q = 2, � = 2, and g ≥ 4, we must show that A(n, 2, g) = B(n, 2, g, 2).

Notice that

B(n, 2, g, 2) =

(
n− 4

g − 3

)




[
(n−g−1)(n−g−2)

(g−1)(g−2) − 1
] [

(n−2)(n−3)
2 − 1

]

(n− 4)

−
[
(n− g − 1)(n− 2)(n− 3)

g(g − 1)(g − 2)
− (n− 2)(n− 3)

(g − 2)(n− g)

]}
.

After some algebra, B(n, 2, g, 2) can be reduced to

(
n− 4

g − 3

)
(n− 1)(n− 3)(n− 2g)(n− g − 2)

2g(g − 1)(n− g)
.

Therefore, equality (14) in Theorem 6.1 is satisfied when q = 2, � = 2, and g ≥ 4.
(xvii) For q = 2, � = 3, and g ≥ 4, we must show that A(n, 3, g) = B(n, 3, g, 2).

Notice that

B(n, 3, g, 2) =

(
n− 4

g − 3

)




[
(n−g−1)(n−g−2)

(g−1)(g−2) − 1
] [

(n−2)(n−3)(n−4)
6 − (n− 2)

]

(n−4)(n−5)
2 − 1

−
[
(n− g − 1)(n− 2)(n− 3)

g(g − 1)(g − 2)
− (n− 2)(n− 3)

(g − 2)(n− g)

]}
.

After some algebra, B(n, 3, g, 2) can be reduced to

(
n− 4

g − 3

)
(n− 1)(n− 2)(g − 3)(n− 2g)(n− g − 3)

3g(g − 1)(g − 2)(n− g)
.

Therefore, equality (14) in Theorem 6.1 is satisfied for q = 2, � = 3, and g ≥ 4.
(xviii) For q = 3, � = 1, and g ≥ 4, we must show that A(n, 1, g) = B(n, 1, g, 3).

Notice that

B(n, 1, g, 3) =

(
n− 4

g − 3

){[
(n− g − 1)(n− g − 2)

(g − 1)(g − 2)
− 1

]
(n− 3)

−
[
(n− g − 1)(n− g − 2)(n− 3)

g(g − 1)(g − 2)
− (n− 3)

(n− g)

]}
.

After some algebra, B(n, 1, g, 3) can be reduced to

(
n− 4

g − 3

)
(n− 2)(n− 3)(n− 2g)(n− g − 1)

g(g − 2)(n− g)
.

Therefore, equality (14) in Theorem 6.1 is satisfied when q = 3, � = 1, and g ≥ 4.
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(xix) For q = 3, � = 2, and g ≥ 4, we must show that A(n, 2, g) = B(n, 3, g, 3).
Notice that

B(n, 2, g, 3) =

(
n− 4

g − 3

)




[
(n−g−1)(n−g−2)

(g−1)(g−2) − 1
] [

(n−3)(n−4)
2

]

(n− 4)

−
[
(n− g − 1)(n− g − 2)(n− 3)

g(g − 1)(g − 2)
− (n− 3)

(n− g)

]}
.

After some algebra, B(n, 2, g, 3) can be reduced to

(
n− 4

g − 3

)
(n− 1)(n− 3)(n− 2g)(n− g − 2)

2g(g − 1)(n− g)
.

Therefore, equality (14) in Theorem 6.1 is satisfied when q = 3, � = 2, and g ≥ 4.
(xx) For q = 3, � = 3, and g ≥ 4, we must show that A(n, 3, g) = B(n, 3, g, 3).

Notice that

B(n, 3, g, 3) =

(
n− 4

g − 3

)




[
(n−g−1)(n−g−2)

(g−1)(g−2) − 1
] [

(n−3)(n−4)(n−5)
6 − 1

]

(n−4)(n−5)
2 − 1

−
[
(n− g − 1)(n− g − 2)(n− 3)

g(g − 1)(g − 2)
− (n− 3)

(n− g)

]}
.

After some algebra, B(n, 3, g, 3) can be reduced to

(
n− 4

g − 3

)
(n− 1)(n− 2)(g − 3)(n− 2g)(n− g − 3)

3g(g − 1)(g − 2)(n− g)
.

Therefore, equality (14) in Theorem 6.1 is satisfied for q = 3, � = 3, and g ≥ 4.
In the following we prove that equality (18) in the proof of Theorem 6.1 holds for

the cases 1 ≤ � ≤ 3 with g ≥ 4 and 1 ≤ � < g ≤ 3. In order to prove (18), we must
show that

F (n, �, g)


=

s(n,�,g)

[(
n−5
�−1

)− (
n−5
�−4

)]− t(n,�,g)

[(
n−5
g−1

)− (
n−5
g−4

)]

s(n,�,g)

[(
n
�

)
+
(
n−4
�

)− (
n−4
�−4

)]
+ t(n,�,g)

[(
n
g

)
+
(
n−4
g−4

)− (
n−4
g

)]

is equal to

D(n, �, g)


=

�(g − �)(n− g)(n− 2g)(n− 2�)

2(n+ 2�− 2g)(n− 1)(n− 2)(n− 3)(n− 4)
.

Recall that in the proof of Theorem 6.1 we have defined

a


= s

(n,�,g)

[(
n−5
�−1

)− (
n−5
�−4

)]
, b



= t

(n,�,g)

[(
n−5
g−1

)− (
n−5
g−4

)]
,

c


= s

(n,�,g)

[(
n
�

)
+
(
n−4
�

)− (
n−4
�−4

)]
, d



= t

(n,�,g)

[(
n
g

)
+
(
n−4
g−4

)− (
n−4
g

)]
.
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(i) If � = 1 and g ≥ 4, it holds that

a

c
=

1

2(n− 2)
,

b

a
=

(n2 − ng − 6n+ 11 + g2)

(n− 3)(n− 4)
,

and

d

c
=

(2n2 − 3gn− 3n+ 2g2 + 2)

(n− g)(n− 2g)(n− 2)
.

Since

(a− b)

(c+ d)
=

a(1− b
a )

c(1 + d
c )

(20)

we have that

F (n, 1, g) =
(n− g)(n− 2g)(g − 1)

2(n− 2g + 2)(n− 1)(n− 3)(n− 4)

and

D(n, 1, g) =
(n− g)(n− 2g)(g − 1)

2(n− 2g + 2)(n− 1)(n− 3)(n− 4)
.

Therefore, equality (18) is satisfied.
(ii) If � = 2 and g ≥ 4, it holds that

a

c
=

(n− 5)

(n2 − 5n+ 10)
,

b

a
=

(n2 − ng − 6n+ 11 + g2)

(n− 3)(n− 5)
,

and

d

c
=

2(2n2 − 3gn− 3n+ 2g2 + 2)(n− 4)

(n− g)(n− 2g)(n2 − 5n+ 10)
.

From (20), we have that

F (n, 2, g) =
(n− g)(n− 2g)(g − 2)

(n− 2g + 4)(n− 1)(n− 2)(n− 3)

and

D(n, 2, g) =
(n− g)(n− 2g)(g − 2)

(n− 2g + 4)(n− 1)(n− 2)(n− 3)
.

Therefore, equality (18) is satisfied.
(iii) If � = 3 and g ≥ 4, we have

a

c
=

3(n− 5)(n− 6)

(n(n− 1)(n− 2) + (n− 4)(n− 5)(n− 6))
,
b

a
=

(n2 − ng − 6n+ 11 + g2)

(n− 4)(n− 5)
,

and

d

c
=

3(n− 6)(2n2 − 3gn− 3n+ 2g2 + 2)

(n− g)(n− 2g)(n2 − 6n+ 20)
.
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From (20), we have that

F (n, 3, g) =
3(n− g)(n− 2g)(g − 3)(n− 6)

2(n− 2g + 6)(n− 1)(n− 2)(n− 3)(n− 4)

and

D(n, 3, g) =
3(n− g)(n− 2g)(g − 3)(n− 6)

2(n− 2g + 6)(n− 1)(n− 2)(n− 3)(n− 4)
.

Therefore, equality (18) is satisfied.
(iv) If � = 1 and g = 2, it is easy to see that

F (n, 1, 2) = D(n, 1, 2) =
1

2(n− 1)(n− 3)
.

(v) If � = 1 and g = 3, it is easy to see that

F (n, 1, 3) = D(n, 1, 3) =
(n− 6)

2(n− 1)(n− 4)
.

(vi) If � = 2 and g = 3, it is easy to see that

F (n, 2, 3) = D(n, 2, 3) =
(n− 6)

2(n− 1)(n− 2)
.

Therefore, equality (18) is satisfied.

Appendix B.

Fig. B.1. Contrast optimal VCS for 2 ≤ k ≤ n ≤ 6.
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Fig. B.2. Contrast optimal VCS for 2 ≤ k ≤ 6 and 7 ≤ n ≤ 11.

Fig. B.3. Contrast optimal VCS for 7 ≤ k ≤ n ≤ 11.
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FINITE SUBSETS OF THE PLANE ARE 18-RECONSTRUCTIBLE∗
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Abstract. We prove that every finite subset of the plane is reconstructible from the multiset of
its subsets of at most 18 points, each given up to rigid motion. We also give some results concerning
the reconstructibility of infinite subsets of the plane.

Key words. reconstruction problem, group action
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1. Introduction. Combinatorial reconstruction problems arise when we are
given the multiset of subobjects of a certain size of some combinatorial object, up
to isomorphism, and are asked whether this is sufficient information to reconstruct
the original object. For instance, the reconstruction conjecture, made sixty years ago
by Ulam [37] and Kelly [13], asserts that all finite graphs on at least three vertices
can be reconstructed from the collection of all their (nontrivial) induced subgraphs.
Similarly, the edge reconstruction conjecture (Harary [10]) asserts that every graph
with at least four edges can be reconstructed from the collection of all its (nontrivial)
subgraphs. There is substantial literature on graph reconstruction (see, for instance,
[3, 2, 4, 15, 27]). Reconstruction problems have been considered for a variety of other
combinatorial objects, including directed graphs [35, 36], hypergraphs [16], infinite
graphs [28], codes [20], sets of real numbers [31], sequences [34, 18], and combinato-
rial geometries [6, 5].

The necessary ingredients for a combinatorial reconstruction problem are a notion
of isomorphism and a notion of subobject. Some progress has been made in recent
years in the general case, where we have a group action G � X providing the notion
of isomorphism, and we wish to reconstruct a subset S of X from the multiset of
isomorphism classes of its k-element subsets, known as the k-deck (see Alon et al. [1],
Babai [2], Cameron [7, 9, 8], Krasikov and Roditty [17], Maynard and Siemons [21],
Mnukhin [22, 23, 25], and Radcliffe and Scott [32]). Several authors [1, 7, 23] have
noted that we can reconstruct S provided k > log2 |G|+1; the n log2 n bound for edge
reconstruction (Müller [26]; Lovász [19]) also follows from this. In general, however,
much smaller decks may suffice (see [29, 32]).

In this paper we focus on the case of the plane, R
2, with the group R of rigid

motions acting on it. Thus the k-deck of a set S of points in the plane is the multiset
of its k-subsets given up to rigid motion. (For instance, the 2-deck is essentially the
multiset of distances between pairs of points in S.) We want to know how large k must
be so that S is determined up to rigid motion by its k-deck. Alon et al. [1] proved that
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subsets of n points in the plane can be reconstructed from their (log2 n + 1)-decks.
Our first aim in this paper is to prove that every finite subset of the plane can be
reconstructed from its 18-deck.

We begin by considering sets of points in the plane together with an “orientation,”
which leads naturally to the problem of reconstructing finite subsets of the circle
T = R/Z. It is crucial to our approach that finite subsets of T are reconstructible
from bounded decks, under the action of T on itself by translation. This in turn is
proved by considering the circle as a limit (in an appropriate sense) of the groups Zn

for n large. Alon et al. [1] proved that if Zn acts on itself, then arbitrary subsets S
are reconstructible from their (log2 n+ 1)-decks (see also Mnukhin [23, 24]). Radcliffe
and Scott [30] improved their bound substantially in the case of Zn acting on itself.
Using a Fourier analytic approach, they showed (among other results) that if S is a
finite multiset in Zp and p is prime, then S is reconstructible from its 3-deck. Using
more refined Fourier analytic arguments, Pebody [29] proved the following result.

Theorem 1.1. If S is a finite multiset of elements of Zn, then S can be recon-
structed from its 6-deck.

In fact Pebody proved rather more, computing for every abelian group A the
minimum k (as a function of A) for which all multisets in A are k-reconstructible.

In this paper we prove first that finite subsets of T are reconstructible from their
6-decks and then that finite subsets of the plane R

2, under the action of the group
R of rigid motions, are reconstructible from their 18-decks. Our proof for the plane
works by reducing the problem of reconstructing a set up to the action of the group of
rigid motions to that of reconstructing it up to the action of the group of translations.
This requires us to reconstruct the orientations of the sets in an appropriately sized
deck. The technique that allows us to do this is the method of “features” and we
present it in section 2, in a quite general form, before proving our results on finite
subsets of T and R

2 in section 3. It turns out that we can use this approach in
another, slightly different situation, and in section 4 we prove some results concerning
the reconstructibility of infinite subsets of the plane.

1.1. Definitions. In the following we suppose that a group action G � X has
been specified. We write the group action generically as (g, x) �→ g.x. We shall most
often be dealing with the group R of rigid motions of the plane acting on R

2, in which
case we shall usually think of the elements of R as functions mapping the plane to
itself, and write the action as a function application. A rigid motion of the plane is
an affine isometry preserving orientation. For notation and terminology, see [11]. We
will always assume that G � X is transitive.

An essential part of our approach to reconstructing subsets of the plane is to
consider the more general problem of reconstructing multisets of points in the plane,
where each point is allowed to have finite multiplicity. This should not be too sur-
prising since [30] and [29] both proceed by proving results concerning the action of
Zn on the group ring Q Zn.

Definition 1.2. Formally, a multiset S in X with finite multiplicities is a
function mS : X → {0, 1, 2, . . .}. We say that mS(x) is the multiplicity of x in S and
define the support of S to be the set supp(S) = {x ∈ X : mS(x) > 0}. The size of
S is |S| =

∑
x∈X mS(x). We shall often refer to a multiset in X of finite size as a

configuration. We writeM(X) for the collection of all finite multisets in X.
A multiset K is contained in a multiset S if mK(x) ≤ mS(x) for all x ∈ X.

The power set P(S) of S is the multiset in which each K ⊂ S has multiplicity∏
x∈supp(K)

(
mS(x)
mK(x)

)
; we write Pr(S) = {A ∈ P(S) : |A| = r}. With this convention
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the size of P(S) is 2|S|, and |Pr(S)| = (|S|r
)
.

We shall have to consider two different notions of union. The multiset union of
a collection S of multisets (or sets) is the multiset

⊕
S∈S S in which each x ∈ X has

multiplicity
∑
S∈S mS(x). The set union

⋃
S∈S S gives to each x ∈ X the multiplicity

maxS∈S mS(x).
Definition 1.3. Given two multisets S, T in X we say that they are isomorphic,

and write S � T , if there exists g ∈ G such that g.S = T . The collection of all
multisets in X isomorphic to S is the isomorphism class of S, written [S]G (or simply
[S] if the group action is sufficiently clear).

Definition 1.4. If S is a multiset in X, then the k-deck of S is the multiset

Dk(S) = {[K]G : K ∈ P(S), |K| ≤ k}.

Note that K ⊂ S might well arise multiple times as a subset of S: to be precise,
K arises

∏
x∈supp(K)

(
mS(x)
mK(x)

)
times. Thus, for |K| ≤ k, the multiset Dk(S) gives the

cardinality of the collection of multisets in P(S) belonging to a fixed isomorphism class
[K]. We write mS([K]) for the multiplicity mDk(S)([K]). In some cases we will want
to emphasize the particular group action, in which case we will write Dk(G � S).
The entire collection of isomorphism classes of finite subsets of S we will call the
(< ω)-deck of S, written D(S) = {[K] : K ∈ P(S), |K| <∞}.

We remark that the k-deck is often defined in terms of the subsets of S of size
exactly k. However, the two definitions are easily seen to be equivalent here for
∞ ≥ |S| ≥ k, by a variant of Kelly’s lemma [14]. (Further discussion can be found in
[33].)

Definition 1.5. We say that a multiset S in X is reconstructible from its k-
deck (or k-reconstructible) if every T in X with the same k-deck as S is, in fact,
isomorphic to S. Similarly, if f : M(X) → Y is an arbitrary function, then we
say f(S) is k-reconstructible if Dk(T ) = Dk(S) ⇒ f(T ) = f(S). More generally
we say that f : M(X) → Y is k-reconstructible if f(S) is k-reconstructible for all
finite multisets S in X. This is equivalent to saying that f is reconstructible if and
only if it factors through the map S �→ Dk(S). Note that if f is k-reconstructible,
it must depend only on [S], since Dk(S) does. We will say that (finite) multisets
in X are reconstructible from their k-decks if the function S �→ [S]G on M(X) is
k-reconstructible (in other words, finite multisets can be identified up to isomorphism
from their k-decks).

2. The method of features. In this section we present a method central to
our results in this paper, that is, the method of features. We show that from an
appropriately sized deck of G � S we can reconstruct the k-deck of any collection of
features naturally associated with configurations lying in S. To make this clearer let
us give an example that we will use later.

Example 2.1. We would like to associate with a configuration C in R
2 a direction.

This requires us to distinguish two points of C to define a reference line, whose
direction we will call the direction of C. Thus we are led naturally to the notion of
an oriented configuration: an oriented configuration is a triple 〈C, x, y〉 consisting of
a finite multiset C in R

2 together with points x, y ∈ supp(C) with x �= y.
With the example of oriented configurations in mind we describe the general

formalism we will use.
Definition 2.1. A configuration style is a finite sequence a = (a1, a2, . . . , ar) of

positive integers. A colored configuration in style a is a pair 〈C, c〉 consisting of a finite
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multiset C in X and a coloring c : supp(C) → {0, 1, . . . , r} such that |c−1(i)| = ai
for i = 1, 2, . . . , r. There is a natural action of G on colored configurations, where
g. 〈C, c〉 =

〈
g.C, c ◦ g−1

〉
. Two colored configurations 〈C, c〉 and 〈C ′, c′〉 are therefore

isomorphic if there exists g ∈ G such that g.C = C ′ and c′(g.x) = c(x) for all x ∈ C.
As usual we write [〈C, c〉]G for the isomorphism class of 〈C, c〉 under the action of G.
The size of a colored configuration 〈C, c〉 is simply the size of C. We write Ca for the
collection of all colored configurations in style a. We say that 〈C, c〉 is an a-colored
configuration in S if c is an a-coloring of C and C ⊂ S.

Example 2.2. We define a pointed configuration 〈C, x〉 to be a colored configura-
tion in style (1), that is, a finite multiset C together with one distinguished element
x ∈ supp(C), which has color 1. An oriented configuration is, similarly, a colored
configuration in style (1, 1). The coloring picks out two distinguished elements of
supp(C), the first, x, having color 1 and the second, y, having color 2.

Now we turn to the central reason for discussing colored configurations. We
want to talk about a “feature” of a colored configuration, and, eventually, to be
able to reconstruct the set of all such features associated with particular classes of
configurations. (Recall the example of the direction of an oriented configuration.)
Since these features are also the object of a reconstruction problem, we insist that
there be a group H acting on the features and that isomorphic colored configurations
have isomorphic features.

Definition 2.2. Given group actions G � X and H � Y we define an H-
feature of a-colored configurations in X to be a function f : Ca → Y on colored
configurations together with a homomorphism φ : G → H such that f(g. 〈C, c〉) =
φ(g).f(〈C, c〉) for all 〈C, c〉 and g. In other words isomorphic configurations have
isomorphic features and, moreover, the isomorphism is chosen in a uniform way.

Definition 2.3. Let C be a set of isomorphism classes of a-colored configurations.
The C-list of S is

LC(S) = {〈C, c〉 : C ∈ P(S), c an a-coloring of C, [〈C, c〉]G ∈ C}.
If f is an H-feature of such configurations, then the C-feature set of S is the multiset

Ff,C(S) = {f(〈C, c〉) : 〈C, c〉 ∈ LC(S)}.
Example 2.3. Given an oriented configuration 〈C, x, y〉 we can associate with it

the direction of the directed line segment from x to y. We consider this direction
as an element of the circle group T = R/Z. This is a T-feature. Its associated
homomorphism φ maps g ∈ R (the group of rigid motions) to φ(g) = θ + Z, where
2πθ is the common angle through which all line segments rotate under the action
of g. So if we let C consist only of the equivalence class of oriented configurations
containing two points at distance 1 apart, then the C-list of S is the collection of all
ordered pairs of points in S at distance 1 apart, and the feature set of S is the multiset
of all directions of these line segments.

Remark 2.1. Note that the C-list of S and the C-feature set F of S are not
isomorphism invariants, so there is no hope that we will literally be able to reconstruct
them. What we hope is that the isomorphism class [F ]H of the feature set will be
reconstructible.

Now we are ready for the first theorem of the section. Where unambiguous we
shall suppress the qualifiers in H-feature, a-colored configuration, and C-feature set.

Theorem 2.4 (feature theorem). Let f be a feature of colored configurations
(with associated homomorphism φ), C a set of isomorphism classes of colored config-
urations, each of size at most m, and S a multiset in X. Set F = Ff,C(S), the feature



266 L. PEBODY, A. J. RADCLIFFE, AND A. D. SCOTT

set of S. Then the k-deck of H � F is reconstructible from the mk-deck of G � S.
In particular, if multisets in Y are reconstructible from their k-decks, then [F ]H is
reconstructible from the mk-deck of S.

Proof. Note first that there is a natural bijection between the feature set F and
the C-list L = LC(S). Thus there is also a natural bijection between Pr(F ) and the
collections {〈Ci, ci〉 : i = 1, 2, . . . , r} ∈ Pr(L). We will partition Pr(L) according to
the set union (of multisets) C =

⋃r
1 Ci: note that a given C may arise in many different

ways. For a configuration C in X we say that a C-splitting of C is a representation
of C as a set union C =

⋃r
1 Ci together with a-colorings ci for the Ci such that

[〈Ci, ci〉]G ∈ C for i = 1, 2, . . . , r. We can then write

f(C) = {{f(〈Ci, ci〉)}r1 : {〈Ci, ci〉}r1 is a C-splitting of C}.
We obtain the multiset identity

⊕

i≤k
Pi(F ) =

⊕

C∈P(S)
|C|≤mk

f(C),

and hence

Dk(H � F ) =




[K]H : K ∈
⊕

i≤k
Pi(F )




 =
⊕

C∈P(S)
|C|≤mk

{[L]H : L ∈ f(C)}.(1)

The last, crucial, observation is that the multiset of isomorphism classes

{[L]H : L ∈ f(C)}
is reconstructible from [C]G. To see this note that if D � C, with say g.C = D, then

the C-splittings of C are isomorphic to the C-splittings of D: if C =
⋃k

1 Ci and ci are
appropriate colorings, then we set Di = g.Ci with colorings di(x) = ci(g

−1.x) for all

x ∈ Di. The set of features arising from {〈Di, di〉}k1 is isomorphic to that arising from

{〈Ci, ci〉}k1 because we have

{f(〈Di, di〉)} = {f(g. 〈Ci, ci〉)}
= {φ(g).f(〈Ci, ci〉)}
= φ(g). {f(〈Ci, ci〉)} .

Thus, by (1), Dk(F ) depends only on the collection of all isomorphism classes of
elements of P(S) of size at most mk, which is the mk-deck of G � S.

We will use the method of features both directly and via the “certification lemma”
below. The certification lemma applies to the situation in which S might be infinite
and shows that if some subset P of S can be picked out by a property which can be
determined from examining small configurations, then we can reconstruct the decks
of P from (larger) decks of S.

Definition 2.5. Recall that if C is a finite multiset of points in X and x ∈
supp(C), then we call the pair 〈C, x〉 a pointed configuration. Let S be a multiset in
X and let P be a subset of S. We say that P has a certificate of size m if there exists
a set C of isomorphism classes of pointed configurations, each of size at most m, such
that P is exactly the set of points in S “pointed at” by elements of C. To be precise,
we require

P = {y ∈ S : ∃C ⊂ S, y ∈ supp(C) such that [〈C, y〉] ∈ C}.
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Definition 2.6. If S is a multiset in X and C is a collection of pointed configu-
rations, then we write

C(x) = {〈C, y〉 : C ∈ P(S), y ∈ supp(C) such that [〈C, y〉] ∈ C}.
We also define λC(x) = |C(x)|.

Lemma 2.7 (certification lemma). Let S be a subset of X and P be a subset
of S having a certificate of size, say, m, C. We can reconstruct the k-deck of the
multiset Pλ, consisting of λC(x) copies of x for each x ∈ P , from the mk-deck of S.
In particular, if [Pλ]G is reconstructible from its k-deck, then it is reconstructible from
the mk-deck of S, as is [P ].

Proof. The map taking p : 〈C, x〉 �→ x is trivially a G-feature of pointed multi-
sets (with associated homomorphism the identity map G → G) and, moreover, Pλ

is exactly the feature set Fp,C(S). Thus by Theorem 2.4 the claims of the lemma
hold.

3. The circle and the plane. In this section we prove that finite multisets in
the circle are 6-reconstructible and that finite multisets of R

2 are 18-reconstructible.
We deal first with the reconstructibility of multisets of the circle group T = R/Z

acting on itself by translation. It turns out that we are able to relate this problem to
that of reconstructing multisets in the cyclic group Zn. Because of this it is helpful
to identify Zn with the specific subgroup {i/n+ Z : i = 0, 1, . . . , n− 1} < T. We will
also make use of the fact that T is a topological group with metric

d(r + Z, s+ Z) = min {|r′ − s′| : r′ ∈ r + Z, s′ ∈ s+ Z}.
We shall often identify elements of T with elements of [0, 1) ⊂ R.

Theorem 3.1. All finite multisets in T are 6-reconstructible.
We give two proofs of this result. The first proof considers the subgroup of T

generated by the multiset S that we wish to reconstruct; the second proof works
by approximating S by a “nearby” copy of Zn (standard results on Diophantine
approximation imply that such a copy exists).

Proof. [First proof.] Given finite multisets S1, S2 in T with the same 6-deck, we
will show that S1 is a translate of S2. Consider the subgroup G of T generated by
S1

⋃
S2. It is a finitely generated subgroup of T, and therefore there exist integers k, n

such that G � Zk ⊕Z
n. Let θ : G→ Zk ⊕Z

n be an isomorphism, and let Ti = θ(Si).
Then T1, T2 are multisets of Zk ⊕ Z

n with the same 6-deck.
Represent the elements of Zk ⊕Z

n by sequences of n+ 1 integers. The sequences
(a1, a2, . . . , an+1) and (b1, b2, . . . , bn+1) represent the same element if k|(a1 − b1) and
ai = bi for all i > 1. For 2 ≤ i ≤ n + 1, say that ai is the ith coordinate of
(a1, a2, . . . , an+1). Let xi be the smallest ith coordinate of elements of T1

⋃
T2, and

let yi be the largest. Finally, let (p2, . . . , pn+1) be a sequence of distinct primes such
that pi is not a factor of k, and pi > 2(yi − xi).

Let H be the subgroup of Zk ⊕ Z
n generated by the elements (0, p2, 0, . . . , 0),

(0, 0, p3, 0, . . . , 0), . . ., (0, 0, . . . , pn+1), and let

θ′ : Zk ⊕ Z
n → (Zk ⊕ Z

n)/H � Zkp2p3,...,pn+1

be the quotient map. If T ′i = θ′(Ti), then T ′1 and T ′2 have the same 6-deck. Since these
multisets are multisets of a cyclic group, Theorem 1.1 implies that they are translates.

Therefore there exists a translate T of T1 and a bijection γ : T → T2 such that for
all t ∈ T , t− γ(t) ∈ H. Furthermore, by picking T wisely, we may assume that there



268 L. PEBODY, A. J. RADCLIFFE, AND A. D. SCOTT

exists t such that t = γ(t) for some t. Then the ith coordinate of t is between xi and
yi. Therefore for any u ∈ T , the ith coordinate of u is between xi−(yi−xi) = 2xi−yi
and yi + (yi − xi) = 2yi − xi. Furthermore, the ith coordinate of γ(u) is between xi
and yi. Therefore the ith coordinate of u− γ(u) is between 2(xi − yi) and 2(yi − xi)
and is definitely less in magnitude than pi. Since u− γ(u) ∈ H, u = γ(u). Since this
holds for all u, T = T2 (as multisets), and hence T1 and T2 are translates. Since θ
was an isomorphism, it follows that S1 and S2 are translates, and hence multisets in
T are 6-reconstructible.

Proof. [Second proof.] Given a finite multiset S in T, we will show that it is
reconstructible from its 6-deck. First note that we may assume, by translating S if
necessary, that 0 ∈ S. For T ∈M(T) we will write ∆(T ) = {t− t′ : t, t′ ∈ T} for the
multiset of differences of elements of T . Let ∆1 = ∆(S) and ∆2 = ∆(∆(S)). It is
clear that ∆1, and hence ∆2, can be reconstructed from the 2-deck of S; note that
S ⊂ ∆1 ⊂ ∆2.

By standard results concerning Diophantine approximation (see, for instance, [12,
Chap. 1, Prop. 2]) there exists ρ > 0 and a sequence ni →∞ such that

εi := max {d(δ,Zni
) : δ ∈ ∆2} < 1/n1+ρ.

(This approximation is used in a similar context in [1].) In particular we may assume

εi <
1

4ni
<

1

4
min {d(δ, 0) : δ ∈ ∆2}.(2)

We shall say that ni is good for S if it satisfies (2). Notice that for any particular
n, the property that n is good for S is reconstructible from the 2-deck of S. For
each of the ni we define a “projection” π : ∆2 → Zni

by letting π(δ) be the point in
Zni closest to δ. There is no possible ambiguity since by (2) the nearest element of
Zni is within distance εi < 1/4ni. Moreover, π is injective on ∆1: if δ, δ′ ∈ ∆1 have
π(δ) = π(δ′), then d(δ, δ′) ≤ 2εi < 1/ni while δ − δ′ ∈ ∆2. By (2) this implies that
δ = δ′.

Now we define Sni = π(S) = {π(x) : x ∈ S}. It is easily checked that the 6-deck
of Sni is reconstructible from the 6-deck of S, and hence that [Sni ] is reconstructible.
Now take an arbitrary orientation of each Sni : dropping to a convergent subsequence
yields an orientation of S.

We turn now to the proof of our central result, which states that finite multisets
in the plane are reconstructible from their 18-decks.

Theorem 3.2. Any finite multiset S in R
2 is reconstructible, up to the action of

the group R of rigid motion acting on the plane, from its 18-deck.

Proof. We begin by defining a T-feature of configurations contained in S. We
identify, in the natural way, the collection of unit vectors in R

2 with the group T.
To be precise let ψ :

{
u ∈ R

2 : |u| = 1
} → T be defined by ψ((x1, x2)) = α/(2π)

if (x1, x2) = (sinα, cosα). As in the discussion in section 2, recall that an oriented
configuration 〈C, x, y〉 is a finite multiset C in R

2 together with points x, y ∈ supp(C)
with x �= y. The direction of 〈C, x, y〉 is the element u(〈C, x, y〉) = ψ((x− y)/|x− y|)
of T.

We claim that u is a T-feature of oriented configurations. To see this, note that
there is a homomorphism ρ from R to T which takes g to α/2π if g rotates all line
segments through α radians. Moreover, u(g. 〈C, x, y〉) = ρ(g).u(〈C, c〉). If C is any
collection of isomorphism classes of oriented configurations, we define the orientation
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set of C (in S) to be the multiset in T given by

O(C) = Fu,C(S)

= {u(〈C, x, y〉) : C ∈ P(S), x, y ∈ supp(C), x �= y, [〈C, x, y〉] ∈ C}.

By Theorem 2.4, if all the configurations in C have size at most m, then we can
reconstruct [O(C)]T from the 6m-deck of S.

Similarly, if ε : C → T is an arbitrary function, then the map 〈C, x, y〉 �→
u(〈C, x, y〉) + ε([〈C, x, y〉]) is also a T-feature, with the same associated homomor-
phism. Thus, by the same result, we can also reconstruct [O(C, ε)]T from the 6m-deck
of S, where

O(C, ε) = {u(〈C, x, y〉)+ε([〈C, x, y〉]) :

C ∈ P(S), x, y ∈ supp(C), x �= y, [〈C, x, y〉] ∈ C}.

Suppose now that C = {Γ1,Γ2, . . . ,Γt}. We will show that we can reconstruct
[(O(Γi))

t
i=1]T from the 6m-deck of S. (Note that the relevant T action is that on

M(T)t given by s.(Ai)
t
i=1 = (s.Ai)

t
i=1.) To see this let ∆ = {t− t′ : t, t′ ∈ O(C)} and

let W ⊂ R be the subspace of R (considered as a vector space over Q ) generated by
∆ ∪ {1}. This is clearly independent of the choice of representatives for elements of
∆. Let ε1, ε2, . . . , εt be elements of R linearly independent of each other and W , and
define ε : C → T by ε(Γi) = εi. As above we can reconstruct [O(C, ε)]T from the 6m-
deck of S. Now pick O ∈ [O(C, ε)] and consider x, y ∈ O. We have O = O(C, ε) + s for
some unknown s. If x ∈ O(Γi)+εi+s and y ∈ O(Γj)+εj+s, then x−y ∈W +εi−εj .
Thus we can recognize, from the difference x − y, that x ∈ O(Ci) + εi + s and that
y ∈ Cj + εj +s, and we are therefore able to label every element of O with the Γi from
which it came. From this we deduce (O(Γi) + s)ti=1 for some fixed unknown s ∈ T

by subtracting εi from every direction labeled with Γi. Hence we can reconstruct
[(O(Γi))

t
i=1]T from the 6m-deck of S.

We are now ready to finish the proof. The group R of rigid motions contains a
normal subgroup ker(ρ) isomorphic to R

2 and consisting of the translations. We refer
to this subgroup as R

2 in what follows. The quotient R/R2 is isomorphic to T.
Let (Γi)

t
i=1 be a list of all equivalence classes of oriented configurations of size 3 in

S (deducible from the 3-deck of S), and let (Oi)
t
i=1 be a representative of [(O(Γi))

t
i=1]T.

Note that we can determine a suitable (Oi)
t
i=1 from the 18-deck of S; we will show

that from this information we can reconstruct [D3(R2 � S)]R2 . Here it is crucial
to understand what we are reconstructing. R

2 acts on itself by translation. In turn
there is an action of T on R

2-isomorphism classes by s.[C]R2 = [g.C]R2 , where g ∈ R
is any rigid motion with ρ(g) = s, since if ρ(g1) = ρ(g2), then g1g

−1
2 is a translation.

Hence T acts on multisets of R
2-isomorphism classes, and in particular on the deck

D3(R2 � S).
Starting from (Oi)

t
i=1 ∈ [(O(Γi))

t
i=1]T we build an element D of [D3(R2 � S)]R2 ;

i.e., we reconstruct D3(R2 � S) up to a global rotation. For any [C]R ∈ D3(R � S)
one can work out which Γi arise from orientations of C, and for each one the sequence
(Oi)

t
i=1 tells us which directions to pick for the corresponding elements of D. Clearly

we have D = D3(R2 � r.S) for some unknown r ∈ R. Now pick some unit vector
u ∈ R

2 such that no two points x, y ∈ r.S have 〈u, x〉 = 〈u, y〉; this property can
be easily checked from D (indeed, from the 2-deck of R

2 � r.S) since it is invariant
under translations of S. Then let λ = max {〈u, x〉 − 〈u, y〉 : x, y ∈ r.S}. Again, λ
can be computed from the 2-deck of R

2 � r.S. Now r.S can be recovered up to
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translation: it is a translate of

T =
{
x : {0, x, λu} ∈ D3(R2 � r.S)

}
.

Thus, from some unknown r ∈ R, x ∈ R
2 we have r.S = x+ T . In particular [S]R is

determined by the 18-deck of S.

4. Infinite subsets of R
2. In this section we discuss the reconstructibility of

some infinite subsets of the plane. We shall no longer be concerned with multisets.
We immediately run into several examples of nonreconstructible sets.

Example 4.1. Let S = (0, 1) and let S′ = (0, 1)\{ 1
2

}
. Clearly these sets are

not isomorphic. On the other hand, their decks both consist of an (uncountably)
infinite number of copies of every finite configuration which is linear and has diameter
strictly less than 1. Moreover, these examples have the same k-deck (for every k)
as any set of the form (0, 1) \ C, where C is any countable subset of (0, 1). Since
these are all mutually nonisomorphic this gives quite a large range of examples of
nonreconstructible sets. (These examples are all reconstructible from their ℵ0-decks.)

Example 4.2. Similarly, if we take the disc
{
x ∈ R

2 : |x| ≤ 1
}

, it has the same
k-deck, for every k, as the disc with a countable number of points (none of which is
the origin) removed. Every configuration for which a copy appears in the disc can
be rotated (in uncountably many ways) to avoid the missing points. In fact even the
ℵ0-deck does not distinguish these examples from one another. Thus the disc is not
even ℵ0-reconstructible.

Example 4.3. Let P be the standard symmetric probability distribution on the
power set P(N) of N ⊂ R

2. Pick two subsets S, S′ ⊂ N at random according to P.
With probability 1 they will each contain infinitely many copies of every finite subset
of N (and of course no copies of any other configuration) and will not be isomorphic.
Thus we can find countable subsets of the plane that are not reconstructible.

We have given examples showing that if S is not compact, or has an infinite
automorphism group, then S may not be reconstructible. The next result proves
that otherwise there exists NS depending only on S such that given an arbitrary set
S′ ⊂ R

2 either S � S′ or the NS-decks of S and S′ are different. We call this property
of S finitely reconstructible.

Theorem 4.1. Every compact subset of the plane with a finite automorphism
group is finitely reconstructible.

Our proof of this theorem will use the certification lemma, Lemma 2.7, to show
that the existence of even one configuration C which appears in S but does not appear
infinitely often in S is enough to ensure that S is finitely reconstructible.

Definition 4.2. If S ⊂ R
2 and C ⊂ S is a finite subset with the property that the

deck of S contains only finitely many copies of [C]R (or, equivalently, that S contains
only finitely many copies of C), then C is called a characteristic configuration in S.

Lemma 4.3. If S ⊂ R
2 contains a characteristic configuration C of size k, then

S is 18(2k + 1)-reconstructible.
Proof. Let S0 be the subset of S consisting of points belonging to at least one

copy of C. For each D ⊂ R+ let SD be the subset of S containing all points whose
distances to at least two points of S0 belong to D. Note that S0 is finite and thus SD
is finite for all finite D. Also SD is an increasing function of D, and S =

⋃
|D|<∞ SD.

We claim that for any D we can reconstruct SD from the 18(2k + 1)-deck of S.
Certainly SD has a certificate of size 2k + 1 since y ∈ SD if and only if it belongs
to a pointed configuration 〈C1 ∪ C2 ∪ {y} , y〉, where C1, C2 � C and at least two of
the distances from y to points in C1 ∪ C2 belong to D. We therefore let C be the
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set of isomorphism classes of pointed configurations of this sort. By Lemma 2.7 and
Theorem 3.2, SD is reconstructible from the 18(2k + 1)-deck of S.

Now let H be the automorphism group of S. Clearly, since S has a characteristic
configuration, H must be finite. For finite subsets D of R+ let HD be the automor-
phism group of SD. Clearly, H ≤ HD for all finite D and, if E ⊃ D, then HE ≤ HD.
We claim that there is some finite D0 ⊂ R+ such that H = HD. To see this pick D0

with |HD0
| minimal. Now suppose that H < HD0 . Pick h ∈ HD0

\H. There must
be some x ∈ S with hx �∈ S. Now pick E ⊃ D0 with x ∈ SE . Then HE ≤ HD0

and
h ∈ HD0\HE , contradicting the minimality of |HD0 |.

Now since we can reconstruct SD for all finite D we build

{[SD]R : |D| <∞, D0 ⊂ D}.
We fix a copy T0 of SD0 and choose TD ∈ [SD]R such that the copy of SD0 in TD is
equal to T0. We claim that

⋃
|D|<∞,D0⊂D TD � S. If D,E ⊃ D0 and we have chosen

TD and TE to agree on T0, then TD = gDSD and TE = gESE for some gD, gE ∈ R
such that g−1

D gET0 = T0. Thus, by the minimality of HD0 , we have g−1
D gETD = TD

and gDg
−1
E TE = TE . Thus TD and TE are consistent, and a similar argument shows

that both agree with TD∪E . The union of {TD : D0 ⊂ D, |D| <∞} is therefore a set
isomorphic to S.

Before completing the proof of Theorem 4.1 we note some simple facts concerning
subgroups of R. We write Tx for the subgroup of R consisting of all rotations about
x, and Zn,x for the subgroup of all rotations about x through an integer multiple of
2π/n radians. We will need some elementary topological properties of R. We note
that any element g ∈ R rotates all line segments through some fixed angle α(g) and
we define a metric on R by d(g, g′) = |g((0, 0)) − g′((0, 0))| + dT(α(g), α(g′)). This
metric makes R into a topological group.

Proposition 4.4. If K is any compact subgroup of R, then there exists x in R
2

such that K is either Tx or Zn,x for some n.
Proof. Clearly, the set of iterates of a (nontrivial) translation form an infinite

discrete set, and thus K cannot contain a translation. Since the commutator of
two rotations about different centers is a translation, K cannot contain such a pair.
Therefore K consists purely of rotations about some fixed center x. The set of allowed
rotations is either discrete, in which case K is easily seen to be Zn,x for some n, or
dense in Tx, in which case (since K is closed) K = Tx.

Lemma 4.5. If S is a compact subset of R
2 with Aut(S) finite and C ⊂ S

finite, then for every ε > 0 there exists a finite superset Eε ⊃ C such that whenever
E1, E2 ⊂ S have E1, E2 � Eε and g ∈ R maps D1 to E2, then g is within ε of some
automorphism of R.

Proof. For any finite subset E ⊂ S we set

KE = {g ∈ R : g(E) ⊂ S} \ {g ∈ R : d(g,Aut(S)) < ε}.
This is clearly a compact subset of R. Suppose that no finite subset E as described
in the lemma exists. Then the collection {KE : E finite, C ⊂ E} has the finite inter-
section property and thus

⋂
|E|<∞,E⊃C KE is nonempty. This intersection consists,

however, of only rigid motions which map S to S and are at least ε away from any
automorphism of S, which is a contradiction.

We will use Lemma 4.5 to restrict our search for a characteristic configuration in
S to subsets which have only “nearby” copies. To be precise, if E1, E2 ⊂ S are both
copies of one another, we will write d(E1, E2) for min {d(g, id) : g(E1) = E2}.



272 L. PEBODY, A. J. RADCLIFFE, AND A. D. SCOTT

Proof of Theorem 4.1. Note first that Aut(S), being finite, must be Zn,x for
some n, x, by Proposition 4.4. Put ε = 1/2n. Let M be the diameter of S and
let C consist of two points in S at distance M apart. By Lemma 4.5 there exists
E containing C such that any two copies of E in S are related by a rigid motion
which is within ε of an automorphism of S. Pick a copy E′ of E with E′ ⊂ S and
distinguish a copy C ′ of C in E′. From all images g(E′) in S with d(g, id) ≤ ε pick
a pair E1, E2 with the angle between their distinguished copies of C ′ being maximal.
This is possible by compactness. Note that it is an elementary geometric fact that,
since M = diam(S), there is at most one copy of C with any given orientation. Now
it is clear that E′′ = E1∪E2 is a characteristic configuration for S; indeed [E′′] occurs
with multiplicity at most |Aut(S)| in the k-deck of S. If F ′′ ⊂ S is a copy of E′′,
then by hypothesis F ′′ = g(E′′) for some g ∈ R with d(g,Aut(S)) ≤ ε. Suppose that
h ∈ Aut(S) has d(h, g) < ε. Thus h−1(F ′′) is the image of E′′ under a rigid motion
at most ε from the identity. This, however, by the construction of E′′ ensures that
h−1(F ′′) = E, and so F ′′ = h(E′′). In summary, the only copies of E′′ in S are the
images of E′′ under Aut(S). Now by Lemma 4.3 we are done.

Example 4.4. Consider the “notched disc”

Nε = {x : |x| ≤ 1, |x− (1, 0)| ≥ ε}.

Any finite configuration C for which the multiplicity of [C] in D(Nε) is different than
in the deck of the unnotched disc must have |C| ≥ π/ sin−1 ε (since otherwise either
C would not turn up in the disc or uncountably many rotations of C would fit in the
notched disc). Thus there is no uniform bound N such that all compact subsets of
R

2 with a finite automorphism group are reconstructible from their N -decks.
Remark 4.1. It is worth remarking that if S, T are compact subsets with Aut(S) =

Tx and Aut(T ) = Ty and D3(S) = D3(T ), then S � T . To see this note that,
for such S with diameter 2R, if we pick an arbitrary unit vector u we have S �
T(0,0).{λu : {−Ru, λu,Ru} ∈ D3(S)}.

We have seen that if S is bounded but not closed, then it may not be recon-
structible even from its ℵ0-deck. However, we can reconstruct the closure of S.

Theorem 4.6. If S ⊂ R
2 is bounded, then [S̄]R can be reconstructed from the

(< ω)-deck of S.
Proof. Let K = S̄. Given two finite subsets C,C ′ ⊂ R

2 we say that they are
ε-copies of one another if there exists a map φ : C → C ′ and a rigid motion g ∈ R
such that |φ(x) − g(x)| ≤ ε for all x ∈ C. By compactness, for any finite subset
C ⊂ R

2, the deck of K contains [C] if and only if for all ε > 0 there exists an ε-copy
Cε of C such that [Cε] ∈ D(S). However, it may be hard to compute the multiplicity
of [C] in D(K). It turns out that we can get away with using only the “reduced deck”
of K: the set of isomorphism classes of finite subsets of K. Let D̃ = D̃(K) be this
set. By the observation above, D̃ is reconstructible from D(S).

We now show that the automorphism group of K is reconstructible (up to iso-
morphism) from D̃. Note first that by Proposition 4.4 the automorphism group of K,
which is certainly compact, is either Zn,x or Tx for some x ∈ R

2. If H is a group of
rigid motions, we say that K is H-full if every finite subset C ⊂ K can be extended
to a configuration CG ⊂ K with H ≤ Aut(CH). Clearly, if H ≤ Aut(K) is finite,
then K is H-full, since for C ⊂ K we can take CH to be the union

⋃
h∈H h(C). In

particular, if Aut(K) is infinite, then K is Zn-full for all n. On the other hand, if
Aut(K) is finite, then we know from the proof of Lemma 4.3 that there is a (finite)
subset C ⊂ K such that Aut(C) = Aut(K) and every extension D with C ⊂ D ⊂ K
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has Aut(D) ≤ Aut(K). Thus if Aut(K) is finite, then K is H ′-full if and only if
H ′ ≤ Aut(K). By this observation we see that the isomorphism type of Aut(K), that
is, Zn or T, can be reconstructed from D̃.

Now that we know Aut(K) we can reconstruct as follows. If Aut(K) is finite,
then

K =
⋃

D⊃C,[D]∈D̃
D,

where C is as above; moreover, the right-hand side can be reconstructed up to rigid
motion from D̃. On the other hand if Aut(K) is infinite, then we can reconstruct
K straightforwardly from the reduced 3-deck of K, which can be determined from
D̃.

We can also attempt to weaken the boundedness hypothesis. However, as the
following example shows, we cannot remove it altogether.

Example 4.5. There are closed subsets of the plane that cannot be reconstructed
even from the set of isomorphism classes of all their subsets. For instance, S =
{(x, y) : x, y ≥ 0} and T = {(x, y) : x, y ≥ 0, x+ y ≥ 1} each contain a copy of the
other and both sets contain any configuration (of arbitrary cardinality) either un-
countably often or not at all.

In Theorem 4.1 the compactness of S serves to limit the complexity of S. However,
some unbounded sets are finitely reconstructible. We impose a different condition to
ensure that the complexity is not too high, namely that S can be covered by a finite
number of lines. This is clearly not enough to prove even finite reconstructibility, as
Example 4.3 shows. However, the counterexamples are all contained in finite collec-
tions of parallel lines. This last property is of course equivalent to that of Pu(S) being
finite for some unit vector u, where Pu is the orthogonal projection from R

2 onto the
line through the origin perpendicular to u.

Theorem 4.7. If S ⊂ R
2 is contained in the union of the finite set of lines L and

the projection Pu(S) is infinite for all unit vectors u, then S is 162-reconstructible.
We first prove a lemma showing that certain configurations appear only finitely

many times on a given collection of lines.
Lemma 4.8. If L1, L2, L3 are three pairwise nonparallel lines in the plane and C is

a configuration consisting of three points x1, x2, x3 in a straight line with |x1 − x2| =
d1 and |x2 − x3| = d2, then there are only finitely many images g(C) of C with
g(xi) ∈ Li, i = 1, 2, 3.

Proof. Parameterize the lines L1 and L2 using parameters s and t, respectively:
z1(s) = a1 + sv1 and z2(t) = a2 + tv2. Pick w3 ∈ R

2 \{0}, λ ∈ R, such that
L3 = {z : 〈z, w3〉 = λ}. The condition |z1(s) − z2(t)|2 = d2

1 is a quadratic equation
for s, t. Let P (s, t) = z2(t)+ d2

d1
(z2(t)−z1(s)). This is the third point of the copy of C

having g(x1) = z1(s) and g(x2) = z2(t). Values of the parameters s, t describe a copy
of C if and only if (s, t) lies on the conic |z1(s)− z2(t)|2− d2

1 = 0 and the straight line
〈P (s, t), w3〉 − λ = 0, so there are at most two solutions.

Proof of Theorem 4.7. Let L be partitioned into parallel classes of lines L1,
L2,. . .,Lk, parallel to directions u1, u2, . . . , uk. Let the ratios appearing in the ith
parallel class be the set of ratios |x2 − x1|/|x3 − x1|, where x1, x2, x3 ∈

⋃Li are
collinear points belonging to distinct lines in Li. Note that this set is finite and is
the same as if one required that the line on which x1, x2, x3 lie were perpendicular
to those in Li. Let us write Ri for this set of ratios and let R =

⋃k
1 Ri. Pick a

line L ∈ L containing infinitely many points; we may assume that L ∈ L1. Pick 3
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points x1, x2, x3 ∈ L ∈ L1 such that the ratio |x2 − x1|/|x3 − x1| does not belong to
R. This is possible simply by picking x1 and x2 arbitrarily on L and then avoiding
a finite number of possibilities for x3. Now consider Pu1(S). It is, by hypothesis,
infinite, and therefore there exists y ∈ S such that Pu1(y) �∈ Pu1(

⋃L1). We claim
that {x1, x2, x3, y} is a characteristic configuration in S. Note first that by Lemma
4.8 the configuration {x1, x2, x3} occurs only a finite number of times with the images
of x1, x2, x3 not all on one line from Li. On the other hand, given a line L ∈ Li there
exist only finitely many copies of {x1, x2, x3, y} with the images of x1, x2, x3 on L since
there are at most two such copies with the image of y on L′ for each L′ ∈ L \ {L}.
By Lemma 4.3, it follows that S is (18× 9)-reconstructible.

5. Further questions. There are several extremely interesting questions still
open. In this paper we have shown that finite subsets of the plane can be reconstructed
from their 18-decks. However, we know very little in higher dimensions.

Conjecture 5.1. For all n ≥ 1 there exists k = k(n) such that every finite
multiset in R

n can be reconstructed from its k-deck.
The main difficulty here seems to be reconstructing finite subsets of Sn−1

under the action of SO(n). In section 3 we showed that finite subsets of S1 are
6-reconstructible under the action of SO(1). In [33] we show that a similar result for
Sn−1 would prove Conjecture 5.1. Note that, for n ≥ 3, SO(n) presents some difficul-
ties absent in the planar case: SO(n) is nonabelian, and there is no “approximating
sequence” of finite subgroups analogous to Zn < T.

A seemingly more general question is that of reconstructing finite multisets in R
n

up to isometry from the k-deck (given up to isometry). In fact, it is shown in [33] that
if finite multisets in R

n are reconstructible up to rigid motion from their k-decks, then
they can be reconstructed up to isometry from their 2k-decks (given up to isometry).

Returning to two dimensions, we can ask about the reconstructibility of the hy-
perbolic plane under the action of its isometry group. Very much along this line also
is the problem of reconstructing subsets of the extended complex plane C∞ under
the action of the group of Möbius transformations. We conjecture that in both cases
there is a constant k such that all finite multisets are k-reconstructible (under the
appropriate group action).
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Abstract. Motivated by a connection with block iterative methods for solving linear systems
over finite fields, we consider the probability that the Krylov space generated by a fixed linear
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1. Introduction. Let Fq denote the finite field with q elements and Fq[X] the
ring of polynomials in one variable over Fq. Let V be a vector space of dimension n
over Fq. Given a linear mapping T on V and a subset of vectors S ⊆ V of size m, the
Krylov subspace generated by S under T is defined as

Kry(T, S) :=

{
m∑

i=1

fi(T )vi : fi(X) ∈ Fq[X] and vi ∈ S for 1 ≤ i ≤ m
}
.

This is just the space spanned by all vectors of the form T iv over all nonnegative
powers of T and vectors v ∈ S. Define

κm(T ) =
1

qmn
·#{(v1, . . . , vm) ∈ V m : Kry(T, {v1, . . . , vm}) = V };

that is, κm(T ) is the density of m-tuples of vectors in V that generate the whole space
V under T . In other words, if one selects m vectors v1, . . . , vm uniformly at random
and independently from V , then κm(T ) is the probability that Kry(T, {v1, . . . , vm}) =
V . Our main goal in this paper is to find good lower bounds on κm(T ).

To state our result, we need to define some parameter depending on T . Let � be
the minimal number of vectors required to generate V under T . This number � is just
the number of invariants in the Frobenius decomposition of V under T . We call � the
Frobenius index of T . Our main result is the following theorem.

Theorem. Let T be a linear mapping on a vector space V of dimension n over
Fq. Suppose T has Frobenius index �. Then for m ≥ �

κm(T ) ≥






0.04
1+logq(n−�+1) if m = �,
1
8 if m = �+ 1 and q = 2,
1− 3

2m−� ≥ 1
4 if m ≥ �+ 2 and q = 2,

1− 2
qm−� ≥ 1

3 if m ≥ �+ 1 and q > 2.

∗Received by the editors August 17, 2001; accepted for publication (in revised form) November
18, 2002; published electronically February 20, 2003.

http://www.siam.org/journals/sidma/16-2/39388.html
†Computing Laboratory, Oxford University, Oxford OX1 3QD, UK (richard.brent@comlab.

ox.ac.uk, alan.lauder@comlab.ox.ac.uk). The research of the third author was supported by EP-
SRC grant GR/N35366/01 and by St. John’s College, Oxford.

‡Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975 (sgao@
math.clemson.edu). The research of this author was supported in part by NSF grant DMS9970637,
NSA grant MDA904-00-1-0048, ONR grant N00014-00-1-0565, and by the South Carolina Commis-
sion on Higher Education under a research initiative grant.

276



RANDOM KRYLOV SPACES OVER FINITE FIELDS 277

When m = � the lower bound is almost tight in the sense that there are values
of n such that the probability is arbitrarily close to zero; see the remark following
Corollary 10. Hence it is impossible to bound the probability away from zero in this
case. For fixed � the probability converges exponentially fast to 1 as m increases.

There are two important special cases. One is when T is the identity map, so
� = n. In this case, κm(T ) is equal to the probability that m random vectors in a
vector space of dimension n over Fq span the whole space, and a much better lower
bound can be proved (see Lemma 7). The other is when � = 1, which means that
the minimal polynomial of T equals its characteristic polynomial, and better lower
bounds are given in Theorem 9.

Our work was motivated by a connection with block iterative methods for solving
large sparse linear systems over finite fields; see [3, 4, 8, 12, 14]. It improves upon
the result in the report [15] used in an analysis of the block Wiedemann algorithm.
We note that the relation between κm(T ) and the Frobenius index � is studied in
[15] (see also [16, section 6]), although the formulae obtained are less explicit and a
somewhat different approach is taken. A more difficult and important question in
the analysis of such algorithms is to bound the probability that certain “truncated”
Krylov subspaces generate the whole space. More precisely, let

Kry(T, S; t) =

{
m∑

i=1

f(T )vi : fi(X) ∈ Fq[X],deg fi ≤ t, and vi ∈ S
}
.

For t approximately n/|S|, one requires a lower bound on the probability that the
above space is the whole space. For large finite fields, relative to the dimension n,
Kaltofen [8] and Villard [15, section 6] obtain such a bound using the Schwartz–Zippel
lemma. For some practical applications, such as integer and polynomial factorization
[5, 6, 9, 11], it is desirable to have a good bound for small fields. Using a counting
argument Coppersmith obtains a weak bound in [4, 15]; it would be of great interest
to strengthen this bound.

We use a module theoretic approach via a sequence of reductions using standard
decomposition theorems and an argument from the theory of abelian groups com-
municated to us by Simon Blackburn. Using existing results on random elements in
vector spaces over finite fields, we then obtain an exact formula (Theorem 5) for the
probability depending only on certain properties of the mapping. Finally, good lower
bounds for this expression are derived.

2. Reductions. In this section we consider various reductions which allow us to
characterize those sets of vectors which generate the whole space under T .

2.1. Module-theoretic interpretation. Let T be a linear mapping on a vector
space V of dimension n over Fq. Denote by VT the Fq[X]-module with underlying
abelian group V and action of Fq[X] on V defined as

f(X) · v := f(T )v

for any polynomial f ∈ Fq[X]. (Any element v ∈ V may be thought of as lying in
VT , and vice versa. When necessary to distinguish them we shall call elements in V
“vectors” and those in VT “module elements.”)

Lemma 1. For any set S ⊆ V the Krylov space Kry(T, S) equals V if and only if
S generates VT as an Fq[X]-module.

Proof. Let S be such that the Krylov space generated by S under T is V . Let
w ∈ V . Thus the vector w equals a linear combination over Fq of vectors of the form
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T iv, where v ∈ V . Hence the module element w is a linear combination over Fq of
module elements of the formXi.v for v ∈ S. Thus S generates VT as an Fq[X]-module.
The converse is similar.

Thus our main question is equivalent to the following: Given a set of elements S
chosen uniformly at random from the module VT , what is the probability that they
generate VT ?

2.2. Reduction to primary modules. Let the principal ideal (mT ) in Fq[X]
be the annihilator of the module VT , that is,

(mT ) = {g ∈ Fq[x] : g(T )v = 0 for all v ∈ V }.

(Thus mT , which we take to be monic, is just the minimal polynomial of the linear
mapping T .) Factorize mT as

mT =

a∏

i=1

grii ,

where gi are monic irreducible polynomials and each ri ≥ 1. Via the primary decom-
position theorem [1, Theorem 3.7.12] the module VT decomposes as

VT = V1 ⊕ V2 ⊕ · · · ⊕ Va,(1)

where the annihilator of Vi is (grii ).
For each 1 ≤ i ≤ a, let πi denote the projection of VT onto its ith factor. For a

subset S of elements in VT write πi(S) for the image of the set S under this projection.
Lemma 2. Let S be a set of elements in VT . Then S generates VT if and only if

πi(S) generates Vi for 1 ≤ i ≤ a.
Proof. The forward implication is straightforward. For the reverse, assume that

πi(S) generates Vi for 1 ≤ i ≤ a. Let v ∈ VT , so πi(v) ∈ Vi. We can write πi(v) =∑m
j=1 hij(X).vj , where S = {v1, . . . , vm}. For each j, 1 ≤ j ≤ m, using the Chinese

remainder theorem we can find a polynomial hj(X) such that hj(X) ≡ hij(X) mod
gi(X)ri for each i, 1 ≤ i ≤ a. Here we use the coprimality of the gi(X). Defining
w :=

∑m
j=1 hj(X).vj we see that πi(w) = πi(v) for all 0 ≤ i ≤ a, and hence v = w.

Thus S generates VT as we wished to show.
Thus it suffices to understand the number of generating sets of the primary mod-

ules Vi.

2.3. Reduction to irreducible exponent case. We now examine the primary
parts Vi in the decomposition of the module VT given in (1). To this end, let W
denote any Fq[X]-module with an annihilator the ideal generated by a power gr of an
irreducible polynomial g. We need to determine the probability that a set of randomly
chosen elements in W generates the whole module.

Let Rad(W ) denote the Radical of W . This is defined to be the intersection of
all maximal submodules. The following result is a special case of a module-theoretic
analogue of a result in the theory of abelian groups, namely, “a set of elements gener-
ates an abelian group if and only if its image in the quotient by the Frattini subgroup
generates the quotient” (see [13, page 135, 5.2.12]).

Lemma 3. Let W be a primary Fq[X]-module with annihilator (gr), where g
is irreducible in Fq[X]. A set S ⊆ W is a generating set if and only if S̄ := {s +
Rad(W ) | s ∈ S} is a generating set in the quotient module W/Rad(W ).
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Proof. The forward implication is easy. For the reverse, by the cyclic decomposi-
tion theorem [1, Theorem 3.7.1] we can write

W = W1 ⊕W2 ⊕ · · · ⊕Wb,

where each moduleWi is cyclic with annihilator the ideal generated by the polynomial
gri for some power of g. We may take ri ≥ ri+1 for 1 ≤ i ≤ b−1, and so r1 = r. Since
each module in the decomposition is cyclic we have the Fq[X]-module isomorphism

Wi
∼= Fq[X]/(gri),

and so

W ∼= ⊕bi=1Fq[X]/(gri).

The intersection of all maximal submodules is just

Rad(W ) ∼= ⊕bi=1g · (Fq[X]/(gri)),

which is just g(X)W . Hence

W/Rad(W ) ∼= Fq[X]/(g)⊕ · · · ⊕ Fq[X]/(g),

where we have b terms in the sum. Now assume that the images of the elements of
S = {vi} in the quotient generate W/Rad(W ). Let w ∈ W . Via the isomorphisms
described above we have w = (w1, . . . , wb), where each wi ∈ Fq[X]/(gri). The image of
w in the quotient W/Rad(W ) is then w̄ := (w1 mod g, . . . , wb mod g). By assumption
we can write w̄ =

∑m
i=1 hi(X).v̄i. Then w−∑m

i=1 hi(X).vi = (gw′1, . . . , gw
′
b). Defining

w′ = (w′1, . . . , w
′
b) ∈W and repeating the process, we can express w as a combination

of the elements vi plus an “error vector” each coefficient of which is divisible by g2.
Continuing in this way the error vector eventually reduces to zero, since our module
is annihilated by some power of g, and we have the desired combination.

As in the proof of the above lemma, for W a primary module with annihilator
(gr) the required quotient is just

W/Rad(W ) ∼= Fq[X]/(g)⊕ · · · ⊕ Fq[X]/(g),

where we have b terms in the sum. Letting d = deg(g) we see that this is just the
direct sum of b finite fields of order qd, each viewed as an Fq[X]-module. The action
of Fq[X] on each finite field is just defined for α in the finite field by X.α = βα, where
β is some element such that g(β) = 0 in the finite field. We have

W/Rad(W ) ∼= (Fqd)
b

as an Fq[X]-module. The right-hand side also has the structure of a vector space
over Fqd . A set of elements in W/Rad(W ) is a generating set if and only if the
corresponding elements on the right-hand side of the above isomorphism generates
the set (Fqd)

b as a Fqd-vector space. This follows from the description of the action of
Fq[X] on each vector space in the summand, since 1, β, . . . , βd−1 generates each finite
field as a vector space over Fq. Thus we have reduced our problem to the study of
generating sets for vector spaces over finite fields.
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2.4. Generating sets for vector spaces. For each nonnegative integer n, de-
fine the real function π(n, x) by

π(n, x) := (1− x)(1− x2) . . . (1− xn).
The following lemma is “classical.”
Lemma 4. Let U be a vector space of dimension b over Fq. Then the probability

that m ≥ b elements of U chosen uniformly at random span U is

π(m, 1/q)

π(m− b, 1/q) .

Proof. We follow the proof for the prime field case in [10], making appropriate
modifications. (See also Theorem 1.1 in [2].) Let Φb(m, r) denote the number of
m-tuples of vectors in F

b
q which span a subspace of rank r (equivalently, the number

of rank r matrices of size b ×m over Fq). Dividing such sequences into those whose
last vector is linearly dependent/independent on the previous m − 1 we derive the
recurrence for m ≥ 1 and r ≥ 1

Φb(m, r) = qrΦb(m− 1, r) + (qb − qr−1)Φb(m− 1, r − 1).

We also have the initial conditions Φb(s, 0) = 1 for all s ≥ 1 (the zero sequence),
Φb(0, 0) = 1 (the empty sequence), and Φb(0, s) = 0 for all s ≥ 1. One can now verify
that the following formula holds for r ≥ 1:

Φb(m, r) =

r−1∏

i=0

(qb − qi)q
m−i − 1

qi+1 − 1
.

Putting r = b and cancelling in a suitable way one finds that

Φb(m, b) = (qm − 1)(qm − q) . . . (qm − qb−1).

Dividing by the number of sequences, qm, gives the required probability.

3. An exact formula. We now piece together the results proved in section 2 to
obtain an exact formula for the required probability. Let the minimal polynomial of
the linear mapping T be denoted mT and the characteristic polynomial cT . Let � be
the Frobenius index of T . We consider a cyclic decomposition [1, Theorem 3.7.1] of
the module VT as

VT = U1 ⊕ U2 ⊕ · · · ⊕ U�,
where each Ui is a cyclic module with annihilator the ideal generated by a monic
polynomial hi satisfying hi+1|hi for 1 ≤ i ≤ �−1. ThusmT = h1 and cT = h1h2 . . . h�.
As before, let gj , 1 ≤ j ≤ a, be the irreducible factors of mT . Let dj be the degree
of gj and �j the number of polynomials h1, . . . , hl divisible by gj , 1 ≤ j ≤ a. Thus
1 ≤ �j ≤ � and the cyclic decomposition of the module Vi in the primary decomposition
of VT (see (1)) has exactly �i factors.

Theorem 5. Let T be a linear mapping on a vector space V of dimension n over
Fq. Suppose T has Frobenius index � and m ≥ �. With the notation defined above, we
have

κm(T ) =

a∏

j=1

π(m, q−dj )
π(m− �j , q−dj ) ,

where π(m,x) = (1− x)(1− x2) . . . (1− xm).
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Proof. By Lemma 1 one may equivalently find the probability that a uniform at
random sequence of elements S in VT generates VT as an Fq[X]-module. By Lemma 2
such a set will generate VT if and only if the set πj(S) generates each primary summand
Vj for 1 ≤ j ≤ a. Now for any choice of subsets Sj ⊆ Vj of size m, 1 ≤ j ≤ a, there
exists exactly one set S in VT such that πj(S) = Sj for each 1 ≤ j ≤ a. Conversely,
all sets S arise in this way. Thus it suffices to compute the probabilities of generating
each primary module Vi by m elements separately and to take the product.

We claim that the jth term in the product in the statement of the theorem is
the probability that a sequence of m elements chosen uniformly at random in Vj
will generate Vj . Once this claim is proved the result follows. By Lemma 3 a set
of elements Sj in Vj is a generating set if and only if its image in the quotient by
the Radical of Vj generates this quotient. If Sj is chosen uniformly at random in
Vj , the corresponding set of elements S̄j in the quotient will be uniform at random.
(Exactly |Rad(Vj)| elements of Vj map onto each element in the quotient.) Thus
we need to find the probability that m elements chosen uniformly at random in the
quotient generate it. But the quotient has the structure of a vector space of dimen-
sion �j over Fqdj . From the comments at the end of section 2.3 this probability is
equal to the probability that m elements chosen uniformly at random from a vec-
tor space of dimension �j over Fqdj span the space. The result now follows from
Lemma 4.

4. Lower bounds. The formula in Theorem 5 is elegant, but it is hard to see
the magnitude of the probability κm(T ). In this section we shall derive various simple
explicit lower bounds for κm(T ).

We shall repeatedly use the following equality and inequality:

1

qk
+

1

qk+1
+ · · ·+ 1

qm
+ · · · = 1

qk−1(q − 1)
,

(1− x1)
a1(1− x2)

a2 · · · (1− xm)am ≥ 1− (a1x1 + a2x2 + · · ·+ amxm)

for any real ai ≥ 1, 1 ≥ xi ≥ 0, q > 1, and any integer k ≥ 0. The inequality can be
seen as follows. First of all it holds if xi ≥ 1/ai for some i. So we may assume that
0 ≤ xi < 1/ai for all i. Then one sees that the inequality follows by induction from
the following two inequalities:

(1− x1)(1− x2) ≥ 1− (x1 + x2) for x1x2 ≥ 0,

(1− x)a ≥ 1− ax for 0 ≤ x < 1

a
, a ≥ 1.

The latter inequality here holds since the function a ln(1 − x) − ln(1 − ax) strictly
increases for 0 ≤ x < 1/a (for any fixed a > 1) and evaluates to 0 when x = 0.

The next lemma is an extremely crude estimation, but it is already useful for
large q.

Lemma 6. Let T be any linear map on a vector space of dimension n over Fq.
Let � be the Frobenius index of T . Then, for m ≥ �,

κm(T ) ≥ 1− n

q − 1
.
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Proof. With the notation in Theorem 5, as n ≥ a, m ≥ �j , and dj ≥ 1, we have

κm(T ) =

a∏

j=1

�j∏

i=1

(
1−

(
1

qdj

)m−�j+i)

≥
n∏

j=1

∞∏

i=1

(
1−

(
1

q

)i)

≥
(

1−
∞∑

i=1

1

qi

)n
≥
(
1− 1

q − 1

)n
≥ 1− n

q − 1
.

The bound in Lemma 6 is good if q is large, but it says nothing if q ≤ n+ 1. To
get a good lower bound of κm(T ) for small q, we need a more careful estimation. We
start with a simple case when T is the identity map on V .

Lemma 7. Let V be a vector space of dimension n over Fq and let m ≥ n. Then
the probability that m random vectors in V span the whole space V is

n∏

i=1

(
1− 1

qm−n+i

)
≥
{

0.288, if m = n and q = 2,
1− 1

qm−n(q−1) otherwise.

Equivalently, this also bounds the probability that a random m×n matrix over Fq has
rank n.

Proof. By Lemma 4, the probability is

π(m, 1/q)

π(m− n, 1/q) =

(
1− 1

qm−n+1

)(
1− 1

qm−n+2

)
· · ·
(
1− 1

qm

)

≥ 1−
(

1

qm−n+1
+

1

qm−n+2
+ · · ·+ 1

qm

)

≥ 1− 1

qm−n+1

(
1 +

1

q
+ · · ·+ 1

qn−1
+ · · ·

)

≥ 1− 1

qm−n+1

1

1− 1/q
≥ 1− 1

qm−n(q − 1)
.

For m = n and q = 2, the above bound is zero, so we need a more careful analysis:
(
1− 1

2

)(
1− 1

22

)
· · ·
(
1− 1

2m

)

>

(
1− 1

2

)(
1− 1

22

)(
1− 1

23

)(
1− 1

24

)(
1− 1

25

)
· · ·
(
1− 1

2m

)
· · ·

>

(
1− 1

2

)(
1− 1

22

)(
1− 1

23

)(
1− 1

24

)(
1−

(
1

25
+ · · ·+ 1

2m
+ · · ·

))

=

(
1− 1

2

)(
1− 1

22

)(
1− 1

23

)(
1− 1

24

)(
1− 1

24

)

> 0.288.

This completes the proof.
To deal with the general case we need the following result, which reduces the

problem for a general polynomial to that of a polynomial with irreducible factors of
small degrees only.
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Lemma 8. For k ≥ 1, let Ik be the number of irreducible polynomials in Fq[X] of
degree k. Let f ∈ Fq[X] of degree n and let u = �logq n�. Then for any integer q1 > 1

∏

g|f, g irred

(
1− 1

qdeg g
1

)
≥
u+1∏

k=1

(
1− 1

qk1

)Ik
.

Proof. This result is proved in [7] (i.e., the formula (6) on page 144, with q
replaced by q1).

We consider the important case when V is cyclic as an Fq[X]-module under T ;
hence � = 1 and �j = 1 in Theorem 5. In this case, the minimal polynomial of T is
equal to its characteristic polynomial, and T is called nonderogatory.

Theorem 9. Let T be a nonderogatory linear map on a vector space V of di-
mension n over Fq. Then

κm(T ) ≥






0.218
1+logq n

if m = 1,

0.42 if m = 2 and q = 2,
1− 1.5

qm−1 ≥ 1
2 otherwise.

Proof. Let f be the minimal polynomial of T . Then f has degree n and all �i = 1
in Theorem 5. Hence

κm(T ) =
∏

g|f, g irred

(
1− 1

qm deg g

)
.

First assume m = 1. Then κ1(T ) is the density of polynomials in Fq[X] of degrees
< n that are relatively prime to f . In this case, by Theorem 2.1 in [7], we have

κ1(T ) ≥
(
1− 1

q

)
· 1

e0.83(1 + logq n)
>

0.218

1 + logq n
,

where the factor 1− 1/q accounts for the irreducible factor X that is excluded in [7].
Now assume m > 1. Let u = �logq n� and Ik as in Lemma 8. Note that I1 = q

and

Ik ≤ qk − 1

k
≤ qk

2
, k ≥ 2.

By Lemma 8, we have

κm(T ) ≥
u+1∏

k=1

(
1− 1

qmk

)Ik

≥
(
1− 1

qm

)q ∞∏

k=2

(
1− 1

qmk

) qk−1
k

≥
(
1− 1

qm

)q (
1−

∞∑

k=2

qk − 1

kqmk

)

≥
(
1− 1

qm

)q (
1−

∞∑

k=2

1

2q(m−1)k

)

≥
(
1− 1

qm

)q (
1− 1

2qm−1(qm−1 − 1)

)
,
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which is at least 0.42 when m = 2 and q = 2 and generally at least

(
1− 1

qm−1

)(
1− 1

2qm−1(qm−1 − 1)

)
> 1− 1

qm−1
− 1

2qm−1(qm−1 − 1)

≥ 1− 1.5

qm−1

for all q and m.
Theorem 9 can be interpreted for the following situation. Let f ∈ Fq[X] be any

polynomial of degree n. Define κm(f) to be the probability that

gcd(f, g1, . . . , , gm) = 1

for m random polynomials g1, . . . , gm ∈ Fq[x] of degrees < n. Note that κ1(f) is the
Euler function for the polynomial f . Then for any nonderogatory linear map T on a
vector space of dimension n over Fq that has f as its minimal polynomial, we have

κm(f) = κm(T ) =
∏

g|f, g irred

(
1− 1

qm deg g

)
.

Hence the lower bounds in Theorem 9 apply to κm(f) automatically.
Corollary 10. Let f ∈ Fq[x] of degree n. Then

κm(f) ≥






0.218
1+logq n

if m = 1,

0.42 if m = 2 and q = 2,
1− 1.5

qm−1 ≥ 1
2 otherwise.

Remark. By Theorem 3.4 in [7], there are infinitely many values of n such that

κ1(x
n − 1) ≤ c√

1 + logq n

for some constant c > 0 depending only on q. This means that the probability may
be arbitrarily close to zero and our lower bound is quite close to the upper bound.
This also applies to the lower bound in Theorem 11 below for m = �.

Now we turn to the general case where we obtain slightly weaker bounds. The
next result is the main theorem stated in the introduction.

Theorem 11. Let T be any linear map on a vector space of dimension n over
Fq. Let � be the Frobenius index of T and let m ≥ �. Then

κm(T ) ≥






0.04
1+logq(n−�+1) if m = �,
1
8 if m = �+ 1 and q = 2,
1− 3

2m−� ≥ 1
4 if m ≥ �+ 2 and q = 2,

1− 2
qm−� ≥ 1

3 if m ≥ �+ 1 and q > 2.

Proof. Let f be the minimal polynomial of T . Then deg f ≤ n − � + 1 as at
least one irreducible factor of f appears � times in the characteristic polynomial of T ,
which has degree n and is divisible by f . Let u = �logq(n − � + 1)�. By Theorem 5
and Lemma 8, we have
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κm(T ) =

a∏

j=1

�i∏

i=1

(
1−

(
1

qdj

)m−�i+i)
(2)

≥
a∏

j=1

�∏

i=1

(
1−

(
1

qdj

)m−�+i)

=

�∏

i=1

∏

g|f, g irred

(
1−

(
1

qdeg g

)m−�+i)

≥
�∏

i=1

u+1∏

k=1

(
1−

(
1

qk

)m−�+i)Ik
.

Assume first that m = �. Then

κm(T ) ≥
�∏

i=1

u+1∏

k=1

(
1−

(
1

qk

)i)Ik

≥
�∏

i=1

(
1− 1

qi

) �∏

i=1

u+1∏

k=1

(
1− 1

qki

) qk−1
k

≥
�∏

i=1

(
1− 1

qi

) u+1∏

k=1

(
1− 1

qk

) qk−1
k

∞∏

k=1

∞∏

i=2

(
1− 1

qki

) qk−1
k

.

By Lemma 7, we know the first product is at least 0.288. For the second product, the
proof of Theorem 2.1 in [7] implies

u+1∏

k=1

(
1− 1

qk

) qk−1
k

≥ 1

e0.83(1 + u)
≥ 1

e0.83(1 + logq(n− �+ 1))
.

To estimate the third product, we recall the fact that

ln(1− x) ≥ −(x+ x2), 0 ≤ x ≤ 0.6.

Then

∞∏

k=1

∞∏

i=2

(
1− 1

qki

) qk−1
k

= exp

( ∞∑

k=1

∞∑

i=2

qk − 1

k
ln

(
1− 1

qki

))

≥ exp

(
−
∞∑

k=1

∞∑

i=2

qk − 1

k

(
1

qki
+

1

q2ki

))

≥ exp

(
−
∞∑

k=1

qk − 1

k

(
1

qk(qk − 1)
+

1

q2k(q2k − 1)

))

≥ exp

(
−
∞∑

k=1

(
1

qk
+

1

q3k

))

≥ exp

(
−
(

1

q − 1
+

1

q3 − 1

))

≥ exp

(
−
(
1 +

1

7

))
> 0.3189.
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Therefore, when m = �,

κm(T ) >
0.288 · 0.3189

e0.83
· 1

1 + logq(n− �+ 1)
>

0.04

1 + logq(n− �+ 1)
.

Finally assume m > �. Then from (2)

κm(T ) ≥
∞∏

i=1

(
1− 1

qm−�+i

)q ∞∏

k=2

∞∏

i=1

(
1− 1

qk(m−�+i)

) qk−1
k

.

For the first product, we have

∞∏

i=1

(
1− 1

qm−�+i

)q
≥
(
1− q

qm−�+1

)(
1−

∞∑

i=2

q

qm−�+i

)

≥
(
1− 1

qm−�

)(
1− 1

qm−�(q − 1)

)
,

which is 1/4 for m = �+ 1 and q = 2. For the second product, we have

∞∏

k=2

∞∏

i=1

(
1− 1

qk(m−�+i)

) qk−1
k

≥ 1−
∞∑

k=2

∞∑

i=1

qk − 1

kqk(m−�+i)

≥ 1−
∞∑

k=2

∞∑

i=1

1

kqk(m−�+i−1)

≥ 1−
∞∑

k=2

1

kqk(m−�−1)(qk − 1)

≥ 1−
∞∑

k=2

1

qk(m−�)

≥ 1− 1

qm−�(qm−� − 1)
,

which is 1/2 for m = � + 1 and q = 2. Therefore κm(T ) is at least 1
4 · 1

2 = 1
8 for

m = �+ 1 and q = 2. In general, when m > �, it is at least

(
1− 1

qm−�

)(
1− 1

qm−�(q − 1)

)(
1− 1

qm−�(qm−� − 1)

)

≥ 1− 1

qm−�
− 1

qm−�(q − 1)
− 1

qm−�(qm−� − 1)

≥ 1− q + 1

q − 1

1

qm−�
≥ 1− 3

qm−�
.

For q = 2 and m ≥ � + 2 this is 1 − 3
2m−� ≥ 1

4 , and for q ≥ 3 and m ≥ � + 1 it is at

least 1− 2
qm−1 ≥ 1

3 .
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Abstract. In this paper we present a linear time approximation scheme for the job shop
scheduling problem with a fixed number of machines and fixed number of operations per job. This
improves on the previously best 2 + ε, ε > 0, approximation algorithm for the problem by Shmoys,
Stein, and Wein [SIAM J. Comput., 23 (1994), pp. 617–632]. Our approximation scheme is very
general and it can be extended to the case of job shop scheduling problems with release and delivery
times, multistage job shops, dag job shops, and preemptive variants of most of these problems.
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1. Introduction. In the job shop scheduling problem there is a set J = {J1, . . . ,
Jn} of n jobs that must be processed on a given setM = {M1, . . . ,Mm} ofmmachines.
Each job Jj consists of a sequence of µj operations O1j , . . . , Oµjj that need to be
processed in this order. Operation Oij must be processed without interruption on
machine Mπij during pij time units. A machine can process at most one operation
at a time, and each job may be processed by at most one machine at any time.
For a given schedule of J , let Cij be the completion time of operation Oij . The
objective is to find a schedule for J that minimizes the maximum completion time,
Cmax = maxij Cij . The value of Cmax is also called the makespan or the length of the
schedule. Let µ = maxj µj be the maximum number of operations in any job.

The job shop scheduling problem is considered to be one of the most difficult
problems in combinatorial optimization, from both the theoretical and the practical
points of view. Even very constrained versions of the problem are strongly NP-hard.
(See, e.g., the survey paper by Lawler et al. [6].) Two other widely studied shop
scheduling problems are the flow shop and the open shop problems. In the flow shop
problem every job has exactly one operation per machine, and the order of execution
for the operations is the same for all jobs. In the open shop problem every job has
also one operation per machine, but there is no specified order for the execution of the
operations of a job. Williamson et al. [16] proved that for any ρ < 5/4 the existence
of a ρ-approximation algorithm for any of the above shop scheduling problems when
the number of machines is part of the input would imply that P = NP. This result
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holds even if every operation has integer processing time, and for the case of the job
shop problem, even if each job has at most three operations.

Many papers about shop scheduling problems have recently been written. Several
of them are based on the seminal work by Leighton, Maggs, and Rao [7] on the acyclic
job shop problem with unit length operations. In this problem every job has exactly
one operation per machine. Their main result was to show that this problem always
has a solution of length O(Pmax + lmax ), where lmax is the maximum job length and
Pmax is the maximum machine load. This is not an algorithmic result, since it relies
on a nonconstructive probabilistic argument. (For a constructive version, see [8].)

Shmoys, Stein, and Wein [15] described an approximation algorithm for the job
shop scheduling problem with O(log2(mµ)) performance guarantee. This algorithm
was later improved by Goldberg et al. [1], who designed an approximation algorithm
with a performance guarantee of O(log2(mµ)/(log log(mµ))2). When the number of
machines m and the maximum number µ of operations per job are constant, Shmoys,
Stein, and Wein [15] designed an approximation algorithm with performance guaran-
tee (2+ ε) for any fixed value ε > 0. Following the three-field notation scheme [6], we
denote this problem as Jm|op ≤ µ|Cmax .

There are few theoretical results known for the preemptive version of the job shop
scheduling problem. It is known that this problem is strongly NP-hard even in the
case when there are three machines and every job has at most three operations. (See
survey paper [6].) On the positive side, Sevastianov and Woeginger [12] designed a
3/2-approximation algorithm for the problem when the number of machines is 2.

A polynomial time approximation scheme (PTAS) for a (minimization) optimiza-
tion problem is an algorithm that given any constant value ε > 0 finds in polynomial
time a solution of value no larger than 1 + ε times the value of an optimum solution.
A fully PTAS is an approximation scheme that runs in time polynomial in the size of
the input and 1/ε.

When the number m of machines is fixed, there exist PTASs for the flow shop [3]
and the open shop [13] problems. However, the 2 + ε approximation algorithm of
Shmoys, Stein, and Wein [15] was the previously best known algorithm for the job
shop problem with m and µ fixed.

In this work we describe a linear time approximation scheme for the job shop
scheduling problem when m and µ are fixed. Our work is strongly based on ideas
contained in some of the aforementioned papers. We use the idea by Sevastianov and
Woeginger [13] of partitioning the set of jobs into three sets: big, small, and tiny jobs.
The sets of big and small jobs have constant size. We construct all possible schedules
for the big jobs, and, since the number of big jobs is constant, the total number of
their schedules is also constant. In any schedule for the big jobs, the starting and
completion times of the jobs define a set of time intervals into which we have to
schedule the small and tiny jobs. We use linear programming to find a “compact”
assignment of small and tiny jobs to these time intervals. Then we show that it is
possible to reduce the number of jobs that receive fractional assignments to a constant.
Since only small and tiny jobs receive fractional assignments we can use a very simple
rounding procedure for them to get a nonpreemptive schedule without increasing the
length of the solution by too much. This solution is not feasible, though, since in each
interval there might be conflicts among the small and tiny jobs.

We find a feasible schedule for the small and tiny jobs in each time interval by
using an algorithm by Sevastianov [10]. (For a detailed presentation, in English, of
the algorithm, see [14].) Sevastianov’s algorithm runs in O((µmn)2) time and for
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any instance of the job shop scheduling problem it finds a schedule of length at most
Pmax + ϕ(m,µ)pmax , where ϕ(m,µ) = (mµ2 + 2µ − 1)(µ − 1) = O(mµ3). (See
also [11] for survey and historical overview of geometric methods used in the design
and analysis of approximation algorithms with absolute performance guarantee for
scheduling problems.) By selecting properly the sets of big, small, and tiny jobs we
can prove that the total length of the schedule computed by the algorithm is at most
1 + ε times the length of an optimum solution.

All steps of the algorithm can be performed in linear time, except two of them:
solving the linear program and running Sevastianov’s algorithm. Since we do not solve
exactly the job shop scheduling problem, we do not need to solve exactly the linear
program; an approximate solution would suffice. We use an algorithm of Grigoriadis
and Khachiyan [2] to find in linear time a 1 + ε approximation to the solution of the
linear program. Then we merge certain subsets of jobs together to form larger jobs to
decrease the running time of Sevastianov’s algorithm to O(n). The overall complexity
of our algorithm is linear in the number of jobs, but it is not polynomial in 1/ε. This
is not surprising, since the problem is strongly NP-hard [6] and therefore no fully
polynomial time approximation scheme for the problem can exist unless P = NP.

Our approach can be used to design linear time approximation schemes for more
general problems like the so-called dag shop problem [10, 11, 15], in which only a
partial order is specified for the ordering of execution of the operations of a job. This
problem includes as a special case the open shop problem. Since the flow shop problem
is a special case of the job shop problem, our result generalizes the results of Hall [3]
and Sevastianov and Woeginger [13] in the sense that we prove the existence of a
PTAS for these two latter problems.

Our approximation scheme can be generalized also to the following problems
when m and µ are fixed: multistage job shop, dag job shop, and job shop problems
with release and delivery times. It is also possible to modify the schemes to design
approximation algorithms for the preemptive versions of these problems, except for
the preemptive dag shop problem.

The rest of the paper is organized in the following way. In section 2 we describe
a polynomial time approximation scheme for the nonpreemptive job shop scheduling
problem. Then in section 3 we show how to reduce the time complexity of the al-
gorithm to O(n). In section 4 we design a linear time approximation scheme for the
preemptive version of the problem. Finally, in section 5 we show how to handle other
shop scheduling problems.

2. PTAS for the job shop scheduling problem. For a given instance of the
job shop scheduling problem, the value of the optimum makespan is denoted as C∗max .
Let Pt =

∑
πij=t

pij be the total processing time of operations assigned to machineMt.

We call Pt the load of machine Mt. Let Pmax = max{P1, . . . , Pm} be the maximum
machine load. Clearly, Pmax ≤ C∗max . Let lj =

∑µj

i=1 pij be the length of job Jj . We
define pmax = maxij pij to be the maximum operation length.

2.1. Restricted job shop problem. Let ε > 0 be a constant value. Let m ≥ 2
and µ ≥ 1 be the number of machines and maximum number of operations per job,
respectively. We assume that the values of ε, µ, and m are fixed and not part of
the input. We partition the set of jobs into three subsets as follows. Let α be a real
number such that

ε�m/ε� ≤ α ≤ ε.
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We define three sets of jobs:

B = {Jj | lj ≥ αPmax},

S = {Jj | αεPmax < lj < αPmax}, and

T = {Jj | lj ≤ αεPmax}.
The jobs in B are called big jobs, the jobs in S are called small jobs, and the jobs in T
are called tiny jobs. For the operations of big, small, and tiny jobs we use a similar
notation: the operations of big jobs are called big operations, while operations of small
and tiny jobs are called small and tiny operations, respectively, independently of their
actual sizes. The number of big jobs is at most mPmax/(αPmax ), and thus the size
of B is bounded by a constant depending only on ε and m:

|B| ≤ m/α ≤ mε−�m/ε�.

Sevastianov and Woeginger [13] show that the number α can be chosen so that

∑

Jj∈S
lj ≤ εPmax .(1)

This is done as follows. Define a sequence of numbers αi, where i is a nonnegative
integer, by αi = εi and consider the sets Si of small jobs with respect to αi. Note
that two sets Si and Sj are disjoint for i �= j. The total length of all jobs is at most
mPmax , and so there exists a value k ≤ m/ε for which S = Sk satisfies inequality (1).
We set α = αk.

Since the total length of the small jobs is at most εC∗max , we can remove these
jobs from the input J and find a schedule for the remaining jobs. Then we add the
small jobs to the end of the schedule by using, say, the list scheduling algorithm. This
last step increases the length of the schedule by at most εC∗max .

It is not difficult to see that mPmax is an upper bound on the length of an
optimum schedule. We partition the time interval from 0 to (1 + µmε)mPmax into
�m(1+µmε)/(αε)	 equal intervals of length at most αεPmax . (The need for the term
µmεPmax in the upper bound of the length of an optimum schedule is clarified below.)
These intervals are called intervals of the first type. We consider only schedules in
which every big operation starts processing at the beginning of some interval of the
first type. This restriction does not increase the length of the optimum schedule
considerably. Indeed, let us consider the first big operation in an optimum schedule
that does not start at the beginning of some interval of the first type. We can simply
shift this big operation to the right, so that it starts at the beginning of the next
interval. All operations starting after this big operation are also shifted to the right by
the same length. Then we do the same thing with the remaining big operations. The
overall increase in the length of the optimum schedule is bounded by µ|B|αεPmax ≤
µmεPmax ≤ µmεC∗max . Let C̃

∗
max be the length of an optimum schedule in which the

big operations start at the beginning of some interval of the first type. As was noted
above, C̃∗max ≤ C∗max + µmεPmax ≤ (1 + µmε)C∗max .

In the rest of this section we consider this restricted job shop scheduling problem
in which every big operation must start at the beginning of some interval of the first
type. Since the number of big operations is constant and since the number of intervals
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of the first type is constant, we conclude that the number of different schedules with
fixed starting times for the big operations is constant too. For each schedule for the
big operations we assign the starting times for the tiny operations within some interval
of the second type by solving a linear program as described below.

2.2. Scheduling the tiny operations. Fix some feasible restricted schedule
for the big operations within the time interval [0, (1 + µmε)mPmax ]. Let Sij and Cij
be the starting and completion times of big operation Oij , respectively. Let A = {ak |
ak = Sij or ak = Cij for some big operation Oij} be the set of starting and completion
times of big operations. Notice that

|A| ≤ 2µ|B| ≤ 2µm/α.(2)

Assume that the elements in A are indexed so that a1 ≤ a2 ≤ · · · ≤ a|A|. We define
two new elements a0 = 0 and a|A|+1 = C ∈ [a|A|, (1 + µmε)mPmax ] (the exact value
of C will be specified later), and partition the time interval from 0 to C into |A|+ 1
intervals [ak, ak+1), k = 0, . . . , |A|. We call these intervals intervals of the second type.
Sometimes we refer to interval [ak, ak+1) simply as interval k. Let ∆k be the length of
the interval k, i.e., ∆k = ak+1−ak. Define ∆tk = 0 if some big operation is processed
in interval k on machine Mt, and ∆tk = ∆k otherwise. So ∆tk is the amount of time
that machine Mt can be used during interval k to process tiny operations.

For every job Jj ∈ T let

Kj = {K = (k1, k2, . . . , kµj ) ∈ Zµj | 0 ≤ k1 ≤ k2 ≤ · · · ≤ kµj
≤ |A|}

be the set of all feasible assignments of operations of job Jj to intervals of the second
type. A tuple (k1, k2, . . . , kµj ) ∈ Kj means that the ith operation of job Jj , 1 ≤ i ≤ µj ,
starts its processing in interval (of the second type) ki.

Now we use a linear program to schedule the tiny operations. We define vari-
ables xjK , K = (k1, k2, . . . , kµj ) ∈ Kj , Jj ∈ T , with the following meaning: vari-
able xjK takes value f , 0 ≤ f ≤ 1, to indicate that a fraction f of the first operation
of job Jj is processed in interval k1 on machine Mπ1j

, a fraction f of the second
operation is processed in interval k2 on Mπ2j , and so on. The linear program is the
following. (We assume that we have already chosen the value of the length C of the
schedule, so we are interested only in knowing whether the jobs can be scheduled
within the time interval [0, C]; we show below how to choose C.)

∑

K∈Kj

xjK = 1, Jj ∈ T,(3)

∑

Jj∈T

∑

K∈Kj

∑

ki=k, πij=t

pij xjK ≤ ∆tk, t = 1, . . . ,m, k = 0, . . . , |A|,(4)

xjK ≥ 0, K ∈ Kj , Jj ∈ T.(5)

Constraint (3) ensures that job Jj is completely scheduled, while constraint (4) ensures
that the total length of operations assigned to interval k on machine Mt does not
exceed the length of the interval.

Lemma 1. For C = C̃∗max , the linear program (3)–(5) has a feasible solution for
some restricted schedule for the big operations.

Proof. Consider an optimum schedule S∗ of the restricted job shop problem. As-
sume that some tiny operation Oij is processed in consecutive time intervals bij , bij+1,
. . . , eij on machine Mπij , where bij might be equal to eij (corresponding to the case
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when the operation is completely scheduled in a single interval). Let fij(k) be the
fraction of operation Oij that is scheduled in interval k.

Consider the linear program (3)–(5) corresponding to the schedule for the big
operations induced by S∗. Assign values to the variables xjK , K = (b1j , b2j , . . . , bµj ,j),
as follows. Set xjK = f , where f = min{fij(bij) | 1 ≤ i ≤ µj} is the smallest fraction
of an operation of job Jj that is scheduled in the first interval assigned to it in S∗.
Next we assign values to the other variables xjK to cover the remaining 1−f fraction
of each operation. To do this, for every operation Oij , we make fij(bij) = fij(bij)−f .
Clearly, for at least one operation Oij the new value of fij(bij) will be set to zero.
For those operations with fij(bij) = 0 we set bij = bij + 1, since the first interval
for the rest of the operation Oij is interval bij + 1. Then we assign value to the new
variable xjK , K = (b1j , b2j , . . . , bµj ,j) as above, and repeat the process until f = 0.
Note that each iteration of this process assigns a value to a different variable xjK ,
since from one iteration to the next the value of at least one of the indices bij is
increased.

By construction, the above assignment of values to the variables xjK satisfies con-
straint (3). Since the linear program was defined with respect to the schedule S∗, the
values assigned to the variables also satisfy constraint (4). Therefore, this assignment
of values to variables xjK is a feasible solution for the linear program.

Let Cmin be the smallest value C such that linear program (3)–(5) has a feasible

solution for some schedule of the big operations. By Lemma 1, if C = C̃∗max the linear

program has a feasible solution, so Cmin ≤ C̃∗max . For any fixed value δ ≥ 0, we can
find a value C satisfying Cmin ≤ C ≤ Cmin + δPmax by using binary search. Thus we
must solve linear program (3)–(5) at most �log2((1+µmε)m/δ)	 times. Since Cmin is

a lower bound for C̃∗max , then C ≤ C̃∗max + δPmax ≤ C∗max +2µmεPmax , for δ = µmε,

because C̃∗max ≤ C∗max + µmεPmax as noted at the end of section 2.1.

Note that we could easily rewrite the linear program so that its solution gives
the value of Cmin . We decide to perform the binary search to find the value of C
tough, since this will help us to design a linear time PTAS for the job shop scheduling
problem as we show in section 3.

The linear program has |T |+m(|A|+1) constraints and at most |T |(|A|+1)µ vari-
ables. Therefore, a basic feasible solution is guaranteed to have at most |T |+m(|A|+1)
nonzero variables. This solution can have at most m(|A| + 1) jobs with fractional
variables, since by constraint (3) every job must have at least one positive variable
associated with it. (This kind of argument was first made and exploited by Potts [9]
in the context of parallel machine scheduling.)

We now describe a simple rounding procedure to obtain an integral (and possibly
infeasible) solution for the linear program. If job Jj has more than one nonzero
variable associated with it, we set one of them to 1 and the others to 0 in an arbitrary
manner. In this solution the tiny operations have a unique assignment to intervals of
the second type.

Note that we might have to increase the lengths of some intervals of the second
type to accommodate those operations that previously had fractional assignments.
Let D(k) be the total processing time of tiny operations assigned to interval k such
that the jobs corresponding to these operations receive fractional assignments from

the linear program. Notice that by (1) and (2),
∑|A|
k=0 D(k) ≤ m(|A| + 1)αεPmax =

O(m2µ)εPmax . Thus this rounding procedure produces a nonpreemptive but possibly
infeasible schedule for J of length at most C +O(m2µ)εC∗max .
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2.3. Finding a feasible schedule. Consider some interval [ak, ak+1) of the
second type. Let pmax (k) be the length of the longest tiny operation assigned to
this interval. By construction, in the above rounded solution the total length of
operations assigned to this interval on each machine is at most ak+1 − ak + D(k).
We consider now the problem of scheduling the tiny operations within the interval.
This is simply a smaller instance of the job shop problem, and by using Sevastianov’s
algorithm [10] it is possible to find a feasible schedule of length at most ak+1 − ak +
D(k) +O(mµ3)pmax (k).

Note that we can schedule the tiny operations in each interval [ak, ak+1) inde-
pendently from the operations in any other interval [ai, ai+1). Moreover, if we add
D(k) + O(mµ3)pmax (k) to the length of each interval, the union of the schedules for
these intervals yields a feasible solution for the original constrained job shop problem
(where all big operations start at the beginning of some interval of the first type).
The makespan of this schedule is at most

C +

|A|∑

k=0

(
D(k) +O(mµ3)pmax (k)

) ≤ C +O(m2µ)εPmax +O(mµ3)(|A|+ 1)αεPmax

≤ C +O(m2µ4)εPmax ≤ C∗max +O(m2µ4)εPmax .

Since m and µ are both constants and ε is an arbitrary rational number, then our
algorithm can find in polynomial time a solution of length at most 1 + ε times the
optimum for any value ε > 0.

Theorem 1. The above algorithm is a PTAS for the job shop scheduling problem
when m and µ are fixed.

3. Speed up to linear time. In the PTAS that we have just described there
are two steps that seem to require more than linear time: finding a basic feasible
solution for the linear program and running Sevastianov’s algorithm. In the next
three sections we show how to perform these steps in linear time.

3.1. Approximate solution of the linear program. Since we do not solve
exactly the job shop scheduling problem, we do not need to solve the linear program
exactly either. An approximate solution would suffice. We can find an approximate
solution of the linear program using an algorithm by Grigoriadis and Khachiyan [2].

A convex block-angular resource sharing problem has the form

min

{
λ

∣∣∣∣∣

K∑

k=1

fkt (x
k) ≤ λ, for all t = 1, . . . , L, and xk ∈ Bk, k = 1, . . . , R

}
,

where fkt : Bk → �+ are nonnegative continuous convex functions and Bk are
disjoint convex compact sets called blocks. The potential price directive decom-
position method of Grigoriadis and Khachiyan [2] can be used to find a (1 + ρ)-
approximate solution to this problem for any value ρ > 0. This algorithm needs
O(L(ρ−2 ln ρ−1 + lnL)(L ln ln(L/ρ) +RF )) time, where F is the time needed to find
a ρ-approximate solution to the following problem on any block Bk:

min

{
L∑

i=1

pif
k
i (x

k)
∣∣ xk ∈ Bk

}
(6)



MAKESPAN MINIMIZATION IN JOB SHOPS 295

for some vector (p1, . . . , pL) ∈ �L.
We can rewrite the linear program (3)–(5) as a convex block-angular resource

sharing problem as follows. We replace condition (4) of the linear program by the
following:

1

∆tk

∑

Jj∈T

∑

K∈Kj

∑

ki=k, πij=t

pij xjK ≤ λ, t = 1, . . . ,m, k = 0, . . . , |A|, ∆tk �= 0,(7)

where λ is a nonnegative value. If for some pair t, k, the value of ∆tk is zero, we remove
the corresponding condition (4) from the linear program and set the corresponding
variables xjK to zero. We call this new linear program LP′(λ).

This linear program has the above block angular structure. For each tiny job Jj
let xjKj be the at most (|A| + 1)µj -dimensional vector whose components are the
different variables xjK of job Jj . For job Jj we define the set Bj = {xjKj | con-
ditions (3) and (5) are satisfied}. This set is a block of constant dimension and so
the block optimization problem (6) can be solved in constant time. Let fkt (xjK) =

1
∆tk

∑
Jj∈T

∑
K∈Kj

∑
ki=k, πij=t

pij xjK . Note that these functions f
k
t are nonnega-

tive.
The logarithmic potential price directive decomposition method developed by

Grigoriadis and Khachiyan [2] can be used either to determine that the linear pro-
gram LP′(λ) is infeasible or to find a (1 + ε)-approximation to the smallest value λ
for which LP′(λ) has a feasible solution. This procedure runs in linear time [2, The-
orem 3]. Since, by choosing C = C̃∗max , LP

′(λ) has a feasible solution for λ = 1, then
we can find in linear time a solution of the linear program in which the length of each
interval ∆tk is enlarged to ∆tk(1 + ε). The length of this solution is no more than
(1 + ε) times larger than the length of a solution for the original linear program.

The algorithm of [2] finds a feasible solution for the linear program but not nec-
essarily a basic feasible solution. So we need a linear time rounding procedure which
given a feasible solution of the linear program LP′(λ) finds a solution with at most
O(|A|) fractional variables where the hidden constants depend only on m and µ.

3.2. Rounding procedure. In this subsection we show how to round any fea-
sible solution for the linear program LP′(1+ε) to get a new feasible solution in which
all but a constant number of variables have value 0 or 1. Moreover, we show that we
can do this rounding procedure in linear time.

First we write the linear program in matrix form as Bx = b, x ≥ 0, where B
is the constraint matrix. Let x̄ be a feasible solution of the linear program. The
components of x̄ are the values of the variables xjK . Without loss of generality, let
us assume that the columns of B are indexed so that the columns corresponding to
variables xjK of the same job Jj appear in adjacent positions. We might also assume
that at all times during the rounding procedure each job Jj is associated with at
least two columns in B. This assumption can be made, since if job Jj has only one
associated column, then by constraint (3) the corresponding variable xjK must have
value either zero or one. Let C be the set formed by the first 2m(|A|+1)+2 columns
of B. At most 2m(|A| + 1) + 1 rows of C have nonzero entries. To see this observe
that at most m(|A|+ 1) + 1 of these entries come from constraint (3) because of the
above assumption on the number of columns for each job, while at most m(|A| + 1)
nonzero entries come from constraint (7).

Let M be the matrix formed by the nonzero rows of C. Since M has at most
2m(|A|+ 1) + 1 rows and exactly 2m(|A|+ 1) + 2 columns, thenM is singular, and
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hence there exists at least one nonzero vector y such thatMy = 0. Let δ ≥ 0 be the
smallest value such that some component of the vector x̄+δy is either zero or one. (If
the dimension of y is smaller than the dimension of x̄ we pad it with an appropriate
number of zero entries.) Note that the vector x̄+ δy is a feasible solution of the linear
program LP′(1 + ε). Let x0 and x1 be lists containing, respectively, the zero and one
components of vector x̄+δy. We update the solution of the linear program by making
x̄← x̄+ δy and then removing from x̄ all variables in x0 and x1. We also discard all
columns of B corresponding to the variables in x0 and x1. If x1 is not empty, then
vector b is set to b−∑i∈x1 B[∗, i], where B[∗, i] is the column of B corresponding to
variable i.

This process rounds the value of at least one variable xjK to either 0 or 1. The
procedure is repeated until there are at most 2m(|A|+1)+1 columns in B, and hence
there are at most m(|A|+ 1) + 1 jobs with fractional variables.

Lemma 2. The above algorithm transforms in O(n) time any feasible solution
of LP′(λ) into another feasible solution in which at most a constant number of vari-
ables have fractional values.

Proof. In every iteration of the algorithm, vector y can be found in constant
time since the size of matrix M is constant. Also, the value of δ can be found in
constant time, since vector y has a constant number of nonzero entries. Therefore,
every iteration of the algorithm requires O(1) time.

Since in each iteration at least one variable is rounded to zero or one, then the
algorithm performs only O(n) iterations.

Let F be the set of jobs that receive fractional assignments in the rounded so-
lution. For each job in F we arbitrarily choose one of its nonzero variables and set
it to 1 while we set all other variables to 0. Using arguments similar to those of
section 2.2 we can show that this rounding procedure produces a nonpreemptive, but
possibly infeasible, schedule for the jobs, and the total length of the schedule is at
most (1 +O(m2µ)ε)C∗max .

3.3. Merging trick. Consider the instance of the job shop scheduling prob-
lem defined by the tiny jobs that are assigned to the kth interval of the second
type. Sevastianov’s algorithm finds in O(n2µ2m2) time a schedule of length at most
(1 + ε)(ak+1 − ak) + D(k) + O(mµ3)pmax (k) for these jobs, where pmax (k) is the
length of the largest operation in interval k. For a job Jj let (m1j ,m2j , . . . ,mµj) be
a vector that describes the machines on which its operations must be performed. Let
us partition the set of jobs J into mµ groups J1,J2, . . . ,Jmµ such that all jobs in
group Ji have the same machine vector and jobs from different groups have different
machine vectors.

Consider the jobs in one of the groups Ji. Let Jj and Jh be two jobs from Ji such
that each one of them has length smaller than αεPmax/2. We “glue” together these
two jobs to form a composed job in which the processing time of the ith operation
is equal to the sum of the processing times of the ith operations of Jj and Jh. We
repeat this process until at most one job from Ji has processing time smaller than
αεPmax/2. The same procedure is performed in all other groups Jj . At the end of this
process, each one of the composed jobs has at most µ operations. The total number of
composed jobs is at most mµ+ � 2mαε 	, and all operations in interval k have processing
times smaller than max{pmax (k), αεPmax}. Note that this merging procedure runs in
linear time and that a feasible schedule for the original jobs can be easily obtained
from a feasible schedule for the composed jobs.

We run Sevastianov’s algorithm on this set of composed jobs to get a schedule
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of length (1 + ε)(ak+1 − ak) + D(k) + O(mµ3)max{pmax (k), αεPmax}. The time
needed to get this schedule is O((mµ+ 2m

αε )
2µ2m2). So Sevastianov’s algorithm needs

only constant time plus linear preprocessing time. Notice also that the analysis in
subsection 2.3 with minor changes holds also for this case.

Theorem 2. The algorithm described above is a linear time approximation
scheme for the job shop scheduling problem when m and µ are fixed.

4. Preemptive job shop scheduling problem. In this section we describe a
PTAS for the preemptive version of the job shop scheduling problem when m and µ
are fixed. As in the nonpreemptive case we divide the set of jobs J into big jobs B,
small jobs S, and tiny jobs T . The sets are chosen as in the nonpreemptive version.
The small jobs are removed and reintroduced later at the end of the schedule as in
the nonpreemptive case.

We consider only restricted preemptive schedules in which the earliest time when
a big operation starts processing and the time when a big operation is completed lie
at the boundaries of intervals of the first type. (So if a big operation is preempted,
the times at which the operation is suspended and resumed do not need to coincide
with boundaries of intervals of the first type.) By using arguments similar to those of
section 2.1 we can show that an optimum restricted preemptive schedule has length
C̃∗max ≤ (1 + O(µmε))C∗max , where C

∗
max is the length of an optimum preemptive

schedule.
An allotment for the big jobs specifies for each big operation a set of consecutive

intervals of the first type where the operation can be scheduled. Since there is a
constant number of big operations, there is also a constant number of allotments. Fix
one allotment for the big operations such that operations from the same big job are
assigned disjoint intervals and there is a feasible preemptive schedule for the big jobs
that respects the allotment.

Let Sij be the starting time of the first interval of the first type assigned to big
operation Oij , and let Cij be the ending time of the last interval of the first type
assigned to it. We define intervals of the second type in a similar way as we did in
section 2.2.

An operation Oij of a big job is scheduled in consecutive intervals of the second
type [ak, ak+1), . . . , [ak+t−1, ak+t), where ak is the starting time and ak+t is the com-
pletion time of Oij . Any fraction (possible equal to zero) of the operation might be
scheduled in any one of these intervals. Because of the way in which the allotment
was chosen, in each interval of the second type there is at most one operation from
any given big job.

As for the nonpreemptive case, for every tiny job Jj we define

Kj = {K = (k1, k2, . . . , kµj ) ∈ Zµj | 0 ≤ k1 ≤ k2 ≤ · · · ≤ kµj ≤ |A|}.
For each big job Jj we define a similar set Kj , but the tuples in Kj allow only place-
ment of the (pieces of) operations of job Jj in the intervals defined by the allotment.

For each job Jj we define variables xjK ,K ∈ Kj . We assign operations to intervals
of the second type by solving the following linear program:

∑

K∈Kj

xjK = 1, Jj ∈ J \ S,(8)

∑

Jj∈J\S

∑

K∈Kj

∑

ki=k, πij=t

pij xjK ≤ ∆k, t = 1, . . . ,m, k = 0, . . . , |A|,(9)

xjK ≥ 0, K ∈ Kj , Jj ∈ J \ S.(10)
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Note that in any solution of this linear program the schedule for the long jobs is
always feasible, since there is at most one operation of a given job in any interval of
the second type. Let Cmin = a|A|+1 be the smallest value such that linear program
(8)–(10) has a feasible solution for some allotment. Using an argument similar to that
of the proof of Lemma 1 we can prove that Cmin is a lower bound on the makespan
of an optimum preemptive schedule for the given set of jobs J .

Using binary search we can find a value C satisfying Cmin ≤ C ≤ Cmin + δPmax ,
for any fixed δ ≥ 0, by approximately solving the above linear program a constant
number of times. Since linear programs (3)–(5) and (8)–(10) have the same structure
we can use our rounding procedure to find in linear time a solution for the new linear
program in which at most m(|A| + 1) + 1 jobs receive fractional assignments. (See
section 3.2.)

After rounding the solution of the linear program we find a feasible schedule for
every interval of the second type as follows. Consider an interval [ak, ak+1). Remove
from the interval the operations belonging to big jobs. These operations will be
reintroduced to the schedule later. Then use Sevastianov’s algorithm as described
in section 3.3 to find a feasible schedule for the small and tiny jobs assigned to that
interval. Finally place back the operations from the big jobs, scheduling them in the
empty gaps left by the small and tiny jobs. Note that it might be necessary to further
split an operation of a big job in order to make it fit in the empty gaps. At the end
we have a feasible schedule because there is at most one operation of each big job in
the interval.

In this schedule the number of preemptions is at most nµ (since after introducing
the operations from the big jobs, we might have this many preemptions for them). So
there are in total O(n) preemptions and only big operations are preempted.

Theorem 3. The above algorithm is a linear time approximation scheme for the
preemptive version of the job shop scheduling problem when m and µ are fixed. The
solution that the algorithm finds has O(n) preemptions.

5. Extensions.
Multistage job shop problem. In the s-stage job shop problem each machine

of the classical job shop problem is replaced by a set of mi parallel identical machines,
1 ≤ mi ≤ m. Our polynomial time approximation scheme works also in this case
if the number of machines on each stage and the number of stages are fixed. Let
the machines on stage i be numbered s1, s2, . . . , smi . In the linear program we use
variables xjK(r1,...,rµj

), where ri indicates the machine where the ith operation Oij of

job Jj is scheduled. The same techniques used for the job shop scheduling problem
can be used to design a polynomial time approximation scheme for this more general
problem.

Dag shop problem. Another generalization of the job shop problem is the dag
shop problem [15] (also called the G-problem by Sevastianov [10, 11]). Here each job
consists of a set of operations {O1j , . . . , Oµj}, and each job Jj ∈ J is associated with
an acyclic directed graph Rj = (Oj , Ej). In this graph an arc (Oi′j , Oij) indicates
that operation Oij has to be executed after operation Oi′j . The problem is to find a
schedule of minimum length that respects these ordering constraints.

We define restricted schedules for the big jobs that respect the ordering con-
straints Rj . An acyclic graph Rj can be translated directly into a set of tuples
Kj = {(k1, . . . , kµ) | 0 ≤ kj ≤ |A| for all 1 ≤ j ≤ µ and ki′ ≤ ki for every edge
(Oi′j , Oij) ∈ Ej} for each job Jj ∈ T ∪ S. Again, the size of each set of tuples is con-
stant, |Kj | ≤ (|A| + 1)µ, so we can use our algorithm with some small changes. Let
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us consider a single interval [ak, ak+1). Let O(k) be the set of operations assigned to
this interval. For each job Jj corresponding to the operations in O(k) we use, instead
of the acyclic graph Rj(k) induced by the operations Oij ∈ O(k), a linear order that
extends Rj(k) and apply Sevastianov’s algorithm [10] to a smaller instance of the job
shop problem in each interval k. The rest of the algorithm is as before. We note that
our algorithm does not seem to extend to the preemptive version of this problem.

Job shop problem with release and delivery times. Our techniques can also
handle the case in which each job Jj has a release time rj (when it becomes available
for processing) and a delivery time qj . If in some schedule job Jj completes processing
at time Cj , then its delivery completion time is equal to Cj + qj . The goal is to
minimize the maximum delivery completion time of any job. Let rmax and qmax be the
maximum release and delivery times, respectively. Then, max{rmax , Pmax , qmax} ≤
C∗max ≤ rmax +mPmax + qmax . The idea is to round each release and delivery time
up to the nearest multiple of ε · max{rmax , Pmax , qmax} for some value ε > 0. This
increases the length of an optimum schedule by at most 2εC∗max . Next we apply
a (1 + ε)-approximation scheme (described below) that can handle O(1/ε) different
release times and delivery times. This gives an algorithm that finds a solution of
length at most (1 + ε)(1 + 2ε) ≤ 1 + 5ε times larger than the optimum.

We can easily modify our linear program to allow a constant number, O(1/ε), of
release dates and delivery times. We also need to make another change to the linear
program, since now we cannot remove the small jobs and simply add them to the end
of the schedule. Instead, we must define variables xjK for the small jobs and use the
linear program for assigning them to intervals of the second type as we do for the
tiny jobs. Now the number of intervals of the second type is larger, since we add to A
each release time rj and each completion time C − qj , where C is the length of the
schedule as described in section 2.2. Note that the total number of intervals is still
constant: O(mµ/α+ 1/ε). We can solve the linear program as before in linear time.
The rest of the approximation scheme is similar to that for the job shop scheduling
problem. The analysis has to be only slightly changed due to the presence of small
jobs in the intervals of the second type.

Note that this approach works even if every operation has its own release and
delivery time.
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Abstract. We present a linear-time algorithm to decide whether a given k-connected graph has
bandwidth k, where k is a fixed positive integer. This improves the general O(nk)-time-algorithm of
Gurari and Sudborough, based on a dynamic programming approach of Saxe, for the recognition of
bandwidth-k graphs on n vertices in the special case of connectivity k.
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1. Introduction. In this paper, we deal with simple graphs G = (V,E) on n
vertices without loops and multiple edges. A (linear) layout ofG is a bijective mapping
f : V → {1, . . . , n}. The bandwidth of a layout f , denoted by bw(f), is defined to be

bw(f) := max{|f(u)− f(v)| : {u, v} ∈ E}.

The bandwidth of the graph G is

bw(G) := min{bw(f) : f is a layout of G}.

A graph G is k-connected if |V | > k and, for all subsets V ′ of V with |V ′| < k,
the graph induced by V \ V ′ is connected.

If bw(f) = k (or bw(G) = k), we briefly speak of a bw–k layout (or a bw–k graph,
respectively). For the recognition of bw–2 graphs, a linear-time algorithm was given by
Garey et al. [5]. Studying the structure of bw–2 graphs, we presented a new algorithm
for this problem in [4]. Saxe [8] developed an algorithm that recognizes bw–k graphs
with time and space complexity O(nk+1), and Gurari and Sudborough [6] improved
it to complexity O(nk). In [7] Makedon, Sheinwald, and Wolfsthal designed a simple
linear-time algorithm for testing bandwidth 2 for 2-connected graphs. Bodlaender,
Fellows, and Hallett [1] have shown that testing bw(G) ≤ k is not likely to be fixed
parameter tractable (cf. [3]) and, in particular, is not likely to be linear-time solvable
without additional special assumptions.

In this paper, we generalize [7] in order to test bandwidth k for k-connected
graphs in linear time (k fixed). We generally assume that the graph is represented
by a linked adjacency list. In the first part, we present some general results for bw–k
k-connected graphs. It will turn out that we have to distinguish the cases k odd and
even. The problem is much easier to handle for odd k than for even k. In this more
difficult case, we have to work with a detailed structural characterization of G. Each
bw–1 1-connected graph obviously is a chain. Thus, throughout we let k ≥ 2.
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2. On the structure of bw-k k-connected graphs. First we repeat some
definitions from graph theory. A vertex v is a neighbor of some given vertex u if v
is adjacent to u; i.e., {u, v} is an edge. We briefly denote edges by uv. The (first)
neighborhood N1(u) of a vertex u ∈ V is the set of all neighbors of u. The degree
deg(u) of a given vertex u is the number of all neighbors of u, i.e., deg(u) = |N1(u)|.
The second neighborhood N2(u) of a vertex u ∈ V is the set of all vertices w ∈
V \ (N1(u) ∪ {u}) such that there is a vertex v ∈ N1(u) with vw ∈ E; i.e., the
distance between u and w in G is two.

Let A ⊆ V . The boundary of A is defined to be the set

B(A) := {v ∈ V \A : v is adjacent to some w ∈ A}.

Lemma 1. Let G be k-connected and A ⊆ V . Then

|B(A)| ≥ min{k, n− |A|}.

Proof. Since B(A) ∩ A = ∅, clearly |B(A)| ≤ n − |A|. If |B(A)| < n − |A|, the
deletion of B(A) disconnects the graph, and hence |B(A)| ≥ k. If |B(A)| = n − |A|,
the assertion is trivially true.

In particular we have, for a k-connected graph G,

deg(v) ≥ k for all v ∈ V.(1)

From (1) it follows that bw(G) ≥ k if G is a k-connected graph. Thus we have
bw(G) = k for such a graph if there is a bw–k layout of G. Let ∆(G) be the maximum
vertex degree of G. If G is a bw–k graph, then obviously

∆(G) ≤ 2k;(2)

cf. [2]. Under the assumption that the graph is represented by a linked adjacency
list, inequality (2) can be tested in linear time (while the neighborhood of a vertex
does not contain more than 2k vertices, go to the next vertex). Thus, we assume this
inequality throughout the paper.

For a given layout f of G and for j = 1, . . . , n, let

Aj := {v ∈ V : f(v) ≤ j},(3)

Ej := {v ∈ V : f(v) ≥ j}.(4)

Lemma 2. Let G be k-connected and f be a bw–k layout of G. Then, for j =
1, . . . , n,

B(Aj) = {v ∈ V : f(v) ∈ {j + 1, . . . ,min{n, j + k}}},(5)

B(Ej) = {v ∈ V : f(v) ∈ {max{1, j − k}, . . . , j − 1}}.(6)

Proof. Let v ∈ B(Aj). By definition of B(Aj), f(v) ≥ j + 1. Moreover, there
exists some w ∈ Aj with vw ∈ E. Thus k ≥ f(v)−f(w) ≥ f(v)− j, i.e., f(v) ≤ j+k.
Consequently,

B(Aj) ⊆ {v ∈ V : f(v) ∈ {j + 1, . . . ,min{n, j + k}}}.

By Lemma 1, |B(Aj)| ≥ min{k, n − j}, and hence the inclusion is an equality. The
sets Ej can be treated analogously.
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Note that, under the suppositions of Lemma 2, for 1 < j ≤ n− k we have

|B(Aj) \B(Aj−1)| = 1

and that for v ∈ B(Aj) \ B(Aj−1), f(v) = j + k. This vertex v is adjacent to only
one vertex in Aj , namely the vertex w with f(w) = j.

Often we present layouts f as n-tuples (u1, . . . , un). Here ui is the vertex of G
with f(ui) = i, i = 1, . . . , n. For a bw–k layout (u1, . . . , un) the vertex u1 (resp., un)
is called start vertex (resp., end vertex). Note that we have Aj = {u1, . . . , uj} and
Ej = {uj , . . . , un}. We say that ui is left of uj (and uj is right of ui) if i < j. A partial
layout of G is a layout of an induced subgraph of G. We also present partial layouts as
certain l-tuples (u1, . . . , ul), where 1 ≤ l ≤ n. A partial layout (u1, . . . , ul) is called
a start sequence if l = k+ 1 and there exists a bw–k layout (u1, . . . , ul, ul+1, . . . , un).

The following lemma is a generalization of Lemma 1 in [7], where the case k = 2
was considered. It follows immediately from Lemma 2 and the subsequent remark.

Lemma 3. Let G be a k-connected graph with n ≥ k + 1.

(a) Let f = (u1, . . . , un) be a bw–k layout of G. Then u1u2, . . . , u1uk, uiui+k, i =
1, . . . , n− k, and un−k+1un, . . . , un−1un are edges in G.

(b) A partial layout (u1, . . . , uk+1) can be extended in at most one way to a bw–k
layout (u1, . . . , un); i.e., start sequences and bw–k layouts are in one-to-one
correspondence.

Given a partial layout f = (u1, . . . , ul) we call the vertices u1, . . . , ul labeled
and all other vertices unlabeled. Let kToLast(f) := ul−k+1. For u /∈ f let f ||u :=
(u1, . . . , ul, u). As mentioned in the preceding lemma, for a k-connected graph with
∆(G) ≤ 2k, the extension of a partial layout can be easily carried out in the following
way:

Procedure Start-sequence

Input: The partial layout f = (u1, . . . , uk+1);
While |f | < |V | do

x := kToLast(f);
Let U be the set of unlabeled neighbors of x;
If |U | > 1 then STOP — (u1, . . . , uk+1) is not a start sequence;
Let U = {u};
f := f ||u;

Output: The bw–k layout f .

Note that we cannot have U = ∅ in the while loop since otherwise |B(A)| < k
for A := {u1, . . . , x}, a contradiction to Lemma 1. The correctness of the procedure
immediately follows from Lemma 3. The linear-time complexity is obvious. Thus
the main problem consists of the determination of a start sequence. The following
two lemmas contain characterizations of vertices of a start sequence that will be used
later.

Lemma 4. Let G be a k-connected graph with n ≥ 2k+1 and let f = (u1, . . . , un)
be a bw–k layout of G. Then

|N1(u1)| = |N2(u1)| = k,(7)

|N1(un)| = |N2(un)| = k.(8)

Proof. In (5) of Lemma 2, take j := 1 and j := k + 1 (resp., in (6) of Lemma 2,
j := n and j := n− k).
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Lemma 5. Let G be a k-connected graph with n ≥ 2k+1 and let f = (u1, . . . , un)
be a bw–k layout of G. Then, for i = 1, . . . , k,

deg(ui) ≤ k + i− 1,(9)

|N1(ui) ∩N1(u1)| ≥ k − i,(10)

deg(un+1−i) ≤ k + i− 1,(11)

|N1(un+1−i) ∩N1(un)| ≥ k − i.(12)

Proof. We prove only (9) and (10) since (11) and (12) can be treated analogously.
In (5) of Lemma 2, take j := i. This yields

deg(ui) ≤ |Ai−1|+ |B(Ai)| = i− 1 + k.

Obviously,

|N1(ui) \N1(u1)| ≤ |{u1, uk+2, . . . , ui+k}| = i.

Consequently,

|N1(ui) ∩N1(u1)| = |N1(ui)| − |N1(ui) \N1(u1)| ≥ k − i.

The main purpose of the following theorem is a characterization of vertices which
have the property of start vertices given in Lemma 4 but which themselves are not
start vertices.

Theorem 1. Let G = (V,E) be a k-connected graph with n ≥ 4k + 1 and let
f = (u1, . . . , un) be a bw–k layout of G. Let 2k+1 ≤ i ≤ n−2k and deg(ui) = k. Let
ul1 , . . . , ulλ with l1 > · · · > lλ and ur1 , . . . , urρ with r1 < · · · < rρ be the left, resp.,
right, neighbors of ui (λ+ ρ = k). Let t := k/2.

(a) We have |N2(ui)| ≥ k.
(b) If |N2(ui)| = k, then λ = ρ = t and, for j = 1, . . . , t,

N1(ulj ) = {ulj−k, . . . , ul1−k, ult , . . . , ul1 , ui, ur1 , . . . , urt−j} \ {ulj},
N1(urj ) = {urj+k, . . . , ur1+k, urt , . . . , ur1 , ui, ul1 , . . . , ult−j} \ {urj}.

Proof. Let M := {ulλ−k, . . . , ul1−k, ur1+k, . . . , urρ+k}. By Lemma 3(a), M ⊆
N2(ui), lλ = i − k, and rρ = i + k. Consequently, |N2(ui)| ≥ |M | = k and (a) is
proved.

Thus let |N2(ui)| = k, i.e., N2(ui) = M . By Lemma 3(a), {ulλ−1+k, . . . , ul1+k}
⊆ N1(ui) ∪N2(ui). Hence N

2(ui) =M implies

{ulλ−1+k, . . . , ul1+k} ⊆ {ur1 , . . . , urρ−1}.
Analogously,

{ur1−k, . . . , urρ−1−k} ⊆ {ulλ−1
, . . . , ul1}.

From both set inclusions it follows that λ − 1 ≤ ρ − 1 and ρ − 1 ≤ λ − 1, i.e.,
λ = ρ = k/2 = t, and that the set inclusions are in fact equalities. In particular,
lj+k = rt−j , j = 1, . . . , t−1. It remains to study the neighborhood of a left neighbor
ulj of ui, 1 ≤ j ≤ t (right neighbors can be treated analogously). Obviously,

N1(ulj ) ∩M ⊆ {ulj−k, . . . , ul1−k},(13)

N1(ulj ) ∩N1(ui) ⊆ {ult , . . . , ul1 , ur1 , . . . , urt−j
} \ {ulj},(14)

N1(ulj ) ∩ {ui} ⊆ {ui}.(15)



TESTING BANDWIDTH k 305

Since N1(ulj ) ⊆M ∪N1(ui) ∪ {ui} (recall M = N2(ui)) we have

|N1(ulj )| ≤ j + (t+ t− j − 1) + 1 = k.

Since also |N1(ulj )| ≥ k (recall (1)) we obtain that |N1(ulj )| = k and that all set
inclusions in (13)–(15) are equalities, i.e.,

N1(ulj ) = {ulj−k, . . . , ul1−k, ult , . . . , ul1 , ui, ur1 , . . . , urt−j} \ {ulj},

and (b) is proved.
From now on we assume that n ≥ 4k + 1. Note that “smaller” graphs can be

analyzed by complete enumeration.
Let

S := {v ∈ V : |N1(v)| = |N2(v)| = k}.

From Lemma 4 we know that the start and end vertices of a bw–k layout of a k-
connected graph belong to S. The set S plays an essential role. If |S| ≤ 1, we may
stop our investigations since the given graph is not a k-connected bw–k graph. Given
a vertex s ∈ S, it is easy to test whether it is a start vertex as follows:

Procedure Start-vertex
Input: The vertex s ∈ S;
Determine the neighbors u1, . . . , uk of s;
For each permutation π of {1, . . . , k} do

If deg(uπ(i)) ≤ k+i and |N1(uπ(i))∩N1(s)| ≥ k−(i+1), i = 1, . . . , k−1,
then Start-sequence (s, uπ(1), . . . , uπ(k)) and STOP if a bw–k layout
is found;

Output: A bw–k layout of G with start vertex s iff there exists one.
The correctness of the procedure follows from Lemma 5. Since there are only k!

(i.e., a constant number of) permutations of the neighbors, this procedure also has
linear-time complexity.

3. The case k is odd. For this case, the main observation is that |S| ≤ 4k holds
if the given k-connected graph has a bw–k layout (u1, . . . , un). Indeed, if |S| ≥ 4k+1,
then n ≥ 4k+ 1 and there exists some ui ∈ S with 2k+ 1 ≤ i ≤ n− 2k. By Theorem
1(b), ui has an even number of neighbors, a contradiction.

This leads us to the following easy algorithm.
Algorithm bw–k(odd)

Input: A positive odd integer k ≥ 3, a k-connected graph G = (V,E) with
|V | ≥ 4k + 1 and ∆(G) ≤ 2k;
Determine S := {v ∈ V : |N1(v)| = |N2(v)| = k};
If |S| ≤ 1 or |S| ≥ 4k + 1 then STOP — G is not a bw–k graph;
For all s ∈ S do

Start-vertex(s) and STOP if a bw–k layout is found;
Output: A bw–k layout of G iff G is a bw–k graph.

The linear-time complexity follows from the linear-time complexity of the proce-
dure Start-vertex.

4. The case k is even. Throughout we let t := k/2. In contrast to the preceding
case, cycles (for k = 2) and their obvious generalizations show that the set S may
contain vertices that are “far away” from a start vertex. But, by Theorem 1, these
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vertices s ∈ S must have the following property: The elements of N1(s) ∪N2(s) can
be ordered in the form (v−k, . . . , v−1, v1, . . . , vk) such that, with v0 := s,

N1(vi) = {vi−t, . . . , vi+t} \ {vi}, −t ≤ i ≤ t.(16)

We call vertices s ∈ S with this property suspicious vertices and call a corre-
sponding sequence (v−k, . . . , v−1, v0, v1, . . . , vk) the bw–k sequence of s. Note that
the inverse sequence (vk, . . . , v0, . . . , v−k) is also a bw–k sequence. Suspicious ver-
tices s can be recognized in constant time: After testing |N1(s)| = |N2(s)| = k we
may either check all (2k)! permutations of N1(s) ∪N2(s) or proceed more elegantly
by first ordering the neighbors of s using the degrees and then adding step by step
the elements of the second neighborhood of s as follows:

Procedure Suspicious-vertex
Input: The vertex v0 := s;
Let G′ be the graph induced by N1(s)∪ {s} and consider degrees only in G′;
Determine the set Q of vertices of G′ of degree t;
If |Q| �= 2 then STOP else denote one element of Q by v−t and the other by
vt;
For j = t to 2 do

Determine the set Q of vertices of G′ of degree k − (j − 1);
Let Q1 (resp., Q2) be the set of vertices from Q which are adjacent to
v−t, . . . , v−j (resp., to vj , . . . , vt);
If |Q1| = |Q2| = 1 and Q1 ∪Q2 = Q then denote the element of Q1 by
v−(j−1) and the element of Q2 by vj−1 else STOP;

For j = t− 1 to 1 do
If not v1, . . . , vt−j are adjacent to v−j then STOP;

Consider neighborhoods again in G (and not in G′);
For j = 1 to t do

If there is some h with −t − j + 1 ≤ h ≤ −t − 1 such that v−j is not
adjacent to vh then STOP;
If there is some h with t+1 ≤ h ≤ t+ j− 1 such that vj is not adjacent
to vh then STOP;
Let Q1 := N1(v−j) \ {v−t−j+1, . . . , vt−j} and Q2 := N1(vj) \ {vt+j−1,
. . . , vj−t};
If |Q1| = |Q2| = 1 and |Q1 ∪Q2| = 2 then denote the element of Q1 by
v−t−j and the element of Q2 by vt+j else STOP;

Output: The bw–k sequence (v−k, . . . , v−1, v0, v1, . . . , vk) iff s is suspicious.
It is easy to verify that, in each STOP situation, the vertex s is not a suspicious

vertex and that (16) holds if there is no STOP situation. From the procedure it
follows that the bw–k sequence of a suspicious vertex s is unique up to inversion.

By Theorem 1, each vertex s ∈ S that is not suspicious must be a start vertex
or belong to the first or second neighborhood of a start vertex. Hence, if we find a
vertex s ∈ S that is not suspicious, we may proceed as in the case where k is odd:
We test all vertices from {s} ∪N1(s) ∪N2(s) for start vertices.

So it remains to study the case where we do not have a vertex from S which is
not suspicious. We cannot test whether all vertices from S are start vertices because
linear-time complexity cannot be reached. However, with the characterization of
suspicious vertices we will be able to find in S in linear time a start vertex if one
exists.

Let P = (vl, vl+1, . . . , vr) be a path in G. It is said to be a bw–k path if r− l ≥ 2k
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and

N1(vi) = {vi−t, . . . , vi+t} \ {vi}, l + t ≤ i ≤ r − t.

Note that the bw–k sequence of a suspicious vertex is a bw–k path. For a bw–k path
P = (vl, . . . , vr) let the first and second left and right parts be defined by

L1(P ) := (vl+t, . . . , vl+2t−1), L2(P ) := (vl, . . . , vl+t−1),

R1(P ) := (vr−2t+1, . . . , vr−t), R2(P ) := (vr−t+1, . . . , vr).

Further, let

L(P ) := L1(P ) ∪ L2(P ), R(P ) := R1(P ) ∪R2(P ), M(P ) := L(P ) ∪R(P ).
Clearly, the vertices vl+2t, . . . , vr−2t of P are suspicious vertices. Let tToLeft(P ) :=
vl+t−1 and tToRight(P ) := vr−t+1. For u /∈ P let u||P := (u, vl, . . . , vr) and P ||u :=
(vl, . . . , vr, u). Given a bw–k path P it is easy to test whether it can be extended, as
the following shows:

Procedure Path-extension
Input: The bw–k path P ;
StopLeft := false;
Repeat

x := tToLeft(P );
If x is not adjacent to all vertices of L2(P ) \ {x} then StopLeft := true
else

LeftU := N1(x) \ L(P );
If LeftU ∩ R2(P ) = ∅ and |LeftU | = 1 with LeftU = {u} then
P := u||P else StopLeft := true

until StopLeft
StopRight := false;
Repeat

x := tToRight(P );
If x is not adjacent to all vertices of R2(P )\{x} then StopRight := true
else

RightU := N1(x) \R(P );
If RightU ∩ L2(P ) = ∅ and |RightU | = 1 with RightU = {u} then
P := P ||u else StopRight := true

until StopRight;
Output: The nonextendable bw–k path P .

Note that, under the general supposition that G is k-connected, e.g., for LeftU ∩
R2(P ) = ∅ and |LeftU | = 1, the new path u||P is indeed a bw–k path: Since
deg(tToLeft(P )) ≥ k this vertex tToLeft(P ) must be adjacent to all other vertices of
L2(P ). Obviously, the procedure Path-extension can be carried out in linear time.
As in the procedure, for a bw–k path P = (vl, . . . , vr), let

LeftU := N1(vl+t−1) \ L(P ),
RightU := N1(vr−t+1) \R(P ).

The next lemma contains the case where the bw–k path cannot be further extended
because a “circle will be closed.” Then the whole graph is included and is, by Lemma
7, a bw–k graph.
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Lemma 6. Let G = (V,E) be k-connected and P = (vl, . . . , vr) be a bw–k path.
Then LeftU �= ∅ and RightU �= ∅. If LeftU ⊆ R2(P ) or RightU ⊆ L2(P ), then
V = {vl, . . . , vr}.

Proof. We consider only LeftU . We have LeftU �= ∅ because otherwise deg(vl+t−1)
≤ (t− 1) + t = k − 1, in contrast to (1). Let LeftU ⊆ R2(P ). Let

A := {vl+t−1, . . . , vr−t}.

Obviously,

B(A) = {vl, . . . , vl+t−2, vr−t+1, . . . , vr}.
Since |B(A)| = k − 1 we have, by Lemma 1, |A| + |B(A)| = n, i.e., A ∪ B(A) =
V .

Lemma 7. Let P = (vl, . . . , vr) be a bw–k path in G. If V = {vl, . . . , vr}, then
f = (vl, vr, vl+1, vr−1, vl+2, . . . ) is a bw–k layout.

Proof. Let vivj be an edge (l ≤ i < j ≤ r). If {i, j} ⊆ {l, . . . , l + t − 1, r − t +
1, . . . , r}, clearly |f(vj)− f(vi)| ≤ 2t− 1 < k. Otherwise, obviously |j − i| ≤ t. Since
|f(vh+1)− f(vh)| ≤ 2 for h = l, . . . , r − 1, we have

|f(vj)− f(vi)| ≤
j−1∑

h=i

|f(vh+1)− f(vh)| ≤ 2t = k.

Of course, it is also possible that the bw–k path cannot be extended and that no
circle will be closed.

Lemma 8. Let P = (vl, . . . , vr) be a nonextendable bw–k path in G such that
LeftU �⊆ R2(P ) and RightU �⊆ L2(P ). Then the vertices vl, . . . , vl+2t−1 and vr−2t+1,
. . . , vr are not suspicious.

Proof. Assume the contrary and let vi be suspicious where w.l.o.g. l ≤ i ≤ l+2t−
1. The neighborhood structure implies that (vl, . . . , vi, . . . , vi+2t) is a subsequence (a
right part) of the bw–k sequence of vi (up to inversion). In particular,

N1(vl+t−1) = {u, vl, . . . , vl+2t−1} \ {vl+t−1}
with some u /∈ {vl, . . . , v2l+t−1}. By the supposition, u /∈ R2(P ); hence u /∈ P .
Consequently, u||P is also a bw–k path, a contradiction to the supposition that P
cannot be extended.

Recall the sets Aj from (3). Some of them are uniquely determined by P and the
start vertex.

Lemma 9. Let G be k-connected and P = (vl, . . . , vr) be a bw–k path. Let f be a
bw–k layout of G and let f(vi) = 1 for some i with l+ k ≤ i ≤ r − k. Then, for each
positive integer p with l ≤ i− pt and i+ pt ≤ r,

A1+pk = {vi−pt, vi−pt+1, . . . , vi, . . . , vi+pt−1, vi+pt},(17)

(18) {f(vi−pt), . . . , f(vi−(p−1)t−1), f(vi+(p−1)t+1), . . . , f(vi+pt)}
= {2 + (p− 1)k, . . . , 1 + pk},

f(vi−pt) > · · · > f(vi−(p−1)t−1) and f(vi+(p−1)t+1) < · · · < f(vi+pt).(19)
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Proof. The statement can be formulated in the following analogous way: If vi
has label 1, then t vertices left of vi and t vertices right of vi on P get the labels
2, . . . , 1 + p. This need not be done in an alternating way but in an increasing way
going, on P , to the left of vi and to the right of vi. This is then similarly true for
labels 2 + p, . . . , 1 + 2p and so on.

For the proof, we proceed by induction on p. Let p = 1. Then (17) and (18)
are satisfied since vi−t, . . . , vi−1, vi+1, . . . , vi+t are the neighbors of vi. Assume, e.g.,
that for some g with i − t ≤ g < g + 1 ≤ i − 1, f(vg) < f(vg+1). Let j := f(vg).
Then B(Aj) contains t elements vh with h < g, t elements vh with h > i, and the
element vg+1, i.e., at least k+ 1 elements. This is a contradiction to Lemma 2. Thus
(19) also is proved for p = 1. Now look at the step p − 1 → p. Since by supposition
2pt ≤ r − l ≤ n − 1, we have 2(p − 1)t + 1 ≤ n − k and hence f(v) ≤ n − k for all
v ∈ A1+(p−1)k. The structure of P and Lemma 3 imply that

f(vh) =

{
f(vh+t) + k if i− pt ≤ h ≤ i− (p− 1)t− 1,

f(vh−t) + k if i+ (p− 1)t+ 1 ≤ h ≤ i+ pt,

and (17)–(19) follow immediately from the induction hypothesis.
Lemma 10. Let G be k-connected and P = (vl, . . . , vr) be a bw–k path. If

|LeftU | ≥ 2 (resp., |RightU | ≥ 2), then the vertices vi with l+k ≤ i ≤ l+r
2 − t (resp.,

l+r
2 + t ≤ i ≤ r − k) are not start vertices.

Proof. We consider only LeftU . Assume the contrary and let, for some i with
l + k ≤ i ≤ l+r

2 − t, the vertex vi be a start vertex with a corresponding bw–k layout
f . Let p be the largest integer such that l + t − 1 < i − (p − 1)t. Then l ≤ i − pt,
which implies i+ pt ≤ 2i− l ≤ r − 2t. Let j := f(vl+t−1). From Lemma 9 (note the
remark in the beginning of the proof) it follows that

Aj = {vl+t−1, vl+t, . . . , vl+t+j−2}
and that

l + t+ j − 2 ≤ i+ pt ≤ r − 2t.

Consequently,

B(Aj) = {vl, . . . , vl+t−2} ∪ LeftU ∪ {vl+t+j−1, . . . , vl+2t+j−2}.
Since LeftU ∩ {vl, . . . , vr−t} = ∅, it follows that

|B(Aj)| ≥ (t− 1) + 2 + t = k + 1,

a contradiction to Lemma 2.
Recall that, for a bw–k path (vl, . . . , vr),M(P ) = {vl, . . . , vl+k−1, vr−k+1, . . . , vr}.
Lemma 11. Let G be a k-connected bw–k graph and let P = (vl, . . . , vr) be a

nonextendable bw–k path. Suppose that no vertex of M(P ) is a start vertex. Let
LeftU �⊆ R2(P ) and RightU �⊆ L2(P ). Further, let LeftU ∩R2(P ) �= ∅ or RightU ∩
L2(P ) �= ∅. Then one of the vertices vi with

l+r
2 − t < i < l+r

2 + t is a start vertex.
Proof. Assume the contrary. By the supposition and Lemma 10, no vertex of P

is a start vertex (note that, e.g., LeftU ∩ R2(P ) �= ∅ implies |LeftU | ≥ 2 and that,
e.g., for RightU ∩ L2(P ) = ∅, |RightU | ≥ 2 since P cannot be extended). Let f be
a bw–k layout of G and let, w.l.o.g., vh ∈ LeftU ∩ R2(P ), r − t + 1 ≤ h ≤ r. Let
j := f(vl+k).
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Since all neighbors of vl+k belong to P , vl+k is not adjacent to the vertex with
f -value 1. By Lemma 3, k + 1 ≤ j ≤ n− k. Moreover, by Lemma 3 vl+k is adjacent
to vertices with f -values j − k and j + k. It is easy to see that by the structure of P
these vertices are vl+t and vl+k+t (otherwise one could find two adjacent vertices in
{vl+t, . . . , vl+k+t} with absolute f -difference greater than k). Let, w.l.o.g., f(vl+t) =
j − k and f(vl+k+t) = j + k. Again the structure of P implies that

f(vi)

{
< j if i ∈ {l + t, . . . , l + k − 1},
> j if i ∈ {l + t+ 1, . . . , l + k + t}.

By Lemma 3, vl+k−1 must have a neighbor such that their f -difference is k. This can
only be vl+t−1, i.e.,

f(vl+t−1) = f(vl+k−1)− k < j − k.

Let ρ be that integer from {1, . . . , t} for which l + t + ρ ≡ h mod t. Obviously,
h = l + t + ρ + pt, where p ≥ 1. By Lemma 3 (and the fact that f(vi) �= 1 for
i ∈ {l, . . . , r}),

f(vh) = f(vl+t+ρ) + pk > j + k.

Since vl+t−1 and vh are adjacent we have a contradiction: f(vh) − f(vl+t−1) > (j +
k)− (j − k) = 2k.

Lemma 12. Let G be k-connected and P = (vl, . . . , vr) be a bw–k path. If
|LeftU\R2(P )| ≥ 2 and |RightU\L2(P )| ≥ 2, then the vertices vi with l+k ≤ i ≤ r−k
are not start vertices.

Proof. The proof is similar to the proof of Lemma 10. Assume that for some i
with l+k ≤ i ≤ r−k the vertex vi is a start vertex with a corresponding bw–k layout
f . From Lemma 9 it follows that there is some j such that

Aj = {vl+t−1, . . . , vl+t+j−2} and l + t+ j − 2 ≤ r − t+ 1

or

Aj = {vr−t−j+2, . . . , vr−t+1} and r − t− j + 2 ≥ l + t− 1.

It is easy to see that |B(Aj)| ≥ k + 1, a contradiction to Lemma 2.
Now we may present the algorithm. For a bw–k path P = (vl, . . . , vr) let

ν(P ) := v�(l+r)/2�.

Algorithm bw–k(even)
Input: A positive even integer k ≥ 2, a k-connected graph G = (V,E) with
|V | ≥ 4k + 1 and ∆(G) ≤ 2k;
Determine S := {v ∈ V : |N1(v)| = |N2(v)| = k}; Let T := S;
If |S| ≤ 1 then STOP — G is not a bw–k graph;
repeat

Pick a vertex s0 ∈ S;
Test with Suspicious-vertex whether s0 is suspicious;
If s0 is not suspicious then

for all s ∈ ({s0} ∪ N1(s0) ∪ N2(s0)) ∩ S do Start-vertex(s) and
STOP
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else
Let P be the bw–k sequence of s0;
Extend P with Path-extension to a nonextendable bw–k path P ;
If P contains all vertices of G then Output of f according to Lemma
7 and STOP
else

If LeftU ∩R2(P ) �= ∅ or RightU ∩ L2(P ) �= ∅ then
If T ∩M(P ) �= ∅ then

Pick some element s1 from T ∩M(P );
for all s ∈ ({s1}∪N1(s1)∪N2(s1))∩S do Start-vertex(s)
and STOP

else
for all s ∈ {ν(P )} ∪N1(ν(P )) do Start-vertex(s)
and STOP

else delete the vertices of P not belonging to M(P ) from S
until S = ∅.
Output: A bw–k layout of G iff G is a bw–k graph.

Theorem 2. For even k, Algorithm bw–k(even) decides in linear time whether
the k-connected graph G with ∆(G) ≤ 2k is a bw–k graph, and in the positive case, it
provides a bw–k layout.

Proof. The first STOP follows from Lemma 4. After Procedure Suspicious-
vertex we already mentioned that, for a nonsuspicious vertex s0, by Theorem 1, a
vertex s from {s0}∪N1(s0)∪N2(s0) must be a start vertex if G is a bw–k graph. This
explains the second STOP. The third STOP follows from Lemma 7. Thus suppose that
P does not contain all vertices of G. If LeftU ∩R2(P ) = ∅ and RightU ∩L2(P ) = ∅,
we have |LeftU | ≥ 2 and |RightU | ≥ 2 since P cannot be extended, and we have
LeftU �= ∅, RightU �= ∅ by Lemma 6. By Lemma 12, the vertices from P not
belonging to M(P ) cannot be start vertices and we may delete them from the set
of all possible start vertices. Thus let LeftU ∩ R2(P ) �= ∅ or RightU ∩ L2(P ) �= ∅.
According to Lemma 6, we have LeftU �⊆ R2(P ) and RightU �⊆ L2(P ). In view
of Lemma 8 the vertices of M(P ) are not suspicious. Hence, if one of them, say
s1, belongs to the original set S (here T ), then again by Theorem 1 a vertex from
{s1} ∪ N1(s1) ∪ N2(s1) must be a start vertex if G is a bw–k graph and the fourth
STOP follows. Otherwise Lemma 11 can be applied to verify the fifth STOP.

The deletion of m (= r− l+1−2k) suspicious vertices obviously needs only O(m)
steps. Thus, if there is not an earlier STOP, the deletion of all suspicious vertices is
accomplished no later than after O(|S|) = O(n) steps. Then the algorithm stops after
O(n) steps since Start-vertex has linear-time complexity. Consequently, the whole
algorithm has linear-time complexity.
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1. Introduction. Problem statement. A job shop is a multistage production
process with the property that all jobs have to pass through several stages. There are n
jobs Jj , with j = 1, . . . , n, where each job Jj is a chain ofmj operations O1j , . . . , Omjj .
Every operation Oij is preassigned to one of m stages M1, . . . ,Mm of the production
process. The operation Oij has to be processed for pij time units at its stage; the value
pij is called its processing time or its length. We will consider a basic model where
there is exactly one machine available for each stage; to simplify the presentation we
will identify the stage with the corresponding machine. In a feasible schedule for the
n jobs, at any moment in time every job is processed by at most one machine and
every machine executes at most one job. For each job Jj , operation Oi−1,j always is
processed before operation Oij , and each operation is processed without interruption
on the machine to which it was assigned. A flow shop is a special case of the job
shop where each job has exactly one operation in each stage, and where all jobs pass
through the stages in the same order M1 → M2 → · · · → Mm. In an open shop the
ordering of the operations in a job is not fixed and may be chosen by the scheduler.

In this paper, we are mainly interested in shop problems under the no-wait con-
straint. In such a no-wait shop, there is no waiting time allowed between the execution
of consecutive operations of the same job. Once a job has been started, it has to be
processed without interruption, operation by operation, until it is completed. In a
no-wait flow shop instance without operations of length zero, any feasible schedule
is a permutation schedule, i.e., a schedule in which each machine processes the jobs
in the same order. In the no-wait permutation flow shop problem, only permutation
schedules are feasible schedules. Our goal is to find a feasible schedule that mini-
mizes the makespan (or length) Cmax of the schedule, i.e., the maximum completion
time among all jobs. The minimum makespan among all feasible schedules is denoted
by C∗max.
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Complexity of shop problems. The computational complexity of the classical
shop problems (without the no-wait constraint) is easy to summarize: They are poly-
nomially solvable on two machines, and they are NP-hard on three or more machines;
see, e.g., Lawler et al. [11]. For no-wait shops, the situation is more interesting. Sahni
and Cho [19] proved that the no-wait job shop and the no-wait open shop problems
are strongly NP-hard even if there are only two stages and if each job consists of only
two operations. The no-wait permutation flow shop problem can be formulated as an
asymmetric traveling salesman problem (ATSP); see, e.g., Piehler [15] and Wismer
[25]. For two machines, the distance matrix of this ATSP has a very special combina-
torial structure, and the famous subtour patching technique of Gilmore and Gomory
[5] yields an O(n log n) time algorithm for the two-machine no-wait flow shop. Röck
[17] proves that the three-machine no-wait flow shop is strongly NP-hard, refining the
previous complexity result by Papadimitriou and Kanellakis [12] for four machines.
Hall and Sriskandarajah [8] provide a thorough survey of complexity and algorithms
for no-wait scheduling.

Approximability of shop problems. We say that an approximation algo-
rithm has performance ratio or worst case ratio ρ for some real ρ > 1 if it always
delivers a solution with makespan at most ρC∗max. Such an approximation algorithm
is then called a ρ-approximation algorithm. A family of polynomial time (1 + ε)-
approximation algorithms over all ε > 0 is called a polynomial time approximation
scheme (PTAS).

The approximability of the classical shop problems (without the no-wait con-
straint) is fairly well understood: If the number of machines is a fixed value that is
not part of the input, then the flow shop [7], the open shop [20], and the job shop [9]
possess a PTAS. On the other hand, if the number of machines is part of the input,
then none of the three shop problems has a PTAS unless P = NP [24].

Prior to our work, only a few results were known on the approximability of the
no-wait shop problems: For all shop problems on m machines, sequencing the jobs in
arbitrary order yields a (trivial) polynomial time m-approximation algorithm. Röck
and Schmidt [18] improve on this for the no-wait flow shop and give an �m/2�-
approximation algorithm. Papadimitriou and Kanellakis [12], Glass, Gupta, and
Potts [6], and Sidney, Potts, and Sriskandarajah [21] study various generalizations
and modifications of the no-wait flow shop problem on two machines. For all these
generalizations the authors manage to design approximation algorithms, with perfor-
mance guarantees strictly better than two, by building on the algorithm of Gilmore
and Gomory [5]. Agnetis [1] introduces an approximation algorithm for the no-wait
flow shop with only a small number of distinct job-types; as the number of jobs in ev-
ery job-type grows, the performance guarantee of this algorithm tends to one. Sidney
and Sriskandarajah [22] obtain a 3/2-approximation algorithm for the two-machine
no-wait open shop problem. The joint preliminary version of this paper [23] contains
several nonapproximability results due to Woeginger. He proved that the no-wait
job shop problem on three machines with at most three operations per job, and the
no-wait job shop problem on two machines with at most five operations per job, do
not have a PTAS unless P = NP.

Results and organization of this paper. We design a PTAS for the no-wait
permutation flow shop problem when the number m of machines is fixed. This result
first uses several job partition and rounding steps and then exploits the connection of
the no-wait flow shop to the ATSP. In section 2 we recall and discuss this connection
between a no-wait flow shop and the ATSP. In section 3 we derive the PTAS. Some



PTAS FOR NO-WAIT FLOW SHOP 315

of our rounding and job partition steps seem to be very close to the rounding and job
partition steps in the PTASs for the classical shop problems [7, 9, 20], but our tech-
nique cannot be generalized to the no-wait job shop problem because of the negative
result due to Woeginger [23]. The paper concludes with the statement of several open
problems in section 4.

2. The no-wait permutation flow shop and the ATSP. It is well known
(see, e.g., Piehler [15] or Wismer [25]) that the no-wait permutation flow shop problem
can be modeled as a special case of the ATSP with the triangle inequality: We add
a dummy job J0 with zero processing times on all machines to a given flow shop
instance. By G we denote the complete, arc-weighted, directed graph with vertex set
{J0, J1, . . . , Jn} and with the following weights (or distances or lengths) dqj on the
arc from job Jq to Jj . We stress the fact that, in general, dqj 	= djq:

(2.1)

dqj = max
i=1,...,m

{
i∑

k=1

pkq +

m∑

k=i

pkj

}
−

m∑

k=1

piq = max
i=1,...,m

{
m∑

k=i

pkj −
m∑

k=i+1

pkq

}
.

The intuition behind the definition of the distances in (2.1) is the following. Assume
that in some schedule job Jq completes at time t, and that job Jq is followed by
job Jj , without unnecessary idle time between the two jobs. Then Jj completes at
time t + dqj . With this it is easy to see that every feasible permutation schedule of
the no-wait flow shop problem corresponds to a directed Hamiltonian cycle C in the
digraph G such that the makespan of the schedule equals the length of C. Conversely,
if we delete the ingoing arc of vertex J0 from some Hamiltonian cycle C in G, then
the resulting Hamiltonian path corresponds to a feasible permutation schedule with
the same length.

The following observations on the distances dqj are straightforward to verify.
Observation 2.1. For every job Jj, denote by �j =

∑m
k=1 pkj its overall length.

(i) For all 0 ≤ j, q ≤ n, �j − �q ≤ dqj ≤ �j holds.
(ii) For all 0 ≤ j, k, q ≤ n, dqj ≤ dqk + dkj ; i.e., the distances dqj fulfill the

triangle inequality.
(iii) If one of the values pij changes to pij +∆, then the length of any ATSP tour

(and the makespan of the corresponding feasible schedule) changes by at most
±∆.

Because of this correspondence between permutation schedules and ATSP tours,
the result of Frieze, Galbiati, and Maffioli [4] on the ATSP with triangle inequality
yields an O(log n)-approximation algorithm for the no-wait permutation flow shop
problem. Recently, Carr and Vempala [2] gave some theoretical evidence for the
existence of a 4/3-approximation algorithm for the ATSP with triangle inequality. Of
course, such a result would immediately yield a 4/3-approximation algorithm for the
no-wait permutation flow shop on an arbitrary number of machines. We remark that
the strongest known negative result for the general ATSP with the triangle inequality
is due to Papadimitriou and Vempala [14]. They prove that unless P = NP, the ATSP
with triangle inequality cannot have a polynomial time approximation algorithm with
performance guarantee better than 41/40. However, this negative result does not seem
to carry over to the no-wait flow shop.

3. Approximability of the no-wait flow shop. Throughout this section we
consider an instance I of the no-wait permutation flow shop problem, where the
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number m of machines is a fixed constant and not part of the input. By �j =
∑m
i=1 pij

we denote the total length of job Jj . Let Li =
∑n
j=1 pij be the load of machine Mi,

and let Lmax = maxi Li be the maximum machine load. Clearly, Lmax ≤ C∗max.
Let ε > 0 be a fixed precision parameter. Our goal is to find a near optimal

schedule, for instance, I whose makespan is at most (1+ const ·ε)C∗max for some fixed
positive constant const that depends only on m. Clearly, this will yield the PTAS.
We will use log x to denote the logarithm base 1 + ε of x. By α we denote a rational
number with εm/ε ≤ α ≤ ε whose exact value will be fixed below. From now on we
will assume that the number n of jobs is sufficiently large to satisfy

(21/m − 1) log n ≥ 1 + log(m/ε)(3.1)

and

αn ≥ logm n.(3.2)

If n does not fulfill (3.1) and (3.2), then it is bounded by a constant in m and ε; such
an instance of constant size can be solved in constant time by global enumeration.
We partition the set of jobs into three subsets as follows:

B = {Jj | αLmax/ log
m n ≤ �j},

M = {Jj | ε · αLmax/ log
m n < �j < αLmax/ log

m n},
S = {Jj | �j ≤ ε · αLmax/ log

m n}.
The jobs in B are called big jobs, the jobs in M are called medium jobs, and the jobs
in S are called small jobs. For the operations of big, medium, and small jobs we use
a similar notation: the operations of big jobs are called big operations, while opera-
tions of medium and small jobs are called medium and small operations, respectively,
independently of their actual sizes. Since

∑n
j=1 �j ≤ mLmax, the number of big jobs

is upper bounded as

|B| ≤ m

α
logm n ≤ ε−m/εm logm n.(3.3)

Sevastianov and Woeginger [20] show that the value α can be chosen so that
∑

Jj∈M
�j ≤ εLmax.(3.4)

This is done as follows. Consider the sets M(k) of medium jobs with respect to
α = εk, where k is some positive integer. Note that for k 	= k′ the two sets M(k) and
M(k′) are disjoint. Since the total length of all jobs is at most mLmax, there exists
a value k∗ ≤ m/ε for which M = M(k∗) satisfies inequality (3.4). We set α = εk∗ .
Finally, we define

β
.
=
(
m2 logm n

)
/ (εα) .(3.5)

Starting from the flow shop instance I = I(0), we will now define a sequence of
instances I(1), I(2), I(3), I(4). The instance I(x+1) always is a rounded and slightly

simplified version of instance I(x). In instance I(x), the processing times are p
(x)
ij , the

optimal makespan is C
(x)
max, the digraph for the underlying ATSP is G(x), and so on. In

order to get a near optimal schedule, for instance, I(x), it will always be sufficient to
get a near optimal schedule for the simplified instance I(x+1). Hence, by constructing
a PTAS for I(4) we will establish the existence of the desired PTAS for the no-wait
permutation flow shop on a fixed number of machines.
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3.1. How to round the instance. In the first rounding step, we remove all
medium jobs from I and thus produce instance I(1). If we have a near optimal schedule
with makespan CAPX

max for the big and small jobs in instance I(1), then we may append
the medium jobs in arbitrary order at the end of this schedule. By (3.4), this yields
a schedule with makespan at most CAPX

max + εLmax for J . Hence, to build a PTAS for
the original problem, it is sufficient to get a near optimal schedule for I(1).

In the second rounding step, we round the processing times of all big operations
with processing time smaller than Lmax/β up to Lmax/β. This yields instance I(2).
The number of rounded operations is at most m|B| ≤ εβ, and by Observation 2.1(iii)
each rounded operation can increase the length of an optimal Hamiltonian cycle in

the underlying digraph by at most Lmax/β. Therefore the length C
(2)
max of an optimal

Hamiltonian cycle (and the length of an optimal no-wait schedule) in G(2) fulfills

C
(1)
max − εLmax ≤ C

(2)
max ≤ C

(1)
max + εLmax. Hence, in order to get a near optimal

schedule for I(1), it is sufficient to get one for I(2). Note that in I(2) the longest and
the shortest big operation are at most a factor of β away from each other.

In the third rounding step, we produce instance I(3) by rounding up to εLmax/mn
all the processing times of small operations that are smaller than εLmax/(mn) (ex-
cept the processing times of operations of the dummy job J0). The number of
rounded operations is at most mn, and by Observation 2.1(iii) each rounded op-
eration can increase the length of an optimal Hamiltonian cycle in the underlying
digraph by at most εLmax/(mn). Hence, the optimal Hamiltonian cycle satisfies

C
(2)
max − εLmax ≤ C

(3)
max ≤ C

(2)
max + εLmax, and to get the PTAS it is sufficient to find a

near optimal schedule for I(3). Note that in the new instance I(3) all processing times
of small operations are rational numbers between εLmax/mn and Lmax, and hence
their minimum and maximum are at most a factor of mn/ε away from each other.

We denote by L
(3)
max the maximum machine load in I(3).

In the fourth and last rounding step, we round all processing times up to the next

integer power of 1+ε. This results in instance I(4). The rounding adds at most εL
(3)
max

to the load of any machine. By Observation 2.1(iii) this changes the optimal makespan

by at most mεL
(3)
max, and we have C

(3)
max −mεL

(3)
max ≤ C

(4)
max ≤ C

(3)
max +mεL

(3)
max. Once

again we conclude that in order to get a near optimal schedule for I(3), it is sufficient
to get a near optimal schedule for I(4).

We say that two jobs Jj and Jk are of the same job-type if pij = pik holds for
1 ≤ i ≤ m. Such a job-type is represented by an m-dimensional vector (p1j , . . . , pmj)
of processing times. Analogously to the big and small jobs, we distinguish between
big and small job-types. The following lemma will be useful in subsequent sections.

Lemma 3.1. The rounded no-wait flow shop instance I(4) satisfies the following
properties:

(I1) The number g of different big job-types is at most c1 log
m log n, where the

constant c1 depends only on m and ε.
(I2) The number f of different small job-types is at most 2 logm n.
(I3) Small jobs have length ≤ 2α(1 + ε)εLmax/ log

m n.

Proof. (I1) Since in I(3) the longest and the shortest big operation are at most
a factor of β away from each other, instance I(4) has at most 1 + log β different
processing times of big operations. Hence, there are at most (1+ log β)m different big
job-types, and this number is O(logm log n).

(I2) Since in I(3) the longest and the shortest small operation are at most a
factor of mn/ε away from each other, instance I(4) has at most 1+log(mn/ε) different
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processing times of small operations. Including the dummy job J0, this yields at most
1 + (1 + log(mn/ε))

m
small job-types. Because of inequality (3.1), this number is

bounded by 2 logm n.

(I3) A small job Jj in the original instance I has length �j ≤ εαLmax/ log
m n.

The first and the second rounding step do not touch this job; the third rounding
step adds at most εLmax/(mn) to each of the m operations; the fourth rounding

step multiplies the length by a factor of at most 1 + ε. To summarize, �
(4)
j ≤ (1 +

ε)(εαLmax/ log
m n+ εLmax/n). Because of inequality (3.2), this value is bounded by

2α(1 + ε)εLmax/ log
m n.

3.2. How to use the ATSP formulation. The instance I(4) contains only a
small number of different job-types, and this structure carries over to the underlying
digraph G(4) for the ATSP formulation. Let 1, . . . , f and 1, . . . , g be enumerations of
the small and the big job-types that have at least one job in I(4); in this enumeration
the dummy job J0 forms its own small job-type. Let s1, . . . , sf and b1, . . . , bg denote
the numbers of jobs in the corresponding small and big job-types. Note that |S| =∑f
i=1 si and that |B| =∑g

i=1 bi.

The corresponding traveling salesman problem becomes a special case of the so-
called many-visits-to-few-cities ATSP (cf. Cosmadakis and Papadimitriou [3]). An in-
stance to this ATSP is specified as follows: There are f small cities S′ = {vs1, . . . , vsf}
that correspond to small job-types and g big cities B′ = {vb1, . . . , vbg} that corre-
spond to big job-types. The distances dij between two cities are defined as in (2.1)
and thus yield an (f+g)×(f+g) distance matrix D. The matrix D is not necessarily
symmetric, nor must it have zeros on the diagonal elements. Finally, there are f + g
positive integers s1, . . . , sf , b1, . . . , bg. The goal is to find the shortest closed walk
that visits every small city vsi (i = 1, . . . , f) exactly si times and every big city vbj
(j = 1, . . . , g) exactly bj times. Note that the same city may be visited several times in
a row. The running time of the algorithm in [3] for the many-visits-to-few-cities ATSP
grows exponentially in the number of cities. Therefore we get only a superpolynomial
running time if we apply this algorithm directly to our situation.

In the following, we will show that the above defined special case of the many-
visits-to-few-cities ATSP possesses a PTAS. It is convenient to formulate this ATSP
via Eulerian subgraphs: For a given (f+g)× (f+g) distance matrix D for the vertex
set S′ ∪ B′, and for f + g positive integers s1, . . . , sf , b1, . . . , bg, find the minimum
length Eulerian multigraph on S′ ∪ B′ such that the corresponding vertices have in-
degrees s1, . . . , sf , b1, . . . , bg. We recall that a multigraph is Eulerian if and only if it is
strongly connected and balanced (i.e., each vertex has equal in-degree and out-degree).
The following lemmas show that it is easy to find a multigraph that is almost Eulerian
and that is almost of minimum length.

Lemma 3.2. There exists a balanced multigraph G∗ on the vertex set S′∪B′ with
in-degrees (s1, . . . , sk, b1, . . . , bt) that satisfies the following three properties:

(G1) S′ and B′ are connected by exactly two arcs, one from B′ to S′ and one from
S′ to B′; such arcs will be called crossing arcs.

(G2) All vertices of the set B′ are in the same strongly connected component of G∗.
(G3) The total length of the multigraph G∗ is T ≤ C

(4)
max + 4m(1 + ε)εLmax.

Proof. Fix an optimal tour and the corresponding optimal Eulerian multigraph of

length C
(4)
max for the problem. Note that the number of crossing arcs that go from B′

to S′ equals the number of crossing arcs that go from S′ to B′. Moreover, these two
types of crossing arcs are alternating along the optimal tour. We define for every arc
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from B′ to S′ its partner arc to be the next crossing arc when moving along the tour.
As long as the multigraph contains more than two crossing arcs, we repeat the

following swapping step: Consider a crossing arc (vbi, vsj) from B′ to S′ in the tour,
and let (vsk, vbl) be its partner arc. Delete these two crossing arcs from the tour
and add two new arcs (vbi, vbl) and (vsl, vsj). By the construction, the resulting
multigraph is again balanced and has the right in-degrees. By using the inequalities
from Observation 2.1(i), we estimate the length of the first new arc (vbi, vbh) by
dvbi,vbh ≤ �vbh ≤ dvsl,vbh + �vsl . The length of the second new arc (vsl, vsj) fulfills
dvsl,vsj ≤ �vsj . Hence, the length of the two new arcs is at most �vsl + �vsj more
than the length of the two crossing arcs that were removed, and the swapping step
increases the length of the multigraph by at most 2max1≤i≤f �vsi . By statement (I3)
in Lemma 3.1, this amount is at most 4α(1 + ε)εLmax/ log

m n.
Eventually, we will end up with a multigraph G∗ with exactly two crossing arcs

as required in (G1). Clearly, this multigraph G∗ is balanced and obeys the in-degrees.
Since in the original multigraph the vertex set B′ was strongly connected and since
the swapping steps only introduce shortcuts into the connecting paths between big
cities, the graph G∗ also satisfies property (G2). Finally, the number of swapping
steps is bounded by the total in-degree of the vertex set B′. This number amounts to
|B| and can be bounded as in (3.3). Hence, the total increase caused by all swaps is
at most 4m(1 + ε)εLmax as required in property (G3).

Lemma 3.3. For a given degree sequence b = (b1, . . . , bg) for the big cities, a given
starting city vbk and a given final city vb�, we can compute in polynomial time the
shortest directed path from vbk to vb� that visits city vbj exactly bj times, j = 1, . . . , g.

For technical reasons, we count the starting point of the directed path also as a
visit to vbk.

Proof. We follow the dynamic programming approach of Psaraftis [16] and Cos-
madakis and Papadimitriou [3]. For each degree sequence a = (a1, . . . , ag) with
0 ≤ ai ≤ bi and each city vbq (1 ≤ q ≤ g), let C(a; q) be the length of the shortest
path from city vbk to city vbq that visits every city vbi exactly ai times. Then C(a; q)
satisfies the recurrence

C(a1, . . . , ag; q) = min
1≤i≤g

{
C(a1, . . . , ai−1, ai − 1, ai+1, . . . , ag; i)+dvbi,vbq

}
.

The initial conditions are C(e(k); k) = 0, where e(k) is the 0-1 unit-vector with a
single 1-entry in the kth position. The length of the optimal directed path from vbk
to vbl with degree sequence b is given by C(b; �). It is straightforward to evaluate
this recurrence in time proportional to g2

∏g
i=1(bi + 1). Since each bi is bounded by

|B| which in turn is bounded as in (3.3), and since g is O(logm log n) by property
(I1) in Lemma 3.1, this running time is an extremely slowly growing function in n:

It is bounded by 2O(logm+1 logn), which is sublinear and grows more slowly than any
polynomial in n.

Lemma 3.4. A multigraph G∗ as described in Lemma 3.2 can be found in poly-
nomial time.

Proof. We will show how to find in polynomial time (in fact, in sublinear time in
n) the shortest balanced multigraph that obeys the in-degrees and satisfies (G1) and
(G2). Clearly, this multigraph will also satisfy (G3).

We check all O(g2f2) possibilities for the two crossing arcs (vbi, vsj) and (vsk, vbl)
in (G1). The remaining graph decomposes into a subgraph for the small cities and
into a subgraph for the big cities. For the small cities, we want to find a multigraph of
minimum length in which city vsj has in-degree sj−1 and out-degree sj , city vsk has
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in-degree sk and out-degree sk−1, and all other cities vsh (1 ≤ h ≤ f and j 	= h 	= k)
have in-degree and out-degree both equal to sh. Such a multigraph can be found in
polynomial time by solving a transportation problem (see, e.g., Papadimitriou and
Steiglitz [13]). Note that the degree constraints enforce a directed path from vsj to
vsk in the resulting graph. For the big cities, the only way to satisfy property (G2)
is to connect them via a directed path from vbl to vbi that obeys all the in-degrees.
By Lemma 3.3 a shortest such path can be found in polynomial time. Together with
the directed path from the small city vsj to the small city vsk, this indeed makes B′

strongly connected.

3.3. How to get the approximation scheme. By Lemmas 3.3 and 3.4, we
can find in polynomial time a multigraph G∗ as described in Lemma 3.2. In general
this multigraph will not be connected, since some groups of small cities can form
separate connected components.

To repair the situation, we add to G∗ a directed Hamiltonian cycle on the vertex
set S′. In terms of the no-wait flow shop problem, this means that we add one new
job to each small job-type. Clearly the resulting graph is balanced and strongly
connected, and hence, Eulerian. We denote the length of the corresponding ATSP

tour (and the length of the corresponding permutation schedule) by C
(5)
max. By (I2)

and (I3) in Lemma 3.1, adding the Hamiltonian cycle increases the length of G∗ by
at most 2 logm n times 2α(1+ ε)εLmax/ log

m n. From (G3) in Lemma 3.2 we now get
that

C(5)
max ≤ C(4)

max + 4m(1 + ε)εLmax + 4α(1 + ε)εLmax ≤ C(4)
max + 5m(1 + ε)εLmax.

Since the permutation schedule with makespan C
(5)
max can be computed in polynomial

time, we finally have reached the desired PTAS.
Let us summarize the running time of this PTAS. We assume the unit cost model

of computation, where we can perform all standard arithmetic operations in constant
time, such as rounding rationals to integers, adding up two values, multiplying two
values, or computing the logarithm of a value. In the PTAS, determining the value of
α and computing the partition into big, medium, and small jobs clearly can be done in
linear time. The first three rounding steps compare only the length of every operation
against certain thresholds; since there are O(n) operations, these comparisons only
take O(n) time. In the fourth rounding step, we round each operation to the next
integer power of 1+ ε which also takes O(n) time in the unit cost model. Finally, the
computation of the “almost” Eulerian graph in Lemma 3.4 can be done in time that
is even sublinear in n: The number of big and small cities is only polylogarithmic
in n, and thus guessing the two crossing arcs, solving the dynamic program for the
big cities, and solving the transportation problem for the small cities altogether cost
only polylogarithmic time. To summarize, up to a constant factor that depends
exponentially on the (fixed) number m of machines and the (fixed) precision ε, the
constructed PTAS has a running time linear in n.

Theorem 3.5. The no-wait permutation flow shop problem on a fixed number of
machines possesses a PTAS whose running time is linear in the number of jobs.

We conclude this section with a remark on the combinatorial structure of the
constructed schedules. The Eulerian cycle in the final graph visits the small and the
big cities in two separate blocks, since there are only two crossing arcs (vbi, vsj) and
(vsk, vbl). If we transform this cycle into a schedule by deleting the arc (vsk, vbl)—
instead of deleting the arc that enters the dummy job J0—then we increase the length
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by at most �vsk . By appending all the medium jobs in the end, this yields a near
optimal schedule with a surprisingly primitive structure: The big jobs, the small
jobs, and the medium jobs are processed in three separate blocks. This behavior is
very different from the classical shop problems without no-wait constraint, where the
PTASs heavily rely on mixing big and small jobs [7, 9, 20].

4. Conclusion and open problems. We have shown that the no-wait per-
mutation flow shop problem with a fixed number of machines allows a PTAS. There
remain quite a few interesting open questions on no-wait shop scheduling. The most
challenging problem is to decide whether the no-wait permutation flow shop with an
arbitrary number of machines has a PTAS. In fact, it even would be interesting to
get a polynomial time approximation algorithm with constant worst case guarantee
for this problem. Note that here the gap-technique as used by Williamson et al. [24]
cannot be used to get in-approximability results: For any constant k, the problem of
finding a tour of length at most k or deciding that there is no such tour is solvable
in polynomial time for the ATSP with triangle inequality. Another question concerns
the approximability behavior of the job shop where each job consists of at most two
operations. We feel that this problem should have a PTAS.

Acknowledgment. The author thanks G. J. Woeginger for many improvements
in this presentation of results made during his work on our joint conference paper [23].
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Abstract. The shortest-path metric d of a graph G = (V,E) is called δ-hyperbolic if for any four
vertices u, v, w, x ∈ X the two larger of the three sums d(u, v) + d(w, x), d(u,w) + d(v, x), d(u, x) +
d(v, w) differ by at most δ. In this paper, we characterize the graphs with 1-hyperbolic metrics in
terms of a convexity condition and forbidden isometric subgraphs.
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Introduction. It is well known that a metric space (X, d) embeds into a tree
network (with positive real edge lengths), that is, d is a tree metric, if and only if the
“classical” 4-point condition holds, that is, for any 4 points u, v, w, x the two larger
of the sums

d(u, v) + d(w, x), d(u,w) + d(v, x), d(u, x) + d(v, w)(1)

are equal; cf. [1, 6] for a comprehensive bibliography. In the case that d is the shortest-
path metric of a graph G, this condition is satisfied exactly when G is a block graph;
see [4, 16].

Every metric d on a 4-point set {u, v, w, x} (tree-realizable or not) has a canonical
representation in the rectilinear plane; cf. [2, 10]. For Figure 1 it is stipulated that the
three distance sums in the list (1) are ordered from small to large, thus implying ξ ≤ η.
Then η is half the difference of the largest and the smallest sum, while ξ is half the
largest minus the medium sum. In data analysis, especially the phylogenetic analysis
of molecular sequences, the ratio ξ/η would thus (locally) measure the deviation from
tree-likeness; cf. [11].

For graph metrics the deviation from a tree metric may be measured directly by
ξ (rather than ξ/η) since ξ can only take values from 0, 1

2 , 1,
3
2 , . . . . More specifically,

following a general notion of δ-hyperbolic metric spaces due to Gromov, we say that
the shortest-path metric d of a graph G (that associates to each vertex pair the length
of a shortest path connecting the pair) is δ-hyperbolic (or tree-like with defect at most
δ) if and only if the difference 2ξ between the largest and medium distance sums for
any 4 vertices u, v, w, x does not exceed δ, that is,

d(u, v) + d(w, x) ≤ d(u,w) + d(v, x) ≤ d(u, x) + d(v, w)(βδ)

implies d(u, x) + d(v, w)− d(u,w)− d(v, x) ≤ δ.

δ-hyperbolic metric spaces play an important role in geometric group theory; see for
example [12, 13, 14].
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Fig. 1. Realization of a metric on {u, v, w, x} in the rectilinear plane.

In this paper, we will characterize the graphs with 1-hyperbolic metrics, i.e., the
graphs satisfying condition (β1), by structural properties involving cycles and certain
forbidden subgraphs. Trivially, 1-hyperbolic graphs can be recognized in polynomial
time, but the defining condition alone gives us little immediate insight about why
particular graph classes would comprise only 1-hyperbolic graphs. A natural approach
is then to seek minimal configurations, each of which violates (β1) but is a graph in
its own right: we say that a subgraph H of G is isometric if H together with its own
shortest-path metric constitutes a metric subspace of G endowed with d. Certainly,
1-hyperbolicity in arbitrary graphs cannot be characterized solely in terms of small
forbidden isometric subgraphs; however, with an additional requirement for cycles we
can achieve a full characterization.

All graphs G = (V,E) occurring here are simple, connected, without loops or
multiple edges, but not necessarily finite. We will write u ∼ v if the vertices u and v
are adjacent (and thus mutual neighbors) in G. A shortest path between two vertices
x, y of a cycle C of G is called a bridge of C if its length is smaller than the distance
between x and y measured along C. A cycle C is called well-bridged (in G) if for any
vertex x ∈ C there exists a bridge from x to some vertex of C or if the two neighbors
of x from C are adjacent (thus forming a chord). A cycle C = Cn of length n = 4, 5
is well-bridged exactly when it is not induced in G, that is, it has some chord, but
a noninduced 6-cycle, for instance, is not necessarily well-bridged. The well-known
Petersen graph constitutes an example for which all cycles are well-bridged (although
it has many induced 6-cycles). The property that all cycles of G except 5-cycles
are well-bridged can be translated into a convexity property of balls. A subset A of
vertices of G is convex if the interval

I(u, v) = {x ∈ X : d(u, x) + d(x, v) = d(u, v)}
between any two vertices u and v of A lies entirely in A. The ball Bk(x) of center x
and radius k ≥ 0 consists of all vertices of G at distance ≤ k from x.

Fact 1 (see [15, 19]). For a graph G, the following conditions are equivalent:
(i) All balls of G are convex;
(ii) all cycles Cn, n �= 5, of G are well-bridged;
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Fig. 2. Forbidden isometric subgraphs.

(iii) G does not contain isometric cycles of length n > 5, and for any two vertices
x, y the neighbors of x from the interval I(x, y) are pairwise adjacent.

Any of the preceding equivalent conditions can then be used in our main result
characterizing 1-hyperbolicity.

Theorem. A graph G is 1-hyperbolic if and only if all cycles Cn, n �= 5, of G are
well-bridged and none of the graphs in Figure 2 occur as isometric subgraphs of G.

A bridged graph G, by definition, has no isometric cycles Cn for n > 3; that is, all
cycles are well-bridged. Hence our result covers the characterization of 1-hyperbolicity
for bridged graphs by forbidden isometric subgraphs as given by Koolen and Moulton
[17]. For bridged graphs our proof would simplify in that “Case 2” below cannot occur
so that we obtain a rather short proof in this situation.

Preliminaries. In this section, we recall some results used in the proof of the
theorem. First, we consider yet another condition involving four points that is related
to (βi) for i ≤ 1:

If v ∈ I(u,w) and w ∈ I(v, x) such that v, w are adjacent,(αi)

then d(u, x) ≥ d(u, v) + d(w, x) + 1− i.

Conditions (αi) and (βj) are relevant to near-isometric embedding ϕ of a graph G
(with shortest-path metric d) into a tree network T (with metric d′), where the abso-
lute error is bounded by some ε > 0, that is,

|d(u, v)− d′(ϕ(u), ϕ(v))| ≤ ε,

for all vertices u, v of G. If G admits such a representation, then it satisfies (αi) and
(βj) with i = 
3ε� and j = 
4ε�. Near-isometric tree embeddings were investigated in
[7, 9], where it is shown that the error bound ε can be chosen to be 2 for chordal graphs
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and otherwise bounded by a polynomial linear in the maximum length of induced
cycles. A variant of this embedding concept additionally requires that d′ ≤ d; then
(αi) and (βi) both hold with i = 
2ε�.

Condition (α0) was first introduced in [18] for metric spaces; in the case of graphs
it characterizes the Ptolemaic graphs [8]. All chordal graphs satisfy (α1) [8], but the
latter class is in fact larger.

Fact 2 (see [20]). A graph G satisfies (α1) if and only if all cycles Cn, n �= 5,
are well-bridged and G does not contain the graph of Figure 2(c) as an isometric
subgraph.

It is clear by Facts 1 and 2 that all balls in graphs are convex whenever (α1)
holds. On the other hand, condition (β1) implies (α1). Indeed, let v, w be adjacent
vertices such that v ∈ I(u,w) and w ∈ I(v, x). The distance sums d(u,w) + d(v, x)
and d(u, v)+d(w, x) differ by 2. If (β1) is fulfilled, then necessarily d(u, x)+d(v, w) ≥
d(u,w)+ d(v, x)− 1. Therefore d(u, x) ≥ d(u, v)+ d(w, x), and hence (α1) is satisfied.
Consequently, in view of Fact 2, we can reformulate the characteristic condition in
the theorem in terms of (α1) and five forbidden isometric subgraphs.

Corollary. A graph G is 1-hyperbolic if and only if it satisfies (α1) and none
of the graphs of Figure 2(a),(b),(d),(e),(f) occur as isometric subgraphs.

Three not necessarily distinct vertices u, v, w of a graphG are said to form a metric
triangle uvw of type (k1, k2, k3), where d(u, v) = k1, d(v, w) = k2, and d(w, u) = k3, if
the intervals I(u, v), I(v, w), and I(w, u) intersect pairwise only in the common end
vertices. If k1 = k2 = k3 = k, then this metric triangle is called equilateral of size
k; when k = 0 this metric triangle is degenerate, consisting of a single vertex. A
metric triangle uvw is a quasi-median of the triplet x, y, z if the following equations
are satisfied:

d(x, y) = d(x, u) + d(u, v) + d(v, y),

d(y, z) = d(y, v) + d(v, w) + d(w, z),

d(z, x) = d(z, w) + d(w, u) + d(u, x).

If this quasi-median is an equilateral triangle, then its size will be denoted by q(x, y, z).
Note that in [5] quasi-medians were defined more restrictively by admitting only
equilateral triangles. If the size q(x, y, z) equals zero, then the (degenerate) quasi-
median (triangle) is also referred to as a median (vertex).

We conclude this section with a somewhat technical observation, which is quite
useful in the proof of the theorem.

Lemma 1. Given 1 ≤ k ≤ l, let u, v, w, x be vertices of a graph G such that

d(u, v) + d(w, x) + j = d(u,w) + d(v, x) + i = d(u, x) + d(v, w),

for which the sum of all distances between u, v, w, x is minimal relative to the con-
straints i ≥ k and j ≥ l. If all quasi-medians of these vertices are equilateral triangles,
then

d(u, v) + d(u,w) = d(v, w) + q(u, v, w),

d(u,w) + d(w, x) = d(u, x) + q(u,w, x),

d(u, v) + d(v, x) = d(u, x) + q(u, v, x),

d(v, x) + d(w, x) = d(v, w) + q(v, w, x),
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whence

q(u, v, w) + q(u,w, x) = 2d(u,w)− j,

q(u, v, w) + q(u, v, x) = 2d(u, v)− i,

q(v, w, x) + q(u,w, x) = 2d(w, x)− i,

q(v, w, x) + q(u, v, x) = 2d(v, x)− j,

and finally

q(u, v, w) + q(u, v, x) + q(u,w, x) + q(v, w, x) = 2[d(u, x) + d(v, w)− i− j].

Proof. Suppose that the first of the asserted equations fails. Then we can find
a neighbor u′ of u in I(u, v) ∩ I(u,w). Substituting u by u′ reduces the smaller two
distance sums for u, v, w, x by 1 and the largest one by at most 1, while the sum
of all distances between u, v, w, x decreases, contrary to the minimality assumption.
Since we may interchange u with x, or v with w, or {u, x} with {v, w}, we obtain the
subsequent three equations by symmetry. Adding up the first two equations yields
the asserted equality for q(u, v, w) + q(u,w, x), and so forth. The final equation is
obtained from the sum of the second set of equations.

Properties of graphs satisfying (α1). Throughout this section, G is a graph
in which (α1) holds.

Lemma 2. If uvw is a metric triangle of G with d(u, v) = 1, then d(w, u) =
d(w, v) ≤ 2.

Proof. Let u′ ∈ I(w, u) and v′ ∈ I(w, v) be neighbors of w. From the initial
hypothesis we conclude that u ∈ I(u′, v) and v ∈ I(v′, u). Applying (α1) we obtain

d(u′, v′) ≥ d(u′, u) + d(v, v′) = d(u,w) + d(v, w)− 2 = 2d(u,w)− 2.

Since d(u′, v′) ≤ 2, it follows immediately that d(u,w) ≤ 2 holds as well.
Lemma 3. If x, y ∈ I(u, v) are neighbors of u, then x ∼ y. Furthermore, x and y

have a common neighbor v′ satisfying d(v′, v) = d(u, v)− 2.
Proof. Let d(u, v) = k + 1. Since x, y ∈ Bk(v), u /∈ Bk(v), and the ball Bk(v) is

convex, necessarily x and y are adjacent. Let v′ ∈ I(x, v)∩I(y, v) be closest to x and y,
thus giving a metric triangle xyv′. From Lemma 2 we know that d(x, v′) = d(y, v′) ≤ 2.
If v′ is adjacent to x and y, we are done. Now suppose d(x, v′) = d(y, v′) = 2. Denote
by x′ and y′ some common neighbors of v′, x and v′, y, respectively. Then x′ ∼ y′

because x′, y′ ∈ I(v′, v). We obtain a 4-cycle (x, y, y′, x′), which must have at least
one diagonal, say x′ ∼ y. Consequently, x′ ∈ I(x, v) ∩ I(y, v), contrary to the choice
of v′.

Lemma 4. Every metric triangle uvw of G is of type (1, 1, 1), (1, 2, 2), (2, 1, 2),
(2, 2, 1), or (2, 2, 2).

Proof. Assume d(u, v) ≤ d(v, w) ≤ d(w, u). We proceed by induction on k =
d(u, v)+d(v, w)+d(w, u). The case d(u, v) = 1 is covered by Lemma 2. We distinguish
two further cases.

Case 1. d(u, v) = 2.
Suppose by way of contradiction that d(u,w) ≥ 3. Choose a common neighbor

x of u and v. If d(x,w) > d(u,w), then (α1) yields d(v, w) ≥ d(w, u) + 1, contrary
to the maximality of d(u,w). Therefore d(x,w) = d(u,w) ≥ 3. By Lemma 2, we can
find a neighbor w′ of w such that w′ ∈ I(w, u) ∩ I(w, x). If d(x,w) = d(v, w), then
there exists another neighbor w′′ ∈ I(w, v) ∩ I(w, x) of w. On the other hand, if
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d(v, w) < d(x,w), then v ∈ I(x,w), whence every neighbor w′′ ∈ I(w, v) of w belongs
to I(w, x). In both cases, we have found a vertex w′′ ∈ I(w, v) ∩ I(w, x) adjacent to
w and distinct from w′. Since w′, w′′ ∈ I(w, x), Lemma 3 yields w′ ∼ w′′. Necessarily,
w′ ∈ I(w′′, u) and w′′ ∈ I(w′, v). By condition (α1), we have

2 = d(u, v) ≥ d(u,w′) + d(w′′, x) = d(u,w) + d(v, w)− 2,

whence d(u,w) = 2, contrary to our assumption.
Case 2. d(u, v) ≥ 3.
Choose a neighbor x of w in the interval I(u,w). If d(x, v) > d(w, v), then (α1)

yields d(u, v) ≥ d(u,w)+d(v, w)−1 > d(u,w), contrary to the maximality of d(u,w).
Thus d(x, v) = d(w, v). Since this distance exceeds 2, we can find a neighbor y of v in
I(v, w)∩ I(v, x) by virtue of Lemma 2. For a quasi-median uv′x′ of the triplet u, v, x,
we obtain

d(u,w)− d(u, x′)− 1 + d(x′, v′) + d(u, v)− d(u, v′)(2)

= d(x, x′) + d(x′, v′) + d(v′, v) = d(x, v) = d(w, v) ≤ d(u,w),

and therefore

d(u, v) ≤ d(u, x′) + d(u, v′)− d(x′, v′) + 1.(3)

We can then apply the induction hypothesis to the metric triangle uv′x′ because

3 ≤ d(u, v′) + d(v′, x′) + d(x′, u) ≤ d(u, v) + d(v, x) + d(x, u) < k.

Using this hypothesis and the inequality d(u, v) ≥ 3, we deduce from (3) that d(x′, u) =
d(u, v′) = 2 and

4 ≤ d(u, v) + d(v′, x′) ≤ 5.

If the upper bound 5 is attained, then we infer from (2) that uvw is equilateral
(of size ≥ 3). Choose a neighbor y′ of v in I(v, v′), which is necessarily distinct from
y. Since y, y′ ∈ I(x, v), Lemma 3 implies y ∼ y′. Since uvw is a metric triangle,
d(y′, w) > d(y, w) and d(y, u) > d(y′, u) hold. By condition (α1), we thus infer

d(u,w) ≥ d(u, y′) + d(y, w) = d(u, v) + d(v, w)− 2 > d(v, w),

a contradiction.
Finally, if the lower bound 4 is attained above, then x′ ∼ v′ ∼ v, and hence v′ ∼ y

by Lemma 3 applied to I(v, x). Moreover,

d(v′, w) = d(v, w) = d(w, u)− 1

by (2), and therefore

d(v′, w)− 1 = d(y, w) = d(w, x′).

Consequently, x′ ∼ y by Lemma 3. Since uv′x′ is a metric triangle, any neighbors
v′′ ∈ I(u, v′) and x′′ ∈ I(u, x′) of u are different. From v′′, x′′ ∈ I(u, y) and Lemma 3
it follows that v′, x′, x′′, v′′ constitutes a 4-cycle. By condition (α1) either v′ ∼ x′′ or
x′ ∼ v′′, which, however, is impossible.
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Lemma 5. Let u, v, w, x be vertices of G such that u ∈ I(v, w), v ∈ I(u, x), and
u ∼ v. Then the equality d(w, x) = d(w, u) + d(x, v) holds if and only if there exist
vertices u′ ∈ I(u,w) and v′ ∈ I(v, x) at distance 2 such that u′ ∼ u and v′ ∼ v; in
particular, u′ and v′ lie on a common shortest path between w and x.

Proof. If the condition is fulfilled, then the equality holds trivially. Now assume
the converse and, without loss of generality, I(w, x) ∩ I(w, u) = {w} and I(x,w) ∩
I(x, v) = {x}. We wish to show that d(u,w) = d(v, x) = 1, which settles the proof.
Observe that I(u, x) ∩ I(u,w) = {u} and I(v, w) ∩ I(v, x) = {v} since

d(w, u) + d(u, x) = d(w, v) + d(v, x) = d(w, x) + 1.

Therefore the quasi-medians of the triplets u,w, x and v, w, x have the forms uwx′

and vw′x, respectively. From Lemma 4 we know that d(u,w) ≤ 2 and d(v, x) ≤ 2.
Suppose by way of contradiction that d(u,w) + d(v, x) ≥ 3.

First, let d(u,w) = 1 and d(v, x) = 2 so that d(w, x) = 3. Then any quasi-
median vw′x of v, w, x is a metric triangle of type (1, 2, 2), whence v ∼ w′ ∼ w. Since
u,w′ ∈ I(w, v), Lemma 3 yields u ∼ w′. Therefore v, w′ ∈ I(u, x) have a common
neighbor x′ with x by Lemma 3. As a consequence x′ belongs to I(x,w) ∩ I(x, v),
contrary to our initial assumption.

Finally, let d(u,w) = d(v, x) = 2 so that d(x,w) = 4. Then any quasi-median
vw′x of v, w, x is of type (1, 2, 2). Therefore u,w′ ∈ I(v, w) have a common neighbor
w′′ with w, thus conflicting with the initial assumption on I(w, x) ∩ I(w, u).

Proof of the theorem. Each of the six forbidden graphs violates condition (β1),
as indicated in Figure 2. Since (β1) implies (α1), we deduce from Fact 2 that in a
1-hyperbolic graph all cycles Cn, n �= 5, are well-bridged.

Conversely, assume that all cycles of length �= 5 are well-bridged and none of the
graphs from Figure 2 occurs as an isometric subgraph of G. By Fact 1, all balls of G
are convex, and by Fact 2, G obeys condition (α1). Suppose by way of contradiction
that condition (β1) is violated. Select a quartet u, v, w, x minimizing the total distance
sum

Σ(u, v, w, x) = d(u, x) + d(v, w) + d(u, v) + d(u,w) + d(v, x) + d(w, x).

Then we have, say,

d(u, v) + d(w, x) + j = d(u,w) + d(v, x) + i = d(u, x) + d(v, w),(4)

with i ≥ 2 and j ≥ 2. As in the proof of Lemma 1, the minimality of Σ(u, v, w, x)
guarantees that

I(u, v) ∩ I(u,w) = {u}, I(v, u) ∩ I(v, x) = {v},(5)

I(w, u) ∩ I(w, x) = {w}, I(x, v) ∩ I(x,w) = {x}.

We distinguish two main cases.
Case 1. All quasi-medians of triplets from u, v, w, x are equilateral metric trian-

gles.
If all triplets actually have medians, then u, v, w, x would induce a 4-cycle by

Lemma 1, which, however, is impossible in view of (α1). Therefore, assume without
loss of generality that some quasi-median of the triplet u, v, w is an equilateral metric
triangle uv′w′ of size k ∈ {1, 2}. We assert that i = j = 2. Suppose by way of
contradiction that d(u,w) + d(v, x) > d(u, v) + d(w, x). Choose a neighbor u′ of u in
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the interval I(u,w′). Then the ball Bk(v
′) includes u,w′ and thus u′ by convexity,

whence d(v, u′) = d(v, u) by (5). The quartet u′, v, w, x also violates condition (β1);
therefore Σ(u′, v, w, x) ≥ Σ(u, v, w, x), which implies d(u′, x) > d(u, x). By (α1), we
have d(x,w) ≥ d(u, x) + d(u,w)− 1. Since d(v, w) = d(v, u) + d(u,w)− k, we obtain
d(x,w) + d(u, v) − k ≥ d(u, x) + d(v, w) − 1, which contradicts (4) because k ≤ 2.
This proves the assertion i = j = 2. From Lemma 1 we immediately infer that the
distances d(u, v), d(u,w), d(x, v), and d(x,w) are no larger than 3.

If q(u, v, w) = 1, then Lemma 1 implies that q(u, v, x), q(u,w, x), and q(v, w, x)
must be odd and thus equal to 1, whence d(u,w) = d(u, v) = d(w, x) = d(v, x) = 2.
Let uv′w′ be a quasi-median of u, v, w and let xv′′w′′ be a quasi-median of x, v, w.
Since d(u, x) = d(v, w) = 3, the vertices v′, w′, v′′, w′′ are pairwise different and belong
to the interval I(v, w). Then, by Lemma 3 and (α1), these four vertices induce a 4-
cycle with at least one diagonal so that together with u, v, w, x they induce the graph
of Figure 2(a) or (b) as an isometric subgraph, contrary to the initial assumption.

Therefore the quasi-median uv′w′ of u, v, w has size 2. Choose vertices t and y
with u ∼ t ∼ v′ and u ∼ y ∼ w′. Then d(v′, y) = d(w′, t) = 2 because B2(v

′) and
B2(w

′) are convex. If d(t, x) > d(u, x), then (α1) implies

d(v, x) ≥ d(v, t) + d(u, x)

= d(u, v)− 1 + d(u,w) + d(v, x) + 2− d(v, w) by (4)

= d(v, x) + 3,

a contradiction. Therefore Σ(t, v, w, x) < Σ(u, v, w, x), whence the former quartet
satisfies (β1), yielding t ∈ I(u, x). Analogously, y ∈ I(u, x) holds so that, by Lemma 3,
t and y are adjacent and have a common neighbor z such that d(x, z) = d(u, z) − 2.
If d(v, t) < d(v, z), then (α1) implies (as above)

d(v, x) ≥ d(v, t) + d(z, x) = d(v, t) + d(u, x)− 2 = d(v, x) + 1,

a contradiction. We conclude that both t and z belong to I(v, y) and have a common
neighbor r such that d(r, v) = d(u, v) − 2. Similarly, there exists a vertex s with
y ∼ s ∼ z and d(s, w) = d(u,w) − 2. Then urs is a quasi-median of u, v, w, and we
may thus assume v′ = r and w′ = s. The six vertices t, u, v′, w′, y, z induce what is
called a 3-sun [7]. Without loss of generality, we may assume

d(z, x) ≤ d(w′, x) ≤ d(v′, x) ≤ d(z, x) + 1

so that three cases have to be distinguished.
Subcase 1.1. d(z, x) = d(v′, x).
Since v′, z ∈ I(t, x) and w′, z ∈ I(y, x), we find vertices x′, x′′ ∈ I(z, x) by

Lemma 3 such that z ∼ x′ ∼ v′ and z ∼ x′′ ∼ w′; moreover, x′ and x′′ are dif-
ferent (because v′ and w′ are not adjacent) and thus adjacent, having a common
neighbor x′′′ in I(z, x) at distance 2 from z. Then u, t, y, v′, z, w′, x′, x′′, x′′′ induce the
graph of Figure 2(d) as an isometric subgraph.

Subcase 1.2. d(w′, x) < d(v′, x).
Then, as above, we derive from (α1) that

d(v, x) ≥ d(v, v′) + d(z, x) = d(v, t) + d(z, x)− 1 = d(v, x),

whence equality holds throughout. In particular, v′, v, x have a quasi-median v′vp
of size 1 as v′ ∈ I(u, v) and d(u, v) ≤ 3. Then p and z, as members of I(v′, x),
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are adjacent and have a common neighbor x′ ∈ I(v′, x) with d(v′, x′) = 2. Since
x′ ∈ I(z, x), we have d(x′, u) = 3. If x′ is adjacent to w′, then v, x′, w′, u would violate
(α1). Therefore, by Lemma 3, z and w′ have a common neighbor x′′ ∈ I(y, x) such
that x′′ �= x′ and d(u, x′′) = 3. Further, x′ and x′′ are adjacent and have a common
neighbor x′′′ ∈ I(z, x), where d(u, x′′′) = 4. Necessarily, d(v, x′′′) = 3 because v′vp is
a quasi-median of v′, v, x. Then the vertices u, t, y, v′, z, w′, v, p, x′, x′′, x′′′ induce the
graph of Figure 2(e). This subgraph is in fact isometric because d(v, x′′) < 3 would
conflict with (α1) for the quartet v, x′′, w′, u.

Subcase 1.3. d(z, x) < d(w′, x).
Then, as in the preceding subcase, v′, v, x and w′, w, x have quasi-medians v′vp

and w′wq, respectively, of size 1 such that p ∼ z ∼ q. Note that d(u, x) ≤ 4 = d(v, w)
in view of Lemma 1. By Lemma 3, z has neighbors x′, x′′ ∈ I(z, x) in common with p
and q, respectively. If x′ and w have some common neighbor q′, then q′ ∼ w′ because
q′, w′ ∈ I(w, v). Necessarily, z and q′ are adjacent because otherwise z, x′, q′, w′ would
induce a 4-cycle. Consequently, u, t, y, v′, z, w′, v, p, x′, q′, w induce the graph of Fig-
ure 2(e) as an isometric subgraph. Therefore we can now assume d(x′, w) = 3 and,
analogously, d(x′′, v) = 3. In particular, x′ and x′′ are different, whence by Lemma 1
the three vertices x′, x′′, and x are adjacent. Finally, u, t, y, v′, z, w′, v, p, x′, x′′, q, w, x
induce the graph of Figure 2(f) as an isometric subgraph.

Case 2. Some quasi-median of a triplet from u, v, w, x is not equilateral.
Then, by Lemma 4, we may assume without loss of generality that u, v, w has a

quasi-median uv′w′ of type (2, 1, 2) or (1, 2, 2); see the two principal subcases below.
When a common neighbor is selected for each of the two pairs at distance 2 in this
quasi-median, then a 5-cycle arises, which must be induced because induced 4-cycles
are forbidden.

Subcase 2.1. d(v′, w′) = 1.
Since Σ(v′, v, w, x) < Σ(u, v, w, x), the quartet v′, v, w, x must satisfy (β1), which

implies v′ ∈ I(u, x) in view of (4). Analogously, we infer that w′ ∈ I(u, x). Hence, by
Lemma 3, any two neighbors of u in I(u, v′)∪ I(u,w′) ⊆ I(u, x) are adjacent, whence
u, v′, w′ cannot lie on an induced 5-cycle, yielding a contradiction.

Subcase 2.2. d(u, v′) = 1.
If d(u, x) < d(v′, x), then by (α1) we have

d(v, x) ≥ d(v, v′) + d(u, x) = d(u, v) + d(u, x)− 1

= d(u, v) + d(u,w) + d(v, x)− d(v, w) + i− 1 by (4)

= d(v, x) + i,

a contradiction. Therefore Σ(v′, v, w, x) < Σ(u, v, w, x) so that the quartet v′, v, w, x
must satisfy (β1). Consequently, we obtain i = 2 and v′ ∈ I(u, x). Choose some vertex
y with u ∼ y ∼ w′ and a common neighbor z of v′ and w′ at minimum distance to
x. As these five vertices induce a 5-cycle and v′ ∈ I(u, v)∩ I(u, x), neither I(u, v) nor
I(u, x) can contain y by Lemma 3, that is, d(u, v) ≤ d(y, v) and d(u, x) ≤ d(y, x). We
also have d(z, x) ≤ d(v′, x) and hence d(w′, x) ≤ d(u, x); otherwise by (α1) we would
get

d(w, x) ≥ d(w, z) + d(v′, x) = d(w, u) + d(u, x)− 2

= d(w, u) + d(u, v) + d(w, x)− d(v, w) + j − 2 by (4)

= d(w, x) + j − 1,

a contradiction. Hence, if d(u, x) < d(y, x), then u,w′ ∈ I(y, x), which, however, is in
conflict with Lemma 3. We conclude that d(u, x) = d(y, x). Now, if d(u, v) = d(y, v),
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then Σ(y, v, w, x) < Σ(u, v, w, x), but (β1) is violated for y, v, w, x. Therefore d(y, v) =
d(u, v) + 1. Finally, as d(z, x) ≤ d(u, x)− 1, the parameter

k = d(z, x) + d(w′, x)− 2d(u, x) + 4

can take only the value 1, 2, or 3, which leads to the following distinction of Subcase
2.2.k, for k = 1, 2, 3.

Subcase 2.2.1. d(z, x) = d(u, x)− 2.
Then d(w′, x) = d(u, x)− 1. Further, by (α1) and (4),

d(v, x) ≥ d(v, v′) + d(z, x) = d(v, v′) + d(u, x)− 2 = d(v, x),

whence equality holds throughout. Lemma 5 thus provides us with neighbors v′′ ∈
I(v′, v) of v′ and x′ ∈ I(z, x) of z such that d(v′′, x′) = 2. Note that d(v′′, w′) =
3 = d(u, x′). Since the quartet u, v′′, w′, x′ violates (β1) and satisfies Σ(u, v′′, w′, x′) =
14 ≤ Σ(u, v, w, x), we conclude that v′′ = v, w′ = w, and x′ = x. Choose a common
neighbor p of v and x, at minimum distance to y, and then a neighbor q ∈ I(p, y)
of p. First assume that p ∼ v′. Then p ∼ z because induced 4-cycles are forbidden.
Since {u,w} � I(p, y) in view of Lemma 3, we have d(p, y) = 2. Then as q belongs
to I(y, v) ∩ I(y, x) it must be adjacent to u,w (by Lemma 3) and hence to v′, z as
well. Consequently, u, v, v′, q, w, p, z, x induce the graph of Figure 2(b) as an isometric
subgraph.

Therefore we can assume d(p, v′) = 2 = d(p, z) so that, as {p, z} � I(u, x) and
{p, v′} � I(v, w) by Lemma 3, we obtain d(p, u) = d(p, w) = 3. Thus, y ∈ I(u,w) ⊆
B3(p) by convexity. If d(p, y) = 2, then p, v′ ∈ I(v, y) would have to be adjacent by
Lemma 3, contrary to our assumption. Therefore d(p, y) = 3. Then v, x, y ∈ B2(q)
and thus u,w ∈ B2(q) by convexity. Hence as q, v ∈ I(p, u) and q, x ∈ I(p, w) we
obtain q as a common neighbor of v and x such that d(q, y) < d(p, y), contrary to the
choice of p.

Subcase 2.2.2. d(z, x) = d(w′, x) = d(u, x)− 1.
Since Σ(z, v, w, x) < Σ(u, v, w, x), the quartet z, v, w, x must satisfy (β1), which

implies j = 2. By virtue of the triangle inequality and employing (4) as above, we
obtain

d(w, x) ≤ d(w,w′) + d(w′, x) = d(w, z) + d(v′, x)− 1

= d(w, x) + j − 2 = d(w, x),

whence equality holds throughout. In particular, w′ ∈ I(w, u)∩I(w, x) so that w = w′

by (5). Since z was chosen as a common neighbor of v′ and w′ = w closest to x, the
triplet v′, x, w has a quasi-median v′x′w of type (2, 2, 2) by Lemma 4. Choose vertices
p and q with v′ ∼ p ∼ x′ and w ∼ q ∼ x′. By the choice of z, neither is p adjacent
to w nor is q adjacent to v′. By convexity of balls, p ∈ I(v′, x′) ⊆ B2(w). Hence,
if d(p, y) = 3, then u,w ∈ I(p, y) would have to be adjacent, which is impossible.
Therefore d(p, y) = 2, and by Lemma 3 applied to I(x′, y), we infer that p ∼ q and
that there exists a common neighbor t of p, q, w, y.

If d(v, t) = d(v, w), then t is not adjacent to u because otherwise t ∼ v′, and hence
t ∈ I(v, w) would follow. Therefore Σ(u, v, t, x) = Σ(u, v, w, x) holds and u, v, t, x
violate (β1). Since uv′t is a quasi-median of u, v, t such that p is a common neighbor
of v′ and t with d(p, x) = d(u, x)− 2, we can substitute w by t and z by p. Thus, we
are back in Subcase 2.2.1.
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Therefore we can assume d(v, t) = d(v, w) − 1 = d(v, y) − 1. Then t, u ∈ I(v, y)
and, consequently, t ∼ u by Lemma 3 and hence t ∼ v′. Now, however, uv′w is no
longer a quasi-median of u, v, w, yielding a contradiction.

Subcase 2.2.3. d(z, x) = d(w′, x)− 1 = d(u, x)− 1.
We can apply (α1) to the quartet w,w′, z, x and infer, as above,

d(w, x) ≥ d(w,w′) + d(z, x) = d(w, z) + d(v′, x)− 1

= d(w, x) + j − 2,

whence j = 2 and equality holds throughout. By Lemma 5 we thus find neighbors
x′ ∈ I(x, z) of z and w′′ ∈ I(w,w′) of w such that x′ and w′′ have some common
neighbor t. Then as z ∈ I(v, w′′), either d(v, x′) = d(v, z) or d(v, x′) = d(v, z) + 1
holds. If the latter is true, (α1) applied to the quartet v, z, x′, x yields, as above,

d(v, x) ≥ d(v, z) + d(x′, x) = d(v, v′) + d(u, x)− 1

= d(v, x) + i− 1,

a contradiction. Thus the former alternative is true. Therefore t, w′ ∈ I(v, w′′), and
we infer by Lemma 3 that t ∼ w′ and hence t ∼ z. Then B2(t) contains u by convexity
because v′, y ∈ B2(t). This, however, implies t ∈ I(w, u) ∩ I(w, x), contrary to (5).

This final contradiction shows that G is indeed 1-hyperbolic, which completes the
proof.
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[7] A. Brandstädt, V. Chepoi, and F. Dragan, Distance approximating trees for chordal and

dually chordal graphs, J. Algorithms, 30 (1999), pp. 166–184.
[8] V. Chepoi, Some properties of d-convexity in triangular graphs, Mat. Issled., 184 (1986),

pp. 164–177 (in Russian).
[9] V. Chepoi and F. Dragan, A note on distance approximating trees in graphs, European J.

Combin., 21 (2000), pp. 761–766.
[10] A.W.M. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension

of certain groups: A note on combinatorial properties of metric spaces, Adv. Math., 53
(1984), pp. 321–402.

[11] M. Eigen, R. Winkler-Oswatitsch, and A.W.M. Dress, Statistical geometry in sequence
space: A method of comparative sequence analysis, Proc. Natl. Acad. Sci. USA, 85 (1988),
pp. 5913–5917.

[12] E. Ghys, A.H. Haefliger, and A. Verjovsky, eds., Group Theory from a Geometric View-
point, World Scientific, River Edge, NJ, 1991.

[13] E. Ghys and P. de la Harpe, eds., Les groupes hyperboliques d’après M. Gromov, Progress
in Mathematics 83, Birkhäuser, Basel, 1990.

[14] M. Gromov, Hyperbolic groups, in Essays in Group Theory, S.M. Gersten, ed., Math. Sci. Res.
Inst. Pub. 8, Springer, New York, 1987, pp. 75–263.

[15] M. Farber and R.E. Jamison, On local convexities in graphs, Discrete Math., 66 (1987),
pp. 231–247.
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Abstract. We consider the problem of finding a strongly connected spanning subdigraph with
the minimum number of arcs in a strongly connected digraph. This problem is NP-hard for general
digraphs since it generalizes the Hamiltonian cycle problem. We show that the problem is polyno-
mially solvable for quasi-transitive digraphs. We describe the minimum number of arcs in such a
spanning subdigraph of a quasi-transitive digraph in terms of the path covering number. Our proofs
are based on a number of results (some of which are new and interesting in their own right) on the
structure of cycles and paths in quasi-transitive digraphs and in extended semicomplete digraphs. In
particular, we give a new characterization of the longest cycle in an extended semicomplete digraph.
Finally, we point out that our proofs imply that the MSSS problem is solvable in polynomial time
for all digraphs that can be obtained from strong semicomplete digraphs on at least two vertices by
replacing each vertex with a digraph belonging to a family of digraphs whose path covering number
can be decided in polynomial time.

Key words. minimum equivalent digraph, strong subdigraph, Hamiltonian cycle, polynomial
algorithm, quasi-transitive digraph, extended semicomplete digraph, path factor, cycle factor, path
cover, longest cycle
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1. Introduction. We consider the following problem, which we denote by MSSS
(minimum spanning strong subdigraph): Given a strongly connected digraph D, find
a strongly connected spanning subdigraph D′ of D such that D′ has as few arcs
as possible. This problem, which generalizes the Hamiltonian cycle problem, and
hence is NP-hard, is of practical interest and has been considered several times in
the literature; see, e.g., [1, 9, 13, 15, 16, 17]. The MSSS problem is an essential
subproblem of the so-called minimum equivalent digraph problem (in fact, these two
problems can be reduced to each other in polynomial time). Here one is seeking
a spanning subdigraph with the minimum number of arcs in which the reachability
relation is the same as in the original graph (i.e., there is a path from x to y if and
only if the original digraph has such a path). Since the MSSS problem is NP-hard,
it is natural to study the problem under certain extra assumptions. In order to find
classes of digraphs for which we can solve the MSSS problem in polynomial time,
we must consider classes of digraphs for which we can solve the Hamiltonian cycle
problem in polynomial time. This follows from the fact that the Hamiltonian cycle
problem can be solved if we can solve the MSSS problem.
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In [16] the MSSS problem was considered for digraphs whose longest cycle has
length r for some r. It was shown that if r ≤ 3, then the problem is polynomial and
that it is NP-hard already when r = 5. In [7], the MSSS problem was solved for various
generalizations of tournaments. In particular, polynomial algorithms were given for
the classes of extended semicomplete digraphs and semicomplete bipartite digraphs.
Furthermore, it was conjectured in [7] that the MSSS problem is also polynomially
solvable for general semicomplete multipartite digraphs. It was shown in [5] that
the Hamiltonian cycle problem can be solved in polynomial time for semicomplete
multipartite digraphs. The algorithm is very complicated and requires several non-
trivial steps. Recently, the third author found another polynomial algorithm for the
more general problem of finding a cycle covering a prescribed set of vertices in a
semicomplete multipartite digraph [19], but that algorithm is also very complex.

In this paper we study the MSSS problem for another class of digraphs, where the
Hamiltonian cycle problem is solvable in polynomial time, but so far no elementary
algorithm is known for this problem. This is the class of quasi-transitive digraphs.
These digraphs have a nice, recursive structure [6]; see Theorem 3.4. They can be
decomposed into disjoint induced subdigraphs each of which is either a transitive
digraph or a semicomplete digraph. Using the structure theorem for quasi-transitive
digraphs, Gutin [12] proved that the Hamiltonian cycle problem is polynomially time
solvable for quasi-transitive digraphs. His approach involves solving the problem of
finding a minimum path cover of a quasi-transitive digraph (via a recursive algorithm;
see, e.g., [2, section 5.9]).

The structure of quasi-transitive digraphs is closely related to that of extended
semicomplete digraphs—in particular, in the case of Hamiltonian cycles and strong
spanning subdigraphs (see, e.g., Theorem 3.5 and section 5.). Due to their recursive
structure, quasi-transitive digraphs also have nice algorithmic properties, as we illus-
trate in this paper (see also [2, section 5.9]). However, quasi-transitive digraphs are
also of interest because their underlying undirected graphs are exactly the compa-
rability graphs [8]. Comparability graphs (also known as those graphs that allow a
transitive orientation) have been widely studied in the literature; see, e.g., [10].

We give a lower bound for the number of arcs in any MSSS of an arbitrarily
given strong quasi-transitive digraph. This bound can be calculated in polynomial
time using Gutin’s algorithm for finding a Hamiltonian cycle in a quasi-transitive di-
graph. We prove that this lower bound is also attainable for quasi-transitive digraphs
[12]. The proof of this uses a new characterization of a longest cycle in an extended
semicomplete digraph.

In the last section we point out that our methods imply that the MSSS problem
can be solved efficiently for a much larger superclass of semicomplete digraphs than
just quasi-transitive digraphs. The interested reader is encouraged to consult [2] for
much more information on the interrelationship between various classes of generaliza-
tions of tournaments.

2. Terminology. We refer to [2, Chap. 1] for a general account of the terminol-
ogy on digraphs. We shall always use the number n to denote the number of vertices
in the digraph currently under consideration. Digraphs are finite and have no loops
or multiple arcs. We use V (D) and A(D) to denote the vertex set and the arc set of
a digraph D. We use |D| (instead of |V (D)|) to denote the number of vertices in D.
The arc from a vertex x to a vertex y will be denoted by xy. If xy is an arc, then we
say that x dominates y and y is dominated by x. For disjoint subsets H,K ⊂ V (D)
we use the notation H⇒K to denote that there are no arcs from K to H.
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By a cycle (path, respectively) we mean a directed (simple) cycle (path, respec-
tively). If R is a cycle or a path with two vertices u, v such that u can reach v on R,
then R[u, v] denotes the subpath of R from u to v. A cycle (path) of a digraph D is
Hamiltonian if it contains all the vertices of D. A digraph is Hamiltonian if it has a
Hamiltonian cycle.

An (x, y)-path is a path from x to y. A digraph D is strongly connected (or just
strong) if there exists an (x, y)-path and a (y, x)-path for every choice of distinct
vertices x, y of D. Let U,W be disjoint subsets of V (D). A (U,W )-path is a path
x1x2 . . . xk such that x1 ∈ U, xk ∈W , and no other xi belongs to U ∪W .

A digraph T is semicomplete if it has no pair of nonadjacent vertices. A tour-
nament is a semicomplete digraph with no cycles of length 2. It is well known and
easy to prove that every semicomplete digraph has a Hamiltonian path and that ev-
ery strong semicomplete digraph has a Hamiltonian cycle. A digraph D = (V,A) is
quasi-transitive if, for any distinct x, y, z ∈ V , the arcs xy, yz ∈ A imply that there
exists an arc between x and z, i.e., xz ∈ A or zx ∈ A or both.

Let D = (V,A) be a digraph. Let U ⊆ V and let W = (V ′, A′) be a subdigraph
of D. We say that W covers U if U ⊆ V ′.

A collection F of pairwise vertex disjoint paths and cycles of a digraph D is called
a k-path-cycle factor of D if F covers V (D) and has exactly k ≥ 0 paths. If F has
k = 0 paths, we call it a cycle factor and, similarly, if F has no cycles, it is called
a k-path factor. A cycle subdigraph is a collection of vertex disjoint cycles. The path
covering number of a digraph D, denoted pc(D), is the smallest k for which D has a
k-path factor.

Let D be a digraph on p vertices v1, . . . , vp and let L1, . . . , Lp be a disjoint collec-
tion of digraphs. Then D[L1, . . . , Lp] is the new digraph obtained from D by replacing
each vertex vi of D by Li and adding an arc from every vertex of Li to every vertex of
Lj if and only if vivj is an arc of D (1 ≤ i 
= j ≤ p). Let D and R be digraphs. Then
D is an extension of R if there is a decomposition D = R[Ia1 , . . . , Iar ], r = |V (R)|,
such that each Iai induces an independent set in D. An extended semicomplete di-
graph is a digraph which is an extension of a semicomplete digraph. Two vertices x
and y in an extended semicomplete digraph D = R[Ia1 , . . . , Iar ] are said to be similar
if x, y ∈ Iaj for some j.

Note that in the rest of the paper, whenever we consider a digraph with a decom-
position D = R[L1, . . . , L|R|], we shall think of each Li as both a subset of V (D) and
a subdigraph of D. Furthermore, we also think of R as a subdigraph of D.

3. Results from other papers. In this section we list a number of results
which we will use in the next sections.

Lemma 3.1 (see [18]). Let D = (V,A) be a digraph which has no cycle factor.
Then the vertices of D can be partitioned into disjoint sets Y,Z,R1, R2 such that the
following hold:

1. D〈Y 〉 has no arcs.
2. R1⇒Y ∪R2 and Y⇒R2.
3. |Z| < |Y |.
Theorem 3.2 (see [11]). A strong extended semicomplete digraph D is Hamilto-

nian if and only if it has a cycle factor. Furthermore, the length of a longest cycle in
D is equal to the maximum number of vertices in a cycle subdigraph of D.

Theorem 3.3 (see [11]). A longest cycle of an extended semicomplete digraph

can be found in time O(n
5
2 ).
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Theorem 3.4 (see [6]). Let D be a quasi-transitive digraph on at least two
vertices. Then the following hold:

1. If D is not strong, then D can be decomposed as D = T [W1,W2, . . . ,W|T |],
where T is a transitive digraph with |T | ≥ 2 and each Wi is a strong quasi-
transitive digraph.

2. If D is strong, then D can be decomposed as D = S[W1,W2, . . . ,W|S|], where
S is semicomplete with |S| ≥ 2 and each Wi is either a single vertex or a
nonstrong quasi-transitive digraph. Furthermore, if sisjsi is a cycle of S,
then the corresponding Wi,Wj both have just one vertex.

The following characterization of Hamiltonian quasi-transitive digraphs is given
implicitly in [12].

Theorem 3.5 (see [12]). Let D be a strongly connected quasi-transitive di-
graph with decomposition D = S[W1,W2, . . . ,Ws], where s = |S|. Let pc(Wi) be
the path covering number of the quasi-transitive digraph Wi, i = 1, 2, . . . , s. Let
D0 = S[H1, H2, . . . , Hs] be the extended semicomplete digraph obtained by deleting
all arcs inside each Wi (that is, |Hi| = |Wi|). Then D is Hamiltonian if and only if
D0 has a cycle subdigraph which covers at least pc(Wi) vertices of Hi, i = 1, 2, . . . , s.

Theorem 3.6 (see [12]). The path covering number pc(D) of a quasi-transitive
digraph D can be calculated and a path cover with pc(D) paths constructed in time
O(n4).

Theorem 3.7 (see [12]). There is an O(n4) algorithm which, given a quasi-
transitive digraph D, either returns a Hamiltonian cycle in D or a proof that no such
cycle exists in D.

Theorem 3.8 (see [6]). A quasi-transitive digraph D = S[W1,W2, . . . ,W|S|] is
Hamiltonian if and only if it has a cycle factor C such that no cycle of C is a cycle of
some D〈Wi〉.

4. Longest cycles in extended semicomplete digraphs. In this section we
prove a new characterization of a longest cycle in an extended semicomplete digraph.
Besides being a very useful tool in our proof of the main result in the next section, this
characterization is also of independent interest. In particular, it implies that, up to
switching similar vertices, there is only one longest cycle in an extended semicomplete
digraph.

Lemma 4.1. Let D be an extended semicomplete digraph with an independent set
I. If C is a cycle subdigraph covering I, then D contains one cycle C which covers I.
Furthermore, given C and I, we can find one cycle covering I in time O(n).

Proof. By discarding some cycles if necessary, we may assume that every cycle
in C contains a vertex from I. If C contains at least two cycles, then let C,C ′ be
distinct cycles from C. Let x ∈ V (C), y ∈ V (C ′) be chosen such that x, y ∈ I. Let
x+, y+ be the successors of x, y on C,C ′, respectively. Then xy+ and yx+ are arcs
of D, since x and y are similar, and hence C[x+, x]C ′[y+, y]x+ is a cycle containing
precisely the vertices of V (C)∪V (C ′). Now the first claim follows easily by induction
on the number of cycles in C. The complexity claim follows from the fact that we can
merge the two cycles C,C ′ in constant time.

Lemma 4.2. If D is an acyclic extended semicomplete digraph, then we have
pc(D) = max{|I| : I is an independent set in D}. Furthermore, starting from D, one
can obtain a path cover with pc(D) paths by removing the vertices of a longest path
pc(D) times.

Proof. Let D = S[H1, H2, . . . , Hs] be the (unique) decomposition of D such that
H1, H2, . . . , Hs are independent sets and let k denote the size of a largest independent
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set in D. Since S is semicomplete, it has a Hamiltonian path P , and since D is acyclic,
P is also a longest path in D. Note that since D is acyclic, P contains precisely one
vertex from each Hi. Now the claim follows by induction on k.

The following lemma is a special case of a more general result for semicomplete
multipartite graphs due to Ayel (see [14]). Note that it also follows from Theorems
3.2 and 4.4.

Lemma 4.3. Let D be a strong extended semicomplete digraph and let C be a
longest cycle in D. Then D − C is acyclic.

The following characterization of a longest cycle in a strong extended semicom-
plete digraph is a generalization of Theorem 3.2.

Theorem 4.4. Let D be a strong extended semicomplete digraph with decompo-
sition D = S[H1, H2, . . . , Ht], t = |S|. Let mi, i = 1, 2, . . . , t, denote the maximum
number of vertices from Hi which are contained in a cycle subdigraph of D. Then
every longest cycle of D contains precisely mi vertices from each Hi, i = 1, 2, . . . , t.

Proof. Let C be a longest cycle and suppose without loss of generality that C
does not use m1 vertices from H1. Let m

′
1 be the number of vertices from H1 which

are contained in C. First observe that C contains at least one vertex from each Hi.
Indeed, if this is not the case, then choose i so that C has no vertex from Hi. Let
x be an arbitrary vertex of Hi. If x has arcs to and from C in D, then it is easy to
see that x can be inserted between two vertices of C, contradicting the maximality
of C. Suppose without loss of generality that V (C)⇒x. Since D is strong, there is
an (x, V (C))-path xq1q2 . . . qt in D. Let q

−
t be the predecessor of qt on C. Then

C[qt, q
−
t ]xq1q2 . . . qt is a cycle in D, contradicting the maximality of C. It follows that

1 ≤ m′1 < m1.

By the definition of m1 and Lemma 4.1, there is some cycle Q which uses m1

vertices from H1. Since all vertices in H1 have the same adjacencies and m
′
1 < m1,

we can choose Q so that it contains all vertices from H1 that are on C and at least
one extra vertex x ∈ H1−V (C). We will also choose Q so that under the assumption
above, |V (Q) ∩ V (C)| is maximized.

We claim that for every i such thatHi∩V (Q) 
⊂ V (C) we haveHi∩V (C) ⊂ V (Q).
If this is not the case, then let u be a vertex of Hi which is on Q but not on C and v
a vertex of Hi which is on C but not on Q. Since u and v are similar, we can replace
u by v and obtain a new cycle Q′ containing m1 vertices of H1 which has a larger
intersection with C, contradicting the choice of Q above.

Now consider the digraph D′ = D〈V (C) ∪ V (Q)〉. It follows from the fact that
C has a vertex from each Hi and that all vertices in Hi are similar that the digraph
D′ is strong. We claim that D′ has a cycle factor. If this is not the case, then we can
apply Lemma 3.1 to get a partition Y ′, Z ′, R′1, R

′
2 of V (D

′) satisfying the conditions
of the lemma. It follows from the structure of the arcs determined in Lemma 3.1 that
every cycle through a vertex in Y ′ must use a vertex of Z ′. Hence there can be no
cycle factor which covers all the vertices in Y ′. Since Y ′ is an independent set in the
extended semicomplete digraph D′ and hence in D, we have Y ′ ⊂ Hi for some i.

For every i such that Hi ∩ V (Q) 
⊂ V (C) we argued above that all vertices in
Hi ∩ V (D′) are on the cycle Q. Hence we cannot have Y ′ ⊂ Hi for any of these sets.
On the other hand, for every j such that Hj ∩ V (Q) ⊂ V (C), we have all vertices of
Hj ∩ V (D′) on the cycle C. Hence Y ′ cannot be a subset of Hj either, implying that
a partition Y ′, Z ′, R′1, R

′
2 of V (D

′) satisfying the conditions of Lemma 3.1 does not
exist.

Thus we have shown that the strong extended semicomplete subdigraph D′ of D
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has a cycle factor. By Theorem 3.2, D′ has a Hamiltonian cycle C ′. Now we obtain
a contradiction to the assumption that C was a longest cycle in D.

5. Smallest spanning strong subdigraphs of quasi-transitive digraphs.
For an arbitrary quasi-transitive digraph D and a natural number k, we define the
quasi-transitive digraph Hk(D) obtained from D as follows: Add two sets of k new
vertices x1, x2, . . . , xk, y1, y2, . . . , yk. Add all possible arcs from V (D) to xi along with
all possible arcs from yi to V (D), i = 1, 2, . . . , k. Finally, add all arcs of the kind
xiyj , i, j = 1, 2, . . . , k. Note that H0(D) = D.

Definition 5.1. Let D be a strong quasi-transitive digraph and let ε(D) be the
smallest k ≥ 0 such that Hk(D) is Hamiltonian.

Observe that if ε(D) ≥ 1, then ε(D) is precisely the path covering number of D.
Hence we can calculate ε(D) in time O(n4) using the algorithms of Theorems 3.6 and
3.7. We show below that n + ε(D) is a lower bound for the number of arcs in every
spanning strong subdigraph of D.

Lemma 5.2. For every strongly connected quasi-transitive digraph D, every span-
ning strong subdigraph of D has at least n+ ε(D) arcs.

Proof. Let D be a strong quasi-transitive digraph with decomposition D =
S[W1,W2, . . . ,Ws], s = |S| ≥ 2 (compare with Theorem 3.4). Suppose D has a
spanning strong subdigraph D′ with n + k arcs. We may assume (by deleting some
arcs if necessary) that no proper subdigraph of D′ is spanning and strong. It is easy
to prove by induction on k that D′ can be decomposed into a cycle P0 = C and
k arc-disjoint paths or cycles P1, P2, . . . , Pk with the following properties (where Di
denotes the digraph with vertices

⋃i
j=0 V (Pj) and arcs

⋃i
j=0A(Pj) for i = 0, 1, . . . , t):

1. For each i = 1, . . . , t: If Pi is a cycle, then it has precisely one vertex in
common with V (Di−1). Otherwise the end-vertices of Pi are distinct vertices
of V (Di−1) and no other vertex of Pi belongs to V (Di−1).

2.
⋃t
j=0A(Pj) = A(D

′).
It is easy to see that this decomposition can be started with P0 as any cycle in

D′. It follows that we may choose C = P0 so that

V (C) 
⊂Wi for i = 1, 2, . . . , s.(5.1)

Now consider D′ as a subdigraph of Hk(D). By the minimality assumption on D′,
each Pi has length at least two. It follows that Hk(D) has a cycle factor consisting of
C and k cycles of the form yiP

′
ixiyi, i = 1, 2, . . . , k, where P

′
i is the path one obtains

from Pi by removing the vertices it has in common with V (Di−1) (defined above). By
(5.1) and Theorem 3.8, Hk(D) has a Hamiltonian cycle and hence ε(D) ≤ k.

In fact, it is easy to see that the lower bound in Lemma 5.2 is valid for any digraph
D (but may not be very useful, as calculating ε(D) is NP-hard for general digraphs).

Below we characterize the optimal solution to the MSSS problem for quasi-
transitive digraphs and show that the problem is polynomially solvable.

Theorem 5.3. The MSSS of a quasi-transitive digraph has precisely n + ε(D)
arcs. Furthermore, we can find such a subdigraph in time O(n4).

Proof. Let D = S[W1,W2, . . . ,Ws], s = |S| ≥ 2, be a strong quasi-transitive
digraph. Using the algorithm of Theorem 3.7 we can check whether D is Hamiltonian
and find a Hamiltonian cycle if one exists. If D is Hamiltonian, then any Hamilto-
nian cycle is the optimal spanning strong subdigraph. Suppose below that D is not
Hamiltonian.

Let D0 = S[H1, H2, . . . , Hs] be the extended semicomplete digraph one obtains
by deleting all arcs inside each Wi (that is, |Hi| = |Wi| and Hi is obtained from Wi
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by deleting all arcs). By Theorem 3.5, D0 has no cycle subdigraph which covers at
least pc(Wi) vertices of each Hi, i = 1, 2, . . . , s.

For each i = 1, 2, . . . , s, let mi denote the maximum number of vertices which
can be covered in Hi by any cycle subdigraph of D0. According to Theorem 4.4
every longest cycle C in D0 contains exactly mi vertices from Hi, i = 1, 2, . . . , s. By
Theorem 3.3 we can find C in time O(n

5
2 ). Let

k = max{pc(Wi)−mi : i = 1, 2, . . . , s}.(5.2)

Define the extended semicomplete subdigraphD∗ ofD asD∗ = S[H∗1 , H
∗
2 , . . . , H

∗
s ],

where H∗i is an independent set containing m
∗
i = max{pc(Wi),mi} vertices, i =

1, 2, . . . , s. Since vertices inside an independent set are similar, we may think of C as
a longest cycle in D∗ (i.e., C contains precisely mi vertices from H∗i , i = 1, 2, . . . , s).
By Lemmas 4.2 and 4.3, D∗ − C can be covered by k paths P ∗1 , P

∗
2 , . . . , P

∗
k . Since

D∗ − C is acyclic, we may assume (by Lemma 4.2) that P ∗1 starts at a vertex x and
ends at a vertex y such that x has in-degree zero and y has out-degree zero in D∗−C.
It follows that there is an arc cx from C to x and an arc yc′ from y to C in D∗,
and hence we can glue P ∗1 onto C by adding the arcs cx, yc′. Remove P ∗1 and its
vertices and consider the remaining paths. It follows by induction on k that adding
P ∗2 , P

∗
3 , . . . , P

∗
k one by one, using two new arcs each time, we can obtain a spanning

strong subdigraph D∗∗ of D∗ with |V ∗|+ k arcs.
Now we obtain a spanning strong subdigraph of the quasi-transitive digraph D

as follows: Since m∗i ≥ pc(Wi) for i = 1, 2, . . . , s, each Wi contains a collection of
ti = m

∗
i paths Pi1, Pi2, . . . , Piti such that these paths cover all vertices of Wi. Such a

collection of paths can easily be constructed from a given collection of pc(Wi) paths
which cover V (Wi). Let xi1, xi2, . . . , xiti be the vertex set of H

∗
i . Replace xij in D

∗∗

by the path Pij for each i = 1, 2, . . . , s, j = 1, 2, . . . , ti. We obtain a spanning strong
subdigraph D′ of D. The number of arcs in D′ is

A(D′) =
s∑

i=1

(|Wi| −m∗i ) + (|V ∗|+ k)

= (n− |V ∗|) + (|V ∗|+ k)
= n+ k.(5.3)

It remains to argue that D′ is smallest possible. By Lemma 5.2, it suffices to
prove that ε(D) ≥ k.

Suppose ε(D) = r < k. By Definition 5.1, the quasi-transitive digraph Hr(D)
has a Hamiltonian cycle C. It follows from the definition of Hr(D) that we can
decompose Hr(D) as Hr(D) = S

′[W1,W2, . . . ,Ws, Ir, Ir], where Ir is an independent
set of r vertices and S′ is obtained from S by adding two new vertices x, y such that
xy is an arc, x is dominated by all vertices of S, and y dominates all vertices of S. Let
C ′ be obtained by contracting each subpath of C which lies entirely inside some Wi.
Now delete all remaining arcs inside each Wi. The resulting digraph T is extended
semicomplete and has a decomposition T = S′[Ia1 , Ia2 , . . . , Ias , Ir, Ir], where each Iaj
denotes an independent set on aj ≥ 1 vertices. Since inside every Wi we contracted
only subpaths of C, it follows that ai ≥ pc(Wi) for i = 1, 2, . . . , s. Furthermore, C

′ is
a Hamiltonian cycle in T .

Remove the vertices x1, x2, . . . , xr, y1, y2, . . . , yr from C ′. As the only arcs leaving
each xi go to {y1, y2, . . . , yr}, this gives us a collection of r paths P1, P2, . . . , Pr that
covers all vertices in T ∗ = S[Ia1 , Ia2 , . . . , Ias ]. Since all vertices inside the same
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independent set are similar, we can assume that P1, P2, . . . , Pr are paths in D0 (D0

was defined in the beginning of the proof). Let i be chosen such that

pc(Wi)−mi = k.(5.4)

Since ai ≥ pc(Wi) and r < k, it follows that some Pj contains two vertices of Hi.
Note that if Pj = z1z2 . . . zp and a < b are indices so that za and zb are similar, then
za+1 . . . zb−1zbza+1 is a cycle and zazb+1 is an arc if b < p. Thus we can replace Pj
by a cycle and a path P ′j = Pj [z1, za]Pj [zb+1, zp]. Clearly, we can continue this way
(replacing paths in the current collection by a cycle and a path) until every path in
the current collection contains at most one vertex from Hi. This shows that D0 has
a cycle subdigraph which covers at least ai − r ≥ pc(Wi) − r > pc(Wi) − k = mi

vertices from Hi. However, this contradicts the definition of mi. This contradiction
shows that ε(D) ≥ k and that the optimality of D′ follows from Lemma 5.2.

The proof above can be easily turned into an algorithm which finds an MSSS of
a given quasi-transitive digraph D. The complexity of the algorithm is dominated by
the time it takes to find an optimal path cover in each Wi. By Theorem 3.6 this can
be done in O(n4) time.

6. Remarks and open problems. In order to speed up the algorithm implied
by the proof of Theorem 5.3, one would need to find a faster algorithm for finding
a Hamiltonian cycle in a quasi-transitive digraph. One approach (following Gutin’s
idea in [12]) would be to find a faster algorithm for the path cover number of quasi-
transitive digraphs. This, as well as finding a completely different method for solving
the Hamiltonian cycle problem in quasi-transitive digraphs, seems to be a challenging
open problem.

Another paper that makes good use of the nice recursive structure of quasi-
transitive digraphs is [4] in which the problem of finding a heaviest cycle (with respect
to weights on the vertices) was solved for quasi-transitive digraphs. See also [3].

Below we point out that the proofs of our theorems imply a polynomial time
algorithm for a much larger class of digraphs than just quasi-transitive digraphs.

By using the approach used in this paper, it is not difficult to prove the following
extension of Theorem 3.5.

Theorem 6.1. Let D be a strong digraph with decomposition D = S[W1,W2, . . . ,
Ws], where s = |S|, Wi is an arbitrary digraph, i = 1, 2, . . . , s, and S is a strong
semicomplete digraph on s ≥ 2 vertices. Let pc(Wi) be the path covering number of the
digraph Wi, i = 1, 2, . . . , s. Let D0 = S[H1, H2, . . . , Hs] be the extended semicomplete
digraph obtained by deleting all arcs inside each Wi (that is, |Hi| = |Wi|). Then D
is Hamiltonian if and only if D0 has a cycle subdigraph which covers at least pc(Wi)
vertices of Hi, i = 1, 2, . . . , s.

For every natural number t, let ψt be the class of all digraphs for which an optimal
path cover can be found in polynomial time O(nt). For every natural number t, let
φt be the class of all digraphs of the form D = S[H1, H2, . . . , Hs], s = |S| ≥ 2, where
S is a strong semicomplete digraph and Hi ∈ ψt, i = 1, 2, . . . , s. By Theorem 3.6 the
class φ4 contains all quasi-transitive digraphs.

Gutin’s approach to solving the Hamiltonian cycle problem for quasi-transitive
digraphs easily extends to a proof of the following.

Theorem 6.2. For every natural number t, the Hamiltonian cycle problem is
solvable in time O(nmax{3,t}) for digraphs that belong to φt.

Let D = S[H1, H2, . . . , Hs] be a digraph in φt. To find the MSSS in D, let D
′

be the extended semicomplete digraph obtained from D by deleting all arcs within
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each Hi for i = 1, 2, . . . , s. By Theorem 3.3, we can find a longest cycle C in D′. Let
mi = |V (Hi) ∩ V (C)| for i = 1, 2, . . . , s and let

k = max{pc(Hi)−mi : i = 1, 2, . . . , s}.

Using a proof analogous to that of Theorem 5.3, we can show that the MSSS of D
contains n + k arcs when k ≥ 1 and is a Hamiltonian cycle when k ≤ 0. Combining
this with Theorems 6.1 and 6.2 we get the following.

Theorem 6.3. For every natural number t, the MSSS problem is solvable in time
O(nmax{3,t}) for all digraphs in φt.
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Abstract. The tree-width of a graph is of great importance in applied problems in graphical
models. The complexity of inference problems on Markov random fields is exponential in the tree-
width of the graph. However, computing tree-width is NP-hard in general. Easily computable upper
bounds exist, but there are few lower bounds. We give a novel technique to compute a lower bound
for the tree-width of a graph using maximum cardinality search. This bound is efficiently computable
and is guaranteed to do at least as well as finding the largest clique in the graph.

Key words. tree-width, lower bound, triangulation, maximum cardinality search

AMS subject classifications. 68R10, 62-09, 05C85

PII. S0895480101397773

1. Introduction. The tree-width of a graph is a well-known quantity and one
that is quite important in several applied areas. When computing on Markov random
fields, the tree-width of the associated graph determines the computational complexity
of inference problems such as finding the most likely configuration of the variables or
the marginal distributions of the variables. The complexity of such tasks is exponential
in the tree-width of the graph. For this reason and others, people are interested in
calculating tree-width.

It is well known that finding the tree-width of an arbitrary graph is an NP-hard
problem [3]. So the best we can hope for in practice is to find useful bounds. Upper
bounds have been relatively easy to find. Choose an ordering of the vertices of G,
and compute the size of the largest border incurred while progressing through the
ordering [5], [8]. This gives an upper bound for the tree-width of G. Another method
is to choose a triangulation of G, find the size of the largest clique, and subtract one.

Lower bounds have been more difficult to find. One bound, given in [9], is the
minimum over all nonadjacent pairs of vertices of the maximum degree of the pair.
This bound stems from the fact that a k-tree has at least two nonadjacent vertices of
degree k, and so any subgraph of a k-tree must have a pair of nonadjacent vertices
of degree ≤ k. There are other commonplace lower bounds, such as the one less than
the size of the largest clique in G.

In this paper we show that a procedure called maximum cardinality search can be
used to determine a lower bound for the tree-width of a graph. This bound, although
still weak in many situations, always does at least as well as finding the biggest clique
in the graph and typically beats the bound in [9].

Maximum cardinality search (MCS) is described concisely in the following manner.
Give number 1 to an arbitrary node. Number the nodes consecutively, choosing

as the next to number an unnumbered node with a maximum number of previously
numbered neighbors. Break ties arbitrarily [7].
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The somewhat surprising result is that during this process the “number of pre-
viously numbered neighbors” of an unnumbered node gives a lower bound to the
tree-width of the entire graph.

2. Tree width. Throughout this paper, all graphs will be undirected and contain
no self-loops or multiple edges. We denote the neighbors of a vertex v in graph G by
ΓG(v) or just Γ(v) if there is no ambiguity. So Γ(v) = {w ∈ V : (v, w) ∈ E}. The
family of v is denoted Γ̄(v) = Γ(v) ∪ {v}. The degree of a vertex v, deg(v) = |Γ(v)|.
By an ordering of the vertices of G, we mean a bijection π : VG −→ {1, 2, . . . , n},
where n = |VG|. We sometimes represent the ordering π by the ordered sequence
(v1, v2, . . . , vn), which means π

−1(i) = vi. We say v <π w to denote that π(v) < π(w).
We begin by defining k-trees and the tree-width of a graph and summarizing some

of their known properties.
Definition 2.1. A k-tree can be best defined recursively in the following way.

First of all, the complete graph on k + 1 vertices1 is a k-tree. Second, given a k-tree
on n vertices (for n ≥ k + 1), we can form a k-tree on n + 1 vertices by connecting
our new vertex to k existing vertices which form a complete subgraph in our n-vertex
subgraph [11].

We also have this alternate definition of a k-tree.
Theorem 2.2 (see [11]). The following are necessary and sufficient conditions

for a graph G to be a k-tree:
1. G is connected.
2. G contains a k + 1-clique1 but no k + 2 clique.
3. Every minimal x-y separator of G is a k-clique.
Note that an x-y separator refers to a set of vertices S (x, y /∈ S) such that any

path from vertex x to vertex y must pass through a vertex in S. It is defined only
when x and y are nonadjacent.

Definition 2.3. Let G be a k-tree on n vertices, and let α be an ordering of the
vertices of G. Let vi = α−1(i). We define µα,i(G) = Γ(vi) ∩ {v1, v2, . . . , vi−1}. We
say that α is a construction order of G if {v1, v2, . . . , vk} is a clique and µα,i(G) is a
clique of size k for all k+1 ≤ i ≤ n.

It can be easily verified from the definitions that G is a k-tree if and only if there
exists some ordering α such that α is a construction order of G.

Definition 2.4. A partial k-tree is a graph which is a subgraph of some k-tree.
Lemma 2.5 (see [11]). Let H be a k-tree, and let C = {w1, w2, . . . , wk} be a k-

clique in H. Then there exists a construction order α on H such that if vi = α−1(i),
then {v1, . . . , vk} = {w1, . . . , wk}. In other words, any clique can be the starting clique
for the recursive process of building a k-tree given in the definition.

Definition 2.6. The tree width of a graph G, denoted TW (G), is defined as the
smallest positive integer k for which G is a partial k-tree.

The algorithm called maximum cardinality search is best known as a method to
test whether a graph is triangulated [12]. To repeat, maximum cardinality search
(MCS) works as follows. We form a numbering by first assigning the number 1 to an
arbitrary vertex. Then given that we have numbered i vertices already, we give the
number i+1 to the unnumbered vertex with the most neighbors in the set of already
numbered vertices, breaking ties arbitrarily. Now define an ordering π which maps

1The cited definitions actually use k here instead of k + 1. The only difference is whether a
k-clique should be considered as both a k-tree and a k − 1-tree, or just a k − 1 tree. Here, following
[4], we use the latter interpretation.
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each vertex to its number. We say that π is an ordering generated by MCS, or more
concisely, an MCS ordering. We will now give a more formal definition.

Definition 2.7. Let G = (V,E), and let T ⊂ V . For v ∈ V , let dT (v) = |{w ∈
T : (v, w) ∈ E}|.

Definition 2.8. Let G = (V,E) be a graph, and let π be an ordering of the
vertices. Let vi = π−1(i), and let Ti = {v1, v2, . . . , vi}. If for all i = 2, 3, . . . , n we
have that dTi−1

(vi) ≥ dTi−1
(vj) for all j = i+1, i+2, . . . , n, then we say π is an MCS

ordering on G.
Definition 2.9. An ordering π of the vertices of a graph G is said to be a

perfect elimination ordering if for all i = 1, 2, . . . , n we have that the set Ai = Γ(vi)∩
{vi+1, vi+2, . . . , n} is completely connected.

MCS can be used to test whether a graph is triangulated in the following manner.
Let G be a graph, and let π1 be an MCS ordering on G. Now let π2 be the reverse of
π1. That is, let π2(v) = n + 1 − π1(v). Then G is triangulated if and only if π2 is a
perfect elimination ordering on G [12].

As we mentioned earlier, upper bounds to tree-width are relatively easy to find.
Any ordering π of the vertices of a graph G determines an upper bound to TW (G).
This is done by computing the so-called fill-in Fπ to form the elimination graph Gπ.
(See [2] or [12] for details.) One less than the size of the largest clique in Gπ is an
upper bound to TW (G). In fact, an equivalent definition for TW (G) is to take the
minimum of that quantity over all orderings π [2].

However, since computing tree-width is NP-hard, there is no way to determine
the optimal ordering π of the vertices, so in practice various heuristics are used. MCS
has been proposed as one such heuristic (using the reverse of MCS orderings as they
are defined in this paper) [10].

3. Main result. The main result in this paper is that MCS also gives a lower
bound on the tree-width of a graph in the following manner.

Theorem 3.1. Let G = (VG, EG) be a graph on n vertices. Let π = (v1, v2, . . . , vn)
be an MCS ordering on G. Then TW (G) ≥ deg(vn).

This is our main theorem, and the proof will follow shortly. First we show that
the following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.2. Let G be a graph, and let π = (v1, v2, . . . , vn) be an MCS
ordering on G. Let Ti = {v1, v2, . . . , vi}. Then TW (G) ≥ maxi dTi−1(vi).

Proof. Let k = maxi dTi−1
(vi) and j = argmaxi dTi−1(vi). Let H be the subgraph

of G generated by the set of vertices Tj . The ordering v1, v2, . . . , vj is an MCS ordering
forH, and in the graphH the vertex vi has degree k. So by Theorem 3.1, TW (H) ≥ k,
which implies TW (G) ≥ k.

Before proceeding to the proof of Theorem 3.1 we prove a necessary lemma.
Lemma 3.3. Let G = (V,E) be a graph with |V | = n. Suppose we have a partition

of the set V into three disjoint sets, X ∪ Y ∪ S = V, such that for any x ∈ X and
y ∈ Y , S is an x, y-separator. Let π be an ordering of the vertices generated by MCS,
and let wi = π−1(i). Let Ti = {w1, w2, . . . , wi} for i = 1, 2, . . . , n. Then

|Ti ∩ S| ≥ min{ max
v∈X−Ti

dTi(v), max
v∈Y−Ti

dTi(v)}.(3.1)

Proof. We will prove the lemma by induction on i. Consider first the base case
i = 1. In order for the right-hand side of our inequality to be 1, w1 must be adjacent
to both a vertex in X and a vertex in Y . Clearly, such a vertex must be in S,
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which means the left-hand side is also 1. Otherwise, the right-hand side is 0 and the
inequality holds trivially.

We will now assume that the inequality holds for i and prove that it must be true
for i+1. So assume that (3.1) holds for i and recall that Ti+1 = Ti ∪{wi+1}. We will
examine how the two sides of the inequality change as we go from i to i + 1 under
two cases.

Case 1. wi+1 ∈ S. Then the left-hand side increases by 1, and the right-hand
side increases by at most 1. So the inequality still holds.

Case 2. wi+1 /∈ S. So wi+1 cannot border both a vertex in X and a vertex in
Y . Without loss of generality, assume that wi+1 ∈ X. This means that dTi(wi+1) ≥
dTi(v) for all v ∈ V − Ti. So we have

max
v∈X−Ti

dTi(v) ≥ max
v∈Y−Ti

dTi(v).(3.2)

Since wi+1 ∈ X , we know that

max
v∈Y−Ti

dTi
(v) = max

v∈Y−Ti+1

dTi+1
(v).(3.3)

Since the right-hand side of (3.1) is the min of two items, the smaller of which is
not increasing, we can conclude that the right-hand side does not increase as we go
from i to i+ 1.

We are now ready to prove our main result.
Proof of Theorem 3.1. Let k = deg(vn). This will be a proof by contradiction.

We assume that TW (G) ≤ k − 1 and go on to show that this is inconsistent with
an ordering π that ends in vn. Specifically, we will work for a long time to isolate a
particular vertex v∗ and a set of vertices D which separates v∗ from the previously
numbered vertex in our MCS. We use Lemma 3.3 to indicate that certain vertices
in D must have already been numbered. We then derive a contradiction by showing
that when another vertex, z, is numbered according to the ordering π, it in fact has
fewer numbered neighbors than vn, contradicting our assumption that π is an MCS
ordering.

Let w1, w2, . . . , wk be the k neighbors of vn labeled such that i < j ⇒ wi <π wj .
If TW (G) ≤ k−1, then there exists a (k−1)-tree H = (VG, EH) such that EG ⊆ EH .
Let i be the lowest index such that {wi+1, wi+2, . . . , wk, vn} form a clique in H. A
(k− 1)-tree cannot contain a (k+ 1)-clique, so that we know that i ≥ 1 and {wk, vn}
form a clique of size 2 so we know that i ≤ k−1. Therefore i exists and 1 ≤ i ≤ k−1.
By the definition of i we know that wi is not adjacent to all of {wi+1, wi+2, . . . , wk}
(it is adjacent to vn, of course). So let j be the smallest index in i+1, . . . , k such that
(wi, wj) /∈ EH .

We will now define the following sets:
1. C1 = {wi+1, wi+2, . . . , wj−1}.
2. C2 = {wl : j ≤ l ≤ k, (wi, wl) /∈ EH}.
3. C3 = {wl : j ≤ l ≤ k, (wi, wl) ∈ EH}.
Note the following straightforward properties of these sets:
1. C1 ∩ C2 = C1 ∩ C3 = C2 ∩ C3 = ∅.
2. |C1 ∪ C2 ∪ C3| = k − i.
3. v ∈ C1 ∪ C2 ∪ C3 ⇒ v >π wi.
4. v ∈ C1 ∪ C3 ⇒ (wi, v) ∈ EH .
5. v ∈ C2 ⇒ (wi, v) /∈ EH .
6. wj ∈ C2.
7. C1 ∪ C2 ∪ C3 ∪ {vn} form a clique in H.
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Fig. 1. Lines demonstrate edges that must exist in H.

Since (wi, wj) /∈ EH , by the separation property, we know that there exists a set
of vertices S which form a (k − 1)-clique in H such that any path from wi to wj
in H must pass through a vertex in S. Choose such a set S. It is easy to see that
{vn} ∪ C1 ∪ C3 ⊆ S since all of those vertices are adjacent to both wi and wj in H.
Let S1 = C1 ∪ C3 ∪ {vn}, let S2 = S − S1, and let c2 = |C2|. So |S1| = k − i+ 1− c2
(see Figure 1).

Now let α be a construction order on H which starts with the clique S as its basis.
By Lemma 2.5, such an ordering exists. Let v∗ be the last element of C2 with respect
to the ordering α. In other words, for all v ∈ C2, v �= v∗, we have that v <α v∗. Since
wj ∈ C2 and wj is not in the basis for the construction order α, we know that v∗ is
not in the basis of α. So let D = the (k − 1)-clique that v∗ is adjoined to when H is
constructed using the construction order α.

Claim 3.4. D is a wi, v
∗-separator.

Proof. We know S is a wi, v
∗-separator. So consider any path from wi to v∗. It

uses some vertex in S. If that vertex is also in D, then clearly the path goes through
D. Otherwise, since S is our basis in the construction order α, any path from a
vertex in S−D to v∗ must go through D. So any path from wi to v∗ must go through
D.

Let D1 = S1 ∪ (C2 − {v∗}). Clearly, D1 ⊂ D since v ∈ D1 ⇒ (v, v∗) ∈ EH and
v <α v∗. Note that |D1| = k − i. Let D2 = D −D1, |D2| = i− 1 (see Figure 2).

Let T1 be the set of vertices numbered before wi. Since {w1, . . . , wi−1} ⊂ T1,
we know that dT1(vn) = i − 1. Since wi is numbered next, it must have at least as
many “numbered neighbors” as vn. Therefore dT1(wi) ≥ i − 1. If the set D were
removed from H, the resulting graph would be disconnected. Let Z be the connected
component containing v∗ in this disconnected graph. Let Z1 = Z−T1 so that Z1 is the
set of vertices in Z numbered after wi. We know v∗, wj ∈ Z1 since they are both in C2

and are therefore numbered after wi (note that it is possible that v
∗ = wj). Clearly,

for any vertex v ∈ Z1, dT1(v) ≤ dT1(wi). Let m = maxv∈Z1 dT1(v). By Lemma 3.3
(with D separating Z from V − {Z ∪ D}), we know at least m vertices of D must
already be numbered. Let D2 = D−D1. Since |D| = k−1, |D1| = k−i, and D1 ⊆ D,
we know that |D2| = i− 1. Let N = T1 ∩D; this is the set of vertices in D which are
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Fig. 2. Lines demonstrate edges that must exist in H.

numbered before wi. So |N | ≥ m. Furthermore, N ⊆ D2 since v ∈ D1 ⇒ wi <π v.
In other words, T1 ∩D1 = ∅. So we can conclude that m ≤ |N | ≤ |D1| = i− 1.

Let T2 = T1∪{wi}. This corresponds to the set of numbered vertices immediately
after wi is numbered. For all v ∈ Z1 we know that (v, wi) /∈ EH , which of course
implies that (v, wi) /∈ EG. So

max
v∈Z1

dT2(v) = max
v∈Z1

dT1(v) = m ≤ i− 1.(3.4)

Meanwhile,

dT2
(vn) = i.(3.5)

Now let z be the first vertex in Z1 − T2 to be numbered. So for all v ∈ Z1, v �= z,
we have z <π v. Let T3 be the set of vertices numbered before z, i.e., T3 = {v ∈ V :
v <π z}. By the assumption of the theorem, vn comes last in the ordering, so we
know that vn /∈ T3. Since z ∈ Z1, by (3.4) we know that

dT2(z) ≤ m.(3.6)

We have nearly obtained our contradiction. We know that

dT3(vn) = dT2(vn) + dT3−T2(vn) = i+ dT3−T2(vn).(3.7)

So we must have

dT3
(z) ≥ i+ dT3−T2

(vn).(3.8)

Clearly, dT3
(z) = dT2

(z) + dT3−T2
(z), and we know that dT2

(z) ≤ m. So we know
that

dT3−T2(z) ≥ i−m+ dT3−T2(vn).(3.9)

We will obtain a contradiction of (3.9) by showing that

dT3−T2(z) ≤ i− 1−m+ dT3−T2(vn).(3.10)
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Since we chose z to be the first element of Z1 to be numbered after wi, it is clear
that (T3− T2)∩Z1 = ∅. Also we know that any vertex which borders z is either in Z
or D. Therefore,

dT3−T2
(z) = d(T3−T2)∩D(z) = d(T3−T2)∩D1

(z) + d(T3−T2)∩D2
(z).(3.11)

We know that |D2| = i− 1 and |T2 ∩D2| = m. So we can assert that

d(T3−T2)∩D2
(z) ≤ i− 1−m.(3.12)

Furthermore, since (vn, v) ∈ EG for all v ∈ D1 we know that

d(T3−T2)∩D1
(z) ≤ d(T3−T2)∩D1

(vn).(3.13)

So we have that dT3−T2(z) ≤ i− 1−m+ dT3−T2(vn), which contradicts (3.9) and
proves the theorem.

3.1. The MCS lower bound. To summarize, Corollary 3.2 states that in the
process of the MCS, if an unnumbered vertex is numbered withm numbered neighbors,
then the tree-width of G must be at least m. If we go through one iteration of MCS
and keep track of the best bound acquired through that process, we get the MCS
lower bound for that ordering.

Definition 3.5. For an MCS ordering, π, let MCSLBπ(G) be the best lower
bound to the tree-width of G given by π. Precisely, if π = (v1, . . . vn) and Ti =
{v1, . . . vi}, then

MCSLBπ(G) = max
i=2,...n

dTi−1(vi).(3.14)

4. Conclusions. This bound is of both practical and theoretical interest. On
the practical side, it will provide a lower bound which may be of use to those interested
in calculating or approximating the tree-width of particular graphs. As an example of
this, consider the graph G in Figure 3. Suppose we were interested in finding a lower

Fig. 3. An example graph G.
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bound for the tree-width of G. First we look for cliques and find many 3-cliques but
no 4-cliques. This yields a lower bound of 2. Next we apply the bound given in [9].
Since nodes q and d are nonadjacent vertices of degree 2, that method also yields a
lower bound of 2. So we try to use the MCS lower bound. We find an MCS ordering
such as

π1 = (a, b, c, d, f, e, g, i, j, h, k, l,m, n, p, q).(4.1)

In this case MCSLBπ1(G) = 4, since node p has four neighbors which come before it
in the ordering. It turns out that in this case, the bound is tight and TW (G) = 4.

Notice that the MCS bound can be different for different MCS orderings. For
example, if we had arbitrarily chosen the MCS ordering

π2 = (l, a, k,m, p, n, h, q, f, g, b, j, i, e, c, d),(4.2)

we would get MCSLBπ2
(G) = 3, since no unnumbered vertex ever has more than

three numbered neighbors, while several (e.g., node h) have exactly three. Since the
number of MCS orderings can be large, it is in general not feasible to examine all of
the MCS orderings to see which gives the best lower bound. However, it is simple
enough to find a few different MCS orderings and examine the bounds that arise.

It also may be possible to assign simple heuristics to the arbitrary choices which
increase the probability of choosing the MCS orderings which yield the best bounds.
One such heuristic would be to always choose a vertex of lowest degree, so as to
increase the probability that the higher degree vertices accumulate more numbered
neighbors before they are numbered themselves.

One nice property of using MCS as a bounding technique is that if G contains a
k-clique, then any MCS ordering will give a lower bound of at least k − 1. In other
words, regardless of the “arbitrary” choices made during the MCS, the bound given
will be at least as good as finding the largest clique in the graph. This is easy to
see when you consider that the last vertex in a clique of size k to be numbered will
have at least k − 1 numbered neighbors before it gets numbered. Furthermore, as
demonstrated previously, our bound can do better than just finding the largest clique
in the graph.

It is not difficult to find examples where the MCS lower bound is actually quite
weak, regardless of which MCS ordering(s) are examined. Foremost, the lower bound
that could be yielded by this method is bounded above by the vertex of highest
degree. So while an n × n lattice has tree-width n, the MCS lower bound could never
be greater than 4 (and in fact it will be 2). So this bound can be arbitrarily weak.

On a theoretical level, this result shows an unexpected link between the MCS al-
gorithm and the tree-width of a graph. It provides a convenient method of identifying
or creating graphs of high tree-width. Furthermore, it immediately yields an entire
class of forbidden minors for graphs of low tree-width. It also opens new questions for
further research. For example, what are the class of graphs for which the (best) MCS
lower bound is tight? Which obstructions to low tree-width can this procedure de-
tect? Could the bound be improved by adaptive strategies which selectively contract
edges? It would also be interesting to see how this method performs on graphs used in
practice (arising from expert systems, for example). Such computational experiments
for upper bounds can be found in [6] and [1].
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Abstract. We give a novel relationship between the nonlinearity of rational functions over F2n

and the number of points of the associated hyperelliptic curve. Using this, we obtain a lower bound
on the nonlinearity for rational functions over F2n . Compared to previous work that provides a
lower bound on the nonlinearity only for monomials of special types, our result gives a general bound
applicable to all rational functions defined over F2n . By applying this result, we get a lower bound
on the nonlinearity for various n× kn S-boxes.
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1. Introduction. One of the most powerful attacks for block ciphers is the
linear cryptanalysis developed by Matsui in 1993 [10]. The basic idea of the linear
cryptanalysis is to find a linear relation among the plaintexts, ciphertexts, and key
bits. Such a relation, in general, can be found by a low nonlinearity of a substitution
(called S-box) in block ciphers.

This substitution can be expressed as a Boolean function. The nonlinearity of a
Boolean function with a single bit output was well established [15]. However, it is
very difficult to analyze the nonlinearity of a Boolean function with a multibit output
(called a vector Boolean function) in general. Most known results on the nonlinearity
of vector Boolean functions are aimed at the special types of monomials over F2n

such as x−1 or xr, where the Hamming weight of r is two or three [3, 12, 13]. It
has been regarded as an especially hard problem to find a (nontrivial) bound on the
nonlinearity for more complicated vector Boolean functions such as polynomials or
rational functions. (Of course, for Boolean functions with a small number of input
bits, we can get simulation results.)

In this paper, we derive a novel relationship between the nonlinearity of a rational
function over F2n and the number of points of the associated hyperelliptic curve over
that field. Using this relationship we obtain a lower bound on the nonlinearity for
a rational function over F2n . Our result can be applied to much more complicated
vector Boolean functions regardless of their size. Note that direct computation of the
nonlinearity for an n × n S-box takes about n × 23n operations and is therefore not
feasible for n ≥ 16. Further, we give a lower bound on the nonlinearity for S-boxes
constructed by concatenating two or more S-boxes over F2n . A similar method has
been used in the CAST block cipher [1], in which 8× 32 S-boxes were constructed by
selecting 32 bent Boolean functions over F28 . S-boxes used in the CAST block cipher
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have been believed to be highly nonlinear, but the proof of the lower bound on their
nonlinearity estimated by a probabilistic method is considered to be hard [14]. How-
ever, our method gives a construction of an n×kn S-box with a provable nonlinearity
bound.

In section 2, we recall the notions of nonlinearity and hyperelliptic curves, and
some useful results required to prove the main theorem. In section 3, we present the
main theorem relating the nonlinearity of a vector Boolean function to the number of
rational points of the associated hyperelliptic curve. Also we present several highly
nonlinear n × n S-boxes whose nonlinearity is bounded below by the main theorem.
In section 4, we extend this method to highly nonlinear n× kn S-boxes. Section 5 is
the conclusion of this paper.

2. Preliminaries. We consider a vector Boolean function F : F
n
2 → F

m
2 . Let

b = (b1, b2, . . . , bm) be a nonzero element in F
m
2 . We denote by b · F the Boolean

function which is the linear combination b1f1 + b2f2 + · · · + bmfm of the coordinate
Boolean functions f1, f2, . . . , fm of F over F

n
2 .

Definition 2.1. The nonlinearity of F , N (F ), is defined as

N (F ) = min
b �=0

min
A∈Γ

#{x|A(x) �= b · F (x)},

where Γ is the set of all affine functions over F
n
2 .

If we define L(F, a, b) = #{x|a · x = b · F (x)}, then we have

N (F ) = 2n−1 −max
b �=0

max
a
|2n−1 − L(F, a, b)|.(2.1)

Observe that nonlinearity of arbitrary vector Boolean functions is bounded above by

N (F ) ≤ 2n−1 − 2
n
2−1,

and the equality holds only for bent functions, which exist if and only if n ≥ 2m.
Note that a function from F2n to F2m can be identified as a Boolean function from

F
n
2 to F

m
2 if we specify a basis for each finite field. Since nonlinearity is invariant under

basis changes, we can define the nonlinearity of a map between finite fields without
specifying their bases. Conversely, any (vector) Boolean function over a vector space
can be converted as a map between two finite fields. Throughout this paper, unless
specified otherwise, every Boolean function is a map of F2n to itself.

The simplest map on a finite field is a monomial. The nonlinearity of monomials
is investigated by Nyberg [13].

Theorem 2.2.
1. Let F (x) = x2k+1.

(a) If n/s is odd for s = gcd(n, k), then

N (F ) = 2n−1 − 2(n+s)/2−1.(2.2)

(b) If n is odd and gcd(n, k) = 1, then

N (F ) = 2n−1 − 2(n−1)/2.(2.3)

2. For F (x) = x−1,

N (F ) ≥ 2n−1 − 2n/2.(2.4)
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2.1. Hyperelliptic curves. We recall the notion of a hyperelliptic curve and
Weil’s theorem, which play important roles in proving our main theorem. Consider a
curve C given by the equation

C : y2 + h(x)y = f(x),(2.5)

where f(x), h(x) ∈ F2n [x] with deg h(x) ≤ g and deg f(x) = 2g + 1 for a positive
integer g. A point (x, y) on the curve is said to be singular if both partial derivatives
of y2 + h(x)y − f(x) vanish there so that there is no well-defined tangent line. When
a curve has no singular point, we say that it is nonsingular. Otherwise, we say that
it is singular. A nonsingular curve C of the above form is called a hyperelliptic curve
of genus g.

We define the set of F2n-rational points on C, denoted by C(F2n), to be the set of
all points (x, y) ∈ F2n × F2n that satisfy (2.5) of the curve C, together with a special
point at infinity, denoted by O.

For the number #C(F2n) of the F2n-rational points on C, we have the following
nontrivial bound [6].

Theorem 2.3 (Weil). For any nonsingular projective C of genus g over F2n , we
have

|#C(F2n)− 2n − 1| ≤ 2g
√
2n.(2.6)

Moreover, a hyperelliptic curve of genus g satisfies (2.6). (One easily checks using the
standard device of taking the projective closure of affine curves that in all cases the
projective curve corresponding to (2.5) contains only one point at infinity.)

When a plane curve is singular, the theorem cannot be applied. When a singular
curve C is absolutely irreducible (i.e., irreducible over the algebraic closure of the
ground field), however, we have the following result by desingularizing the singular
algebraic curve [2, 6]:

|#C(F2n)− 2n − 1| ≤ 2g
√
2n − g +

(d− 1)(d− 2)

2
,(2.7)

where g and d are the genus and degree of C, respectively. This can be combined
with Theorem 2.3 to give the following corollary.

Corollary 2.4. Let C be a curve given by an equation y2 + h(x)y = f(x),
where the degree d of f is an odd integer greater than or equal to max{2 deg h+1, 3}.
Assume that C is nonsingular or d ≤ 2n/4+1 + 2. Then we have

|#C(F2n)− 2n − 1| ≤ (d− 1)
√
2n.(2.8)

Proof. If the affine part of C is nonsingular, the genus g of C is g = (d − 1)/2.
Hence the corollary follows. Otherwise, g becomes strictly smaller than (d − 1)/2 so
that g ≤ (d− 1)/2− 1. In this case, (2.7) gives

|#C(F2n)− 2n − 1| ≤ (2
√
2n − 1)

(
d− 1

2
− 1

)
+

(d− 1)(d− 2)

2
.(2.9)

The right-hand side of (2.9) is less than or equal to (d− 1)√2n if d2− 4d+5 ≤ 4
√
2n.

Hence the corollary holds for 3 ≤ d ≤ 2n/4+1 + 2.
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3. Main theorem. In this section, we obtain a lower bound on the nonlinearity
of rational functions over a finite field, using the bound on the number of points of
hyperelliptic curves over that field. Throughout this paper, for any rational function
P (x)/Q(x) for P (x), Q(x) ∈ F2n [x] we assume it is defined for all elements in F2n by
assigning some (arbitrary) value at the zeros of Q(x).

First, we introduce a lemma. We denote by Tr(·) an absolute trace map.
Lemma 3.1. The following polynomial equation of one variable x,

x2 + ax+ b = 0, a �= 0, b ∈ F2n ,(3.1)

is reducible over F2n if and only if Tr( ba2 ) = 0.
Proof. If we replace by ax, x of (3.1) and divide the equation by a2, we obtain

x2+x+b/a2 = 0. Hence x2+ax+b = 0 is reducible over F2n if and only if x2−x = b/a2

has a root in F2n . By Hilbert theorem 90 [8], it is equivalent to Tr(b/a2) = 0.
By using the above lemma, we can derive the following theorem.
Theorem 3.2. Let P (x), Q(x), and G(x) be polynomials over F2n , where G(x)

is injective. Assume that Ca,b is a plane curve defined by y2+Q(x)y = aQ(x)2G(x)+
bP (x) and #Ca,b(F2n) is the number of F2n-rational points on Ca,b. Then any function
F (x) = P (x)/Q(x)2 on F2n satisfies

|2L(F ◦G−1, a, b)−#Ca,b(F2n) + 1| ≤ r,(3.2)

where r is the number of distinct roots of Q(x) in F2n .
Proof. Choose a basis B of F2n over F2 and take its dual basis B̂. Represent

binary vectors in F2n , a and b by the basis B, and G(x) and F (x) by its dual basis
B̂. Then we have

a ·G(x) = Tr(aG(x)), b · F (x) = Tr(bF (x)).

Hence

L(F ◦G−1, a, b) = #{x|a · x = b · F (G−1(x))}
= #{x|Tr(aG(x)) = Tr(bF (x))}
= #{x|Tr(aG(x) + bF (x)) = 0}.

Let α1, α2, . . . , αr be r distinct roots of Q(x). If α �= αi for all i, Ca,b has two
distinct points whose x-coordinate is α whenever y2+Q(α)y− (aQ(α)2G(α)+bP (α))
is reducible. Also, Ca,b has one point whose x-coordinate is αi since y2 − bP (αi) is
always reducible. Hence we have

#Ca,b(F2n) = 2 ·#
{

x|Tr

(
aQ(x)2G(x) + bP (x)

Q(x)2

)
= 0, Q(x) �= 0

}
+ r +#{O}

= 2 ·#{x|Tr(aG(x) + bF (x)) = 0, Q(x) �= 0}+ r + 1(3.3)

= 2L(F ◦G−1, a, b)− 2 ·#{i|Tr(aG(αi) + bF (αi)) = 0}+ r + 1.

The first equality follows from Lemma 3.1. Hence we have

|2L(F ◦G−1, a, b)−#Ca,b(F2n) + 1|
≤ |2 ·#{i|Tr(aG(αi)) = Tr(bF (αi))} − r|
≤ r.
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4. Nonlinearity of rational functions over F2n . In this section, we present
a lower bound on the nonlinearity of some rational functions using Theorem 3.2. For
the convenience of proof, we divide this section into three subsections. Consider a
rational function F (x) = P (x)/Q(x) such that P (x) and Q(x) are polynomials over
F2n . In the first subsection, we treat the case of Q(x) = 1. In the second subsection,
we treat the case of degP > degQ. In the last subsection, we treat the case of
degP < degQ.

4.1. Polynomials.
Theorem 4.1. Let d ≥ 3. Consider two polynomials F (x) and G(x) over F2n ,

where degF = d, degG < d, and G(x) is bijective.
1. If d is odd,

N (F ◦G−1) ≥ 2n−1 − (d− 1)2n/2−1.(4.1)

2. If d is even, let d′ be the largest integer among the odd divisors of a degree of
a term of F (x). If d′ ≥ 3,

N (F ◦G−1) ≥ 2n−1 − (d′ − 1)2n/2−1.(4.2)

Proof.
1. Take Q(x) = 1 and P (x) = F (x) in Theorem 3.2. We have

2L(F ◦G−1, a, b) = #Ca,b(F2n)− 1(4.3)

for a curve Ca,b : y
2 + y = aG(x) + bF (x).

Since each curve Ca,b is nonsingular and has the odd degree d at x for each
a, b �= 0, by Theorem 2.3

|#Ca,b(F2n)− 2n − 1| ≤ (d− 1)
√
2n.(4.4)

Combining (4.3) with (4.4), we obtain the first assertion.
2. Assume that d is even and F (x) = cxd + F1(x), where F1(x) is a polynomial

over F2n of degree less than d. Take Q(x) = 1 and P (x) = F (x) as in
Theorem 3.2. Then the associated curve Ca,b : y2 + y = aG(x) + bF (x) can
be transformed into C ′a,b : y

2+y = aG(x)+bF1(x)+b′xd/2 by y → y+b′xd/2,
where b′ is a root of x2− bc (which always exists because x2 is a permutation
of F2n). Note that Ca,b and C ′a,b have the same number of F2n-rational points.
By repeating this process, we can obtain a curve of degree d′ at x, which is
nonsingular and has the same number of F2n-rational points with Ca,b. Hence

|#Ca,b − 2n − 1| ≤ (d′ − 1)
√
2n.

By applying Theorem 3.2, we complete the proof.
By applying Theorem 4.1, we can derive easily a lower bound on the nonlinearity

of polynomials. Observe that a lower degree polynomial is inclined to have higher
nonlinearity.

Corollary 4.2. Let F (x) ∈ F2n [x], d ≥ 3, and k ≥ 2.
1. For any integer s, d with 2 � d, F (x) = x2sd satisfies

N (x2sd) ≥ 2n−1 − (d− 1)2n/2−1.(4.5)
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2. For any ai ∈ F2n with a2k−1 �= 0, consider F (x) = a2kx
2k + a2k−1x

2k−1

+ · · ·+ a0 and an injective polynomial G(x) of degree less than 2k− 1. Then

N (F ◦G−1) ≥ 2n−1 − (k − 1)2n/2.(4.6)

Proof. The assertions follow from Theorem 4.1.
We present an example using the composition of F and G−1 in order to obtain

higher degree monomials with high nonlinearity.
Example 1. Consider F (x) = x3 and G(x) = x5 over F27 . Since G−1(x) = x51,

we have F ◦G−1(x) = x153 = x26. By Corollary 4.2, we have

N (x26) ≥ 2n−1 − 2n/2+1.

Since nonlinearity is preserved under composition with linear functions like x2, x13

has the same nonlinearity as (x13)2. Hence we have

N (x13) ≥ 2n−1 − 2n/2+1.

4.2. The case of P (x)/Q(x)2 with degP > 2 degQ+ 1. Theorem 4.1 gives
us a lower bound on the nonlinearity of polynomial functions. But if the function con-
tains a term of negative degree, the theorem cannot be applied. For this case, we need
the following theorem.

Theorem 4.3. Let P (x), Q(x), and G(x) ∈ F2n [x], where 2 degQ + degG <
degP ≤ 2n/4+1 + 2 and G(x) is injective. Consider a rational function F (x) =
P (x)/Q(x)2 over F2n . Then if d = degP ≥ 3 and d is odd,

N (F ◦G−1) ≥ 2n−1 − (d− 1)2n/2−1 − r

2
,

where r is the number of the distinct roots of Q(x) in F2n .
Proof. By Corollary 2.4, the associated curve Ca,b : y

2 +Q(x)y = aQ(x)2G(x) +
bP (x) for each a, b �= 0 satisfies

|#Ca,b(F2n)− 2n − 1| ≤ (d− 1)
√
2n.(4.7)

Combining (4.7) with (3.2), we obtain the theorem.
By applying Theorem 4.3, we can derive a lower bound on the nonlinearity of

some rational functions.
Corollary 4.4. Let F (x) ∈ F2n [x].
1. For any ai ∈ F2n with a3 �= 0 and 1 ≤ k ≤ 2n/4 − 1/2, F (x) = a3x

3 + a2x
2

+ · · ·+ a−2kx
−2k satisfies

N (F ) ≥ 2n−1 − (k + 1)2n/2 − 1

2
.(4.8)

2. For any ai ∈ F2n with a5 �= 0 and 1 ≤ k ≤ 2n/4 − 3/2, consider F (x) =
a5x

5 + a3x
3 + · · ·+ a−2kx

−2k and an injective polynomial G(x) of degree less
than 4. Then

N (F ◦G−1) ≥ 2n−1 − (k + 2)2n/2 − 1

2
.(4.9)

Proof. Take G(x) = x, Q(x) = xk, and P (x) = x2kF (x) = a3x
2k+3+ · · ·+a−2k in

Theorem 4.3. Then 2 degQ+degG = 2k+1 < 2k+3 = degP and 3 ≤ degP ≤ 2n/4+1.
Since d = 2k + 3 and r = 1, we obtain the first assertion.

Take Q(x) = xk and P (x) = x2kF (x) = a5x
2k+5 + · · · + a−2k in Theorem 4.3.

Then 2 degQ + degG < 2k + 5 = degP and 3 ≤ degP ≤ 2n/4+1. Since d = 2k + 5
and r = 1, we obtain the first assertion.
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4.3. The case of P (x)/Q(x)2 with degP < degQ.
Theorem 4.5. Let Q(x), G(x) and P (x) be polynomials over F2n , where degP −

1 ≤ degQ ≤ 3, d = 2degQ + degG ≤ 2n/4+1 + 2, and G(x) is injective. Consider a
rational function F (x) = P (x)/Q(x)2 over F2n . If y2 +Q(x)y = bP (x) is irreducible
for every b �= 0, then

N (F ◦G−1) ≥ 2n−1 − (d− 1)2n/2−1 − r

2
,(4.10)

where r is the number of the distinct roots of Q(x) in F2n .
Proof. By Corollary 2.4, for each a �= 0, b �= 0 the associated curve Ca,b : y2 +

Q(x)y = aQ(x)2G(x) + bP (x) satisfies

|#Ca,b(F2n)− 2n − 1| ≤ (d− 1)
√
2n.(4.11)

Consider the case of a = 0. If degP − 1 ≤ degQ ≤ 3, then the associated curve
C0,b : y

2 +Q(x)y = bP (x) is of degree degQ+ 1. If C0,b is nonsingular, C0,b satisfies
(4.11) since it has genus degQ(degQ− 1)/2 ≤ (d− 1)/2. If C0,b is singular, C0,b has
genus g less than degQ(degQ − 1)/2. Since C0,b is irreducible by assumption, we
have by (2.7)

|#C0,b(F2n)− 2n − 1| ≤ 2g
√
2n − g +

degQ(degQ− 1)

2
,

where the right-hand side is less than (d− 1)
√
2n.

In all cases, (4.11) holds for each a, b �= 0. By Theorem 3.2, we complete the
proof.

Corollary 4.6. Let F (x) ∈ F2n [x] with n ≥ 6.
1. Let α ∈ F2n . For any odd integer k and ai ∈ F2n with ak �= 0, F (x) =

a1(x+ α)−1 + a2(x+ α)−2 + · · ·+ ak(x+ α)−k satisfies

N (F ) ≥ 2n−1 − (k + 1)2n/2−1 − 1

2
.(4.12)

2. For any polynomial H(x) ∈ F2n of degree k = 2 or 3, F (x) = x/H(x)2

satisfies

N (F ) ≥ 2n−1 − k · 2n/2 − r

2
,(4.13)

where r is the number of the distinct roots of H(x).
Proof. If we take G(x) = x + α, Q(x) = x(k+1)/2, and P (x) = a1x

k + a2x
k−1 +

· · ·+ akx, then C0,b : y
2 + x(k+1)/2y = b(a1x

k + a2x
k−1 + · · ·+ akx) is irreducible for

every nonzero b and nonzero ak. Since d = k+ 2 ≤ 6 ≤ 2n/4+1 + 2, the first assertion
holds.

If we take G(x) = x, Q(x) = H(x), and P (x) = x, then C0,b : y2 + H(x)y = bx
is irreducible for every nonzero b. Since d = 2k + 1 ≤ 6 ≤ 2n/4+1 + 2, the second
assertion holds.

Theorem 4.7. Let A,B be distinct nonzero elements in F2n , α ∈ F
∗
2n , and n ≥ 2.

If F (x) is a function on F2n satisfying

F (x) =
A

x
+

B

(x+ α)
for each x �= 0,
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Table 1
Lower bound on the nonlinearity for n× n vector Boolean functions.

Function Lower bound Constraint

x2k−1 + · · ·+ a0 2n−1 − (k − 1)2n/2 k ≥ 2

x3 + · · ·+ a−2kx−2k 2n−1 − (k + 1)2n/2 − 1/2 1 ≤ k ≤ 2n/4 − 1/2

x5 + · · ·+ a−2kx−2k 2n−1 − (k + 2)2n/2 − 1/2 1 ≤ k ≤ 2n/4 − 3/2

a1x−1 + · · ·+ akx
−k 2n−1 − (k + 1)2n/2−1 − 1/2 k ≥ 1, ak �= 0

x/H(x)2 2n−1 − k · 2n/2 − r/2 k = degH = 2 or 3
r = # of roots of H(x)

A
x

+ B
x+α

2n−1 − 2n/2+1 − 1 ABα �= 0

Table 2
Comparison of the lower bound and the exact value of the nonlinearity.

Function n Our lower bound Exact value

x3 + x5 + x6 7 48 48
8 96 96

x−1 + x3 7 41 46
8 96 100

x−3 + x−1 7 41 46
8 96 97

then we have

N (F ) ≥ 2n−1 − 2n/2+1 − 1.(4.14)

Proof. Take Q(x) = x(x + α), G(x) = x, and P (x) = ((A + B)x + Aα)2 as in
Theorem 3.2. By Corollary 2.4, the associated curve Ca,b : y

2+Q(x)y = aQ(x)2G(x)+
bP (x) for each a �= 0, b �= 0 satisfies

|#Ca,b(F2n)− 2n − 1| ≤ 2
√
2n.(4.15)

Consider that case of a = 0. The associated curve C0,b : y2 + Q(x)y = bP (x) is
of degree 3. If C0,b is nonsingular, C0,b satisfies (4.15) since it has genus 1. If C0,b

is singular, C0,b has genus 0. Since C0,b is irreducible for each nonzero b, we have by
(2.7)

|#Ca,b(F2n)− 2n − 1| ≤ 1.

In all cases, (4.15) holds for each a, b �= 0. By Theorem 3.2, P (x)/Q(x)2 satisfies

N (P (x)/Q(x)2) ≥ 2n−1 − 2n/2+1 − 1.

Since F (x)2 = P (x)/Q(x)2, F (x) has the same nonlinearity with P (x)/Q(x)2 which
completes the proof.

4.4. Experimental results. In Table 1, we present the main results of this
chapter in short. Every function in the table is a vector Boolean function from F2n

to F2n . Also, A, B, α, and ai denote an element of F2n .
In Table 2, we compare our bound on the nonlinearity and the exact value for

several n× n vector Boolean functions. Observe that our bound is very tight in case
the degree of function has small absolute values.
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5. Nonlinearity of x−1 and x3. In this section, we apply the previous results
to obtain the exact nonlinearity of x−1 and x3, which are frequently used in designing
block ciphers. This result is not new. The nonlinearity of x−1 is bounded below using
a Kloosterman sum [7, p. 228] and its exact value was determined using elliptic curves
[5]. The nonlinearity of x3 can be derived from the weight distribution of the BCH
code Tr(ax+ bx3) [9, pp. 451–452].

Theorem 5.1. Let F (x) be the function on F2n such that

F (x) =

{
1
x , x �= 0,

0, x = 0.

Then every component of F (x) has the same nonlinearity.
Proof. If we take G(x) = Q(x) = P (x) = x in (3.2) of the proof of Theorem

3.2, we have #Ca,b(F2n) = 2L(F, a, b), where Ca,b : y2 + xy = ax3 + bx. Note that
F (x) is injective so that L(F, 0, b) = 2n−1. Hence it is enough to show that for given
nonzero b, b′ ∈ F2n there is a nonzero a′ ∈ F2n such that Ca,b is isomorphic to Ca′,b′

for any nonzero a ∈ F2n . By the transformation (x, y) �→ (ax, ay), we know that Ca,b
is isomorphic to y2 + xy = x3 + abx. Hence if we take a′ = ab/b′, Ca,b is isomorphic
to Ca′,b′ , which completes the proof.

Any polynomial F (x) of degree 3 on F2n has lower bound on the nonlinearity not
less than 2n−1 − 2n/2. More precisely, we obtain the following.

Theorem 5.2. Let F (x) = x3 be on F2n . Then the exact nonlinearity of F (x) is
as follows:

N (F ) =

{
2n−1 − 2

n−1
2 if n is odd,

2n−1 − 2n/2 if n is even.
(5.1)

Moreover, if n is odd, every component function of F (x) has the same nonlinearity,
and if n is even, the nonlinearity of any component function of F (x) is either 2n−1−
2n/2−1 or 2n−1 − 2n/2.

Proof. If we take G(x) = Q(x) = 1 and P (x) = x3 in (3.2) of the proof of Theorem
3.2, we have #Ca,b(F2n) = 2L(F, a, b) + 1, where Ca,b : y

2 + y = bx3 + ax. Since Ca,b
is a supersingular elliptic curve for each a, b �= 0, if we let t = #Ca,b(F2n)− 2n− 1, t2

is 0, 2n, 2 · 2n, 3 · 2n or 4 · 2n. Hence we have

|2L(F, a, b)− 2n| = |#C(F, a, b)− 2n − 1| =
{
0, 2(n+1)/2 for odd n,

0, 2n/2, 21+n/2 for even n.

Therefore,

|2n−1 − L(F, a, b)| =
{
0, 2(n−1)/2 for odd n,

0, 2n/2−1, 2n/2 for even n

for any a, b �= 0.
On the other hand, Ca,b is isomorphic to y2+by = x3+abx by the transformation

(x, y) �→ (bx, by) for any nonzero b. If n is odd, it is isomorphic to y2 + y = x3 + ax/γ
by the transformation (x, y) �→ (x/γ2, y/γ3), where γ3 = b. Hence for each nonzero b,
there exists a ∈ F2n such that Ca,b can have order 2n+1+

√
2n or 2n+1−√2n [11].

In any case, b ·F has the nonlinearity 2n−1− 2(n−1)/2. Similarly, when n is even, b ·F
has the nonlinearity 2n−1 − 2n/2 if b is a cube of an element in F2n , or 2n−1 − 2n/2−1

otherwise [11].
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6. Nonlinearity of n × kn S-boxes. In this section, we derive the nonlinearity
of n× kn S-box constructed by concatenating k n× n S-boxes over F2n . At first, we
present a theorem to relate nonlinearity of an n×kn S-box to that of an n×n S-box.

Theorem 6.1. Let F : F2n → F2kn be a vector Boolean function with F =
(F1, F2, . . . , Fk) for Fi : F2n → F2n . Then we have

N (F ) = min
(c1,c2,... ,ck)∈F∗

2kn

N (c1F1 + c2F2 + · · ·+ ckFk),

where the sum and the product are the field operations in F2kn .
Proof. Choose a basis B of F2n over F2 and take its dual basis B̂. Let us represent

by the basis B the left sides of all inner products and by its dual basis B̂ their right
sides. For any nonzero b = (c1, c2, . . . , ck) with ci ∈ F2n , we have

L(F, a, b) = #{x|a · x = b · F (x)}
= #{x|Tr(ax+ bF (x)) = 0}
= #{x|Tr(ax+ c1F1(x) + · · ·+ ckFk(x)) = 0}
= L(c1F1 + · · ·+ ckFk, a, 1),

where 1 is the binary vector representing the identity element by the basis B.
Conversely, for any nonzero (c1, c2, . . . , ck) ∈ F2kn , ci ∈ F2n , and a nonzero b0 ∈

F2n , there exists a nonzero b ∈ F2kn such that L(c1F1 + · · ·+ ckFk, a, b0) = L(F, a, b),
which completes the proof.

By the above theorem, we can apply Theorem 3.2 to get a lower bound on the
nonlinearity of an n×kn S-box. For example, consider an n×2n S-box F = (F1, F2),
where F1(x) = x−1 and F2(x) = x3 are S-boxes over F2n . Then

N (F ) = min
(c1,c2) �=0

N (c1x
−1 + c2x

3)

= min{min
ci �=0
N (c1x

−1 + c2x
3),N (x−1),N (x3)}

≥ 2n−1 − 2n/2+1 +
1

2
.

The first equality follows from Theorem 6.1 and the last inequality follows from Corol-
lary 4.4.

Similarly, we can obtain a lower bound on the nonlinearity for various n × kn
S-boxes. We present some of them in Table 3. Observe that every rational function
such as x−1 and x3 in Table 3 is a vector Boolean function from F2n to F2n . The
second column shows a lower bound on the nonlinearity of the S-boxes in the first
column, whose value for n = 8 appears in the third column. The fourth column shows
the exact value on the nonlinearity calculated by a computational experiment.

In Table 3, we can see that our bound is tight for the case of 8 × 16 S-boxes.
However, we could not compute the exact nonlinearity of 8 × 8k S-boxes for k ≥ 3
since the computation cost is too large. We think that our bound may be tight in
case the degree of function has small absolute values.

If we combine our result with Theorem 17 in [14], we can also construct kn× kn
S-boxes. But we could not obtain a good lower bound on the nonlinearity of such
kn × kn S-boxes. We hope to find a method to construct highly nonlinear kn × kn
S-boxes from n× n S-boxes.
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Table 3
Lower bound on the nonlinearity for n× kn S-boxes.

S-box Lower bound of nonlinearity for n = 8 Exact value

(x−1, x3) 2n−1 − 2n/2+1 − 1
2

96 100

(x−1, x−3) 2n−1 − 2n/2+1 − 1
2

96 100

(x3, x5) 2n−1 − 2n/2+1 96 96

(x−1, (x− 1)−1) 2n−1 − 2n/2+1 − 1 96 96

(x−3, x−5) 2n−1 − 3 · 2n/2 − 1
2

80 96

(x−3, x−1, x3) 2n−1 − 3 · 2n/2 − 1
2

80 -

(x−1, x3, x5) 2n−1 − 3 · 2n/2 − 1
2

80 -

(x3, x5, x7) 2n−1 − 3 · 2n/2 80 -

(x−3, x−1, x3, x5) 2n−1 − 4 · 2n/2 − 1
2

64 -

(x−1, x3, x5, x7) 2n−1 − 4 · 2n/2 − 1
2

64 -

(x3, x5, x7, x9) 2n−1 − 4 · 2n/2 64 -

7. Conclusion. In this paper, we derived a novel relationship between the non-
linearity of a rational function and the number of points of the associated hyperelliptic
curve. As a result, we can obtain a lower bound on the nonlinearity for various ra-
tional functions. Our result can be used to generate highly nonlinear S-boxes with
much more complicated algebraic structures. Also we presented a method to construct
highly nonlinear n × kn S-boxes whose nonlinearity bound can be easily computed.
This method is useful for designing an asymmetric Feistel network such as Bear and
Lion.

Further, we can consider constructing highly nonlinear kn × kn S-boxes from
n × n S-boxes. Such a construction enables us to design a block cipher with large
S-boxes implemented by several small S-boxes. It can make designing block cipher
much simpler. However, we have not found such a construction yet. Thus the problem
remains open.
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Abstract. We give a deterministic algorithm that constructs a graph of girth logk(n) + O(1)
and minimum degree k − 1, taking number of nodes n and number of edges e = �nk/2� (where
k < n

3
) as input. The degree of each node is guaranteed to be k − 1, k, or k + 1, where k is the

average degree. Although constructions that achieve higher values of girth—up to 4
3
logk−1 (n)—with

the same number of edges are known, the proof of our construction uses only very simple counting
arguments in comparison. Our method is very simple and perhaps the most intuitive: We start
with an initially empty graph and keep introducing edges one by one, connecting vertices which are
at large distances in the current graph. In comparison with the Erdös–Sachs proof, ours is slightly
simpler while the value it achieves is slightly lower. Also, our algorithm works for all values of n and
k < n

3
, unlike most of the earlier constructions.
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1. Introduction.

1.1. The main result. We give an algorithm that takes a positive integer n
and an “expected degree” k (where k < n

3 ) as input and creates a graph G = (V,E)
with n nodes, �nk/2� edges, and girth g satisfying the relation

n

2
≤ 1 + (k + 1)(k

g−1 − 1)
(k − 1) .

It follows that g > logk(n) + O(1). We prove that the degree of any node in the
graph constructed by our algorithm will be k − 1, k, or k + 1. Thus given the values
of girth (say g) and minimum degree (say t) our algorithm can be used to construct

graphs with at most 2+ 2(t+2)((t+1)g−1−1)
t nodes. Note that this bound is comparable

to the results of Erdös and Sachs [4] and Sauer [17], who showed that the minimum
number of vertices n(g, t), required for the girth to be greater than or equal to g and
the minimum degree to be greater than or equal to t, satisfies

n(g, t) ≤ 2(t− 1)
g−1 − 1

t− 2 if g is odd,

n(g, t) ≤ 4(t− 1)
g−2 − 1

t− 2 if g is even.

(See also [3, p. 107].)
Although we achieve a slightly lower value, our proof looks slightly simpler.
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1.2. Other known high girth graph constructions. The problem of con-
structing high girth graphs with high minimum degree was difficult. For many years
the only significant results in this direction were the theorems of Erdös and Sachs and
their improvements by Sauer [17], Walther [18, 19], and others (see page 107 in [3]
for a brief history) and later by Mai, Wang, and Luo [14], who proved the existence
of infinite families of k-regular graphs with girth logk−1 n, where n is the number of
nodes in the graph. The first explicit construction of a family of high girth graphs
was given by Margulis [15] in which girth approximately 0.44 logk−1(n) was proved
for some infinite families with arbitrary large k, and girth 0.83 logk−1(n) was proved
for an infinite family with k = 4. Imrich [5] was able to improve the result to girth
0.48 logk−1(n), in the case of arbitrary large k, and to produce a family of cubic graphs
(k = 3) with girth = logk−1(n). In [1], a family of geometrically defined cubic graphs,
the so-called sextet graphs, was introduced by Biggs and Hoare. They conjectured
that these graphs have large girth. Weiss [20] proved the conjecture by showing that
for the sextet graphs (or their double cover) girth = (4/3) logk−1(n). Then, indepen-
dently, Margulis (see [16] and references therein) and Lubotzky, Phillips, and Sarnak
[6] came up with similar examples of graphs with girth ≥ (4/3) logk−1(n), which was
proved by Biggs and Boshier to be exact [2]. In [7], Lazebnik and Ustimenko con-
structed a family of graphs with girth approximately equal to logk−1(n) for arbitrary
large k. In [13] it is proved that the graphs in [7] are disconnected and each compo-
nent has girth approximately (4/3) logk−1(n). Some other girth-related references are
[8, 9, 10, 11, 12].

In this paper we give a construction which works for any n and k < n
3 , achieving

girth logk(n), where k is the average degree. The graphs constructed by our algorithm
are only approximately regular—every node is guaranteed to have a degree k − 1, k,
or k + 1. The advantage of our construction is that it is very elementary and only
uses combinatorial arguments, avoiding sophisticated mathematics. (The method of
Erdös and Sachs also is combinatorial while others are algebraic.) We start with an
initially empty graph of n vertices and keep adding edges one by one, connecting
vertices which are at large distances in the current graph. We feel that this is the
most intuitive way of achieving high girth. It works for any n and k < n

3 , unlike most
earlier constructions.

2. High girth graph construction. The following algorithm takes the number
of nodes n and the average degree k (where k < n

3 ) as input and constructs a graph
of girth at least logk(n) +O(1). All the nodes in the graph will have degree k − 1, k,
or k + 1.

2.1. The algorithm. Let n be an even integer. (This is just for convenience.
We will describe the case when n is odd shortly.) Assume that, in the beginning, we
have a perfect matching on the n nodes. That is, we start with a graph having n

2

edges, the degree of each node being 1. Do the following steps for i = n
2 + 1 to

kn
2 :

1. Let S = {u ∈ V : degree(u) ≤ degree(v)∀v ∈ V }.
2. Let T = {(u, v) ∈ S × V : distance(u, v) ≥ distance(x, y)∀ (x, y) ∈ S × V }.
3. If there is a pair (u, v) ∈ T , such that degree(v) ≤ j, where j = ⌈ 2i

n

⌉
, and the

edge {u, v} is not already in the graph, introduce a new edge {u, v} and go to
the beginning of the loop. If there are several such pairs, pick one arbitrarily.
Else go to 4.

4. Let ρ = distance(u, v), where (u, v) ∈ T . Put ρ = ρ − 1. Now assign
T = {(u, v) ∈ S × V : distance(u, v) = ρ}. Go to 3.
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(The above algorithm does the following. In step 1, it collects in S all the vertices
having the least degree in the graph. Next, it collects in T all the pairs of nodes (u, v)
such that distance(u, v) is maximum from the set of all pairs (u, v) with u in S. Put
an edge (if it is not already there) between one such pair from T , making sure that
both u and v have degree less than or equal to j =

⌈
2i
n

⌉
. If no (u, v) satisfies this

degree requirement, let T be redefined as the set of pairs (u, v), such that u is in S
and distance(u, v) = ρ− 1, where ρ = distance between any pair (u, v) which was in
T earlier.)
Lemma 2.1. The graph created by the above algorithm will be such that for all

v ∈ V , degree(v) will be k−1, k, or k+1. If Vd denotes the set of vertices with degree
d in the graph, |Vk−1| = |Vk+1| ≤ n

2 .
Proof. Let us use induction as each batch of n2 edges is introduced. (That is, as

the average degree of the graph increases by 1.) (Note that the parameter j =
⌈

2i
n

⌉

remains constant as a batch of n2 edges is introduced and, when the next batch starts,
it increases by 1.)

Consider the following induction hypothesis.
When i = dn

2 iterations of the loop are over, the degree of any node in the graph
will be d− 1, d, or d+ 1. Let X be the set of vertices with degree d− 1, Y be that of
vertices with degree d, and Z be that of vertices with degree d+ 1. Then |X| = |Z|.

In the beginning of the algorithm, average degree = 1 and the statement is true
because there are only vertices of degree 1 in the graph. We have |X| = |Z| = 0.

Now assuming the induction hypothesis after d batches of n2 edges are introduced,
let us prove that it is true even after the next batch is introduced. We note that since
|X| = |Z|, |X| ≤ n

2 . Thus when
n
2 edges are introduced, each vertex in the set X gets

a chance to increase its degree (because minimum degree vertices have preference).
So after n2 edges are introduced there will be no vertices of degree d− 1 left. Further,
no vertex will have degree > (d + 2) because while these edges are introduced the
parameter j will remain equal to d+1. Since the sum of degrees during this stage can
reach a maximum of (d+1)n only, and d ≤ k < n

3 , it can be easily verified that for each
minimum degree node (which will be at least d−1 at this stage) there will always be a
node which is nonadjacent to it and of degree less than d+2. Therefore the algorithm
will add an edge on each iteration. Thus after the new n

2 edges are introduced we
retain the induction hypothesis statement that the degrees are d, d+1, or d+2. Now
let X1, Y1, Z1 be the new sets of d, d + 1, and d + 2 degree vertices, respectively. It
suffices to show that |X1| = |Z1|. We know that

|X1|d+ |Y1|(d+ 1) + |Z1|(d+ 2) = (d+ 1)n.(2.1)

We also have |X1| + |Y1| + |Z1| = n. Therefore, |Z1| = |X1|. Thus we get back the
induction hypotheses, and hence the result follows.

2.2. Construction for odd n. If n is odd, one may start with an n-length cycle
Cn instead of a matching. Then at the beginning of the loop i = n+ 1. Again, when
we start the algorithm, every node has a degree of 2, which is equal to the average
degree. Now think of introducing batches of

⌊
n
2

⌋
and

⌈
n
2

⌉
edges alternately. That is,

each odd-numbered batch will contain
⌊
n
2

⌋
edges and every even-numbered batch will

contain
⌈
n
2

⌉
edges. We can consider a slightly different induction hypothesis. If k is

even, then just after we have introduced nk
2 edges, every node in the graph will be of

degree k−1, k, or k+1. Moreover, |Vk+1| = |Vk−1|, implying that |Vk+1| = |Vk−1| ≤ n
2 .

If k is odd, then just after introducing
⌊
kn
2

⌋
edges, every node in the graph will be
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of degree k − 1, k, or k + 1 as before. However, |Vk+1| = |Vk−1| − 1. We still have
|Vk+1| ≤ n

2 . The induction hypothesis also implies that, just after each odd-numbered
batch of edges is introduced, |Vk−1| ≤

⌈
n
2

⌉
, and just after every even-numbered batch

is introduced, |Vk−1| ≤
⌊
n
2

⌋
. Thus when a new batch of edges is introduced, each node

in the set Vk−1 will increase its degree as before. Also, no node can attain a degree
greater than (k + 2). Thus when k + 1 is even, we get back the same equation as

(2.1). When k+1 is odd, since we have only introduced �n(k+1)
2 � edges, the equation

becomes

|Vk|k + |Vk+1|(k + 1) + |Vk+2|(k + 2) = (k + 1)n− 1.(2.2)

Solving this we get |Vk+2| = |Vk| − 1. Thus again |Vk+2| ≤ n
2 .

Theorem 2.2. The above algorithm creates a graph which has a girth

g > logk(n) +O(1).

Proof. Look at the final graph. Let the girth be g. This cycle (girdle) closed
sometime back in the process. Go back to the stage just before closing the smallest
cycle. Let d =

⌈
2i
n

⌉
, where i is the loop iteration number at that time. For that

iteration, we had selected a current minimum degree vertex, u. (That is, we had
selected a pair (u, v), with u ∈ S.) Let B = {x ∈ V : distance(u, x) ≥ g}. Why did
we not select a vertex from B to be connected with u? Because those vertices, if any,
had already achieved a degree of (d+1). The algorithm prohibits us from connecting u
with them. But we know by Lemma 2.1 that the number of vertices of degree d+1 can
be at most n2 . Thus V −B contains at least n2 nodes. Using the fact that k+1 ≥ d+1
(d+1 being the maximum degree of the graph at that stage), we see that the maximum
number of nodes possible in V − B is 1 + (k + 1) + (k + 1)k + · · · + (k + 1)k(g−2).
Combining the lower and upper bounds for |V −B|, we have

n

2
≤ 1 + (k + 1) + (k + 1)k + · · ·+ (k + 1)k(g−2),

n

2
≤ 1 + (k + 1)(k

g−1 − 1)
(k − 1) ,

which gives

logk(n) +O(1) < g.
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[4] P. Erdös and H. Sachs, Reguläre Graphe gegebener Taillenweite mit minimaler Knotenzahl,

Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 12 (1963), pp. 251–
257.

[5] W. Imrich, Explicit construction of graphs without small cycles, Combinatorica, 2 (1984), pp.
53–59.

[6] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica, 8 (1988), pp.
261–271.



370 L. SUNIL CHANDRAN

[7] F. Lazebnik and V.A. Ustimenko, Explicit construction of graphs with an arbitrary large
girth and of large size, Discrete Appl. Math., 60 (1995), pp. 275–284.

[8] F. Lazebnik, V.A. Ustimenko, and A.J. Woldar, A characterization of the components of
the graphs D(k, q), Discrete Math., 157 (1996), pp. 271–283.

[9] F. Lazebnik, V.A. Ustimenko, and A.J. Woldar, New upper bounds on the order of cages,
Electron. J. Combin., 4 (1997), Research paper 13 (electronic).

[10] F. Lazebnik, V.A. Ustimenko, and A.J. Woldar, Polarities and 2k-cycle-free graphs, Dis-
crete Math., 197/198 (1999), pp. 503–513.

[11] F. Lazebnik, V.A. Ustimenko, and A.J. Woldar, Properties of certain families of 2k-cycle
free graphs, J. Combin. Theory Ser. B, 60 (1994), pp. 293–298.

[12] F. Lazebnik, V.A. Ustimenko, and A.J. Woldar, New constructions of bipartite graphs on
m,n vertices, with many edges, and without small cycles, J. Combin. Theory Ser. B, 61
(1994), pp. 111–117.

[13] F. Lazebnik, V.A. Ustimenko, and A.J. Woldar, A new series of dense graphs of high girth,
Bull. Amer. Math. Soc. (N.S.), 32 (1995), pp. 73–79.

[14] J. Mai, S. Wang, and H. Luo, Number of edges of graph with girth > n + 1, J. China Univ.
Sci. Tech., 14 (1984), pp. 467–474 (in Chinese).

[15] G.A. Margulis, Explicit constructions of graphs without short cycles and low density codes,
Combinatorica, 2 (1982), pp. 71–78.

[16] G.A. Margulis, Explicit group theoretical constructions of combinatorial schemes and their
application to the design of expanders and concentrators, Problemy Peredachi Informatsii,
24 (1988), pp. 51–60.
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Abstract. We study the simplicial complex of t-colorable graphs on n vertices. We prove this

complex is homotopy equivalent to a wedge of spheres all of dimension n(t− 1)−
(
t
2

)
− 1 when t = 2

and when t ≥ n− 3. We show that such a homotopy equivalence does not hold for general t and n.
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1. Introduction and statement of results. Recall that a monotone graph
property is a collection Γ of graphs on a fixed labeled vertex set V that satisfies the
following two conditions:

(A) If G ∈ Γ and H is obtained from G by removing an edge, then H ∈ Γ.
(B) If G ∈ Γ and H is isomorphic to G, then H ∈ Γ.
From now on we assume that V = [n] for some n ∈ N. Any collection Γ of

graphs on V that satisfies condition (A) determines a simplicial complex (also called
Γ) whose vertex set corresponds to the set of edges in the complete graph Kn. That
is, a graph G ∈ Γ with k+ 1 edges corresponds to a k-dimensional face whose proper
faces correspond to proper subgraphs of G. If Γ also satisfies condition (B), then the
action of the symmetric group Sn on V determines an action of Sn on Γ as a group
of simplicial automorphisms.

The theory of group actions on topological spaces was successfully applied to the
study of monotone graph properties by Kahn, Saks, and Sturtevant in their exam-
ination of computational complexity (see [KSS]). More recently, certain classes of
monotone graph properties have appeared in various areas of mathematics. Com-
plexes of graphs of bounded degree arise in group theory, topology, combinatorics,
geometry, and commutative algebra (see [Bo, BLVZ, KRW, RR]), and complexes of
graphs of bounded connectivity arise in the study of invariants of knots and similar
objects (see [BBLSW, Sh1, Sh2, Tu, Va1, Va2, Va3]). The appealing results discovered
in the papers mentioned led us to investigate the topology of other monotone graph
properties which have simple graph-theoretic definitions. In this paper we discuss our
results on complexes of graphs of bounded chromatic number.

Recall that a graph G is t-colorable if its vertices can be colored with t colors so
that no two adjacent vertices receive the same color. The chromatic number χ(G) is
the smallest t such that G is t-colorable. For 1 ≤ t ≤ n, the complex of t-colorable
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Fig. 1.1. The 16 trees in T (5).

graphs on n vertices is

Γtn := {G ⊆ Kn : χ(G) ≤ t} .

If t = 1, then Γtn consists of only the empty graph, while if t = n, then Γtn is the full
(
(
n
2

) − 1)-simplex. The only graph on n vertices that is not (n − 1)-colorable is the
complete graph Kn, so Γ

n−1
n is the boundary of the (

(
n
2

)− 1)-simplex and is therefore
homeomorphic with the (

(
n
2

) − 2) sphere. We are able to determine the homotopy
type of Γtn when t is one of 2, n− 2, or n− 3.

To state our result in the case t = 2 we need some definitions. Recall that for
vertices x, y of G the distance d(x, y) from x to y is defined by d(x, y) = ∞ if x and
y are not in the same connected component of G, and d(x, y) is the length, i.e., the
number of edges, of the shortest path from x to y in G otherwise. We now define, for
any graph G = ([n] , E) and i ∈ N ∪ {∞},

Di(G) := {x ∈ [n] \ {1} : d(1, x) = i}

and

md(G) = max {i ∈ N : Di(G) 
= ∅} .

For 1 ≤ i ≤ md(G), define

ai(G) := minDi(G).

Now define T (n) to be the set of all trees T on vertex set [n] that satisfy the following
three conditions:

• For 1 ≤ i < md(T ), the only element of Di(T ) that has neighbors in Di+1(T )
is ai(T ).

• For 1 ≤ i < md(T ), there is some element of
⋃
j≥iDj(T ) that is larger than

ai(T ).
• |Dmd(T )(T )| > 1.

See Figure 1.1 for a list of the trees in T (5).
In section 4, we will prove the following result.
Theorem 1.1. For all n ≥ 2 the complex Γ2

n has the homotopy type of a wedge
of |T (n)| spheres of dimension n− 2.

The fact that Γ2
n has the homotopy type of a wedge of spheres of dimension n− 2

is a special case of a result of Chari (see [Ch1, Ch2]), who showed that if every edge of
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some graph G is contained in an odd cycle, then the complex Γ2(G) of all 2-colorable
subgraphs of G has the homotopy type of a wedge of spheres of dimension |V (G)|−2.
It is also the case that if some edge of G is not contained in an odd cycle, then Γ2(G) is
collapsible and therefore contractible. Further discussion of the relationship between
our result and Chari’s appears in section 4.

Using a result that appears as an exercise in [St], we can obtain a generating
function for |T (n)|.

Corollary 1.2. The generating function

B(z) :=
∑

n≥2

|T (n)|z
n

n!

satisfies

B(z) = −
√
2e−z − 1− z + 1.

Proof. By Theorem 1.1, |T (n)| is equal to the absolute value of the reduced Euler
characteristic χ̃(Γ2

n). In exercise 5.5 of [St], it is shown that if b(n,m) is the number
of bipartite graphs on vertex set [n] with m edges, then

∑

n,m≥0

b(n,m)qm
xn

n!
=




∑

n≥0

(
n∑

i=0

(1 + q)i(n−i)
(
n

i

))
xn

n!




1/2

.

Setting q = −1 and x = −z completes the proof.
We now turn to the cases t = n− 2 and t = n− 3. In section 5 we will prove the

following results.
Theorem 1.3. For each n ≥ 3 the complex Γn−2

n has the homotopy type of a
wedge of

(
n−1

2

)
spheres of dimension

(
n
2

)− 4
Theorem 1.4. For each n ≥ 4 the complex Γn−3

n has the homotopy type of a
wedge of

(
n−1

3

)
+ 12

(
n
5

)
spheres of dimension

(
n
2

)− 7.
With Theorems 1.1, 1.3, and 1.4 in hand, it is reasonable to conjecture that Γtn

has the homotopy type of a wedge of spheres of dimension n(t − 1) − (t2
) − 1 for all

n, t. However, computer calculations show that this conjecture is false. In particular,
H̃19(Γ

4
8) is free of rank one. On the other hand, computer calculations also show that

H̃i(Γ
4
8) = 0 for i 
∈ {17, 19} and H̃17(Γ

4
8) is free of rank 9, 396. So, one can still ask

whether Γtn always has nontrivial free homology in dimension n(t− 1)−
(
t
2

)− 1 and
whether this is the smallest dimension in which nontrivial homology appears. In the
course of proving Theorems 1.3 and 1.4, we prove a lemma from which the next result
follows immediately.

Proposition 1.5. For all n, t the complex Γtn is (� (n−1)(t−1)
2 � − 1)-connected.

Although Theorems 1.1, 1.3, and 1.4 can all be obtained using traditional tools
from topological combinatorics such as the Quillen fiber lemma, Alexander duality,
and the theory of lexicographic shellability (see [Bj]), the proofs we will give all use the
discrete Morse theory of Forman, which is described in [Fo1]. These proofs, although
somewhat technical and complicated, are considerably simpler and more natural than
the proofs which use the traditional tools. One of our main purposes for writing
this paper is to further demonstrate the power of Forman’s theory in the study of
monotone graph properties (other evidence appears in [BBLSW, Fo2, Jo, Sh1, Sh2])
and to explain certain techniques which have proven useful when applying the theory.
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After giving explicit definitions of some of the objects mentioned in this introduc-
tion and introducing some other necessary concepts in section 2, we discuss discrete
Morse theory in section 3. The proof of Theorem 1.1 and some further discussion of
that theorem appear in section 4, and the proofs of Theorems 1.3 and 1.4 appear in
section 5. Concluding remarks appear in section 6.

2. Preliminaries. By a graph G = (V (G), E(G)) we mean a loopless graph
without multiple edges (equivalently, a one-dimensional simplicial complex) on the

vertex set V (G) with edge set E(G) ⊆ (V (G)
2

)
. Our standard vertex set will be the set

[n] := {1, 2, . . . , n}. A graph G is called t-colorable if there is a function f : V (G)→ [t]
such that if {x, y} ∈ E(G), then f(x) 
= f(y). Thus the preimages

{
f−1(i) : i ∈ [t]}

partition V (G) into (at most) t independent sets. Graphs that are 2-colorable are
also called bipartite.

Of course, if G = (V (G), E(G)) is a graph that is t-colorable for some t ≥ 2, then
for any subset E′ ⊆ E(G) the graph G′ = (V (G), E′) on the same vertex set is also
t-colorable. Hence if we fix an n-element vertex set V (e.g., [n]) and identify a graph
with the set of its edges, then we may regard the set of t-colorable graphs on V as a
simplicial complex.

Definition 2.1. Γtn is the complex of t-colorable graphs on n vertices (2 ≤ t ≤ n).

Its simplices are the subsets E ⊆ ([n]
2

)
such that the graph ([n], E) is t-colorable.

For a graph G and a vertex v, G−v will denote the graph that is obtained from G
by deleting the vertex v from its set of vertices and deleting all edges emerging from
v from the set of edges. Also, NG(v) will denote the neighborhood of v in G, that is,
the set of all u ∈ V (G) such that {u, v} ∈ E(G). If v and w are two distinct vertices
of G, then vw will denote the two-element set {v, w}, G − vw will denote the graph
(V (G), E(G) \ {vw}), and G+ vw will denote the graph (V (G), E(G) ∪ {vw}). Note
that (by definition) if xy ∈ E(G), then G+xy = G and if xy 
∈ E(G), then G−xy = G.

For any graph G, G will denote the complement graph (V (G),
(
V (G)

2

) \ E(G)). Also,
for U ⊆ V (G), GU will denote the subgraph of G induced on U , so GU = (U,EU ),
where EU is the set of all edges vw ∈ E(G) such that {v, w} ⊆ U .

The face poset of a simplicial complex is the poset of simplices ordered by in-
clusion. In this paper we will include the empty face as 0̂, but not an artificial top
element 1̂. All homology groups discussed in this paper have integer coefficients.

3. Forman’s discrete Morse theory. In this section we give a combinatorial
description of Forman’s discrete Morse theory for simplicial complexes (see [Fo1]).
This description is originally due to Chari (see [Ch1]).

For a poset P, we define D(P) = (P, A(P)) to be the directed graph obtained by
directing each edge in the Hasse diagram of P downwards, so there is an arc (x, y)
in A(P) if and only if x covers y in P. For M ⊆ A(P), we define DM (P) to be the
directed graph obtained from D(P) by reversing the direction of all the arcs in M , so
DM (P) = (P, AM (P)), where

AM (P) = (A(P) \M) ∪ {(x, y) : (y, x) ∈M} .

If P is the face poset (including the empty face) of a simplicial complex Σ, we will
write D(Σ) for D(P) and DM (Σ) for DM (P). We call M ⊆ A(P) an acyclic matching
if M satisfies the following conditions:
(M1) M is a matching, that is, each element of P is an endpoint of at most one arc

in M .
(M2) DM (P) has no directed cycles.
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If M ⊆ A(P) is an acyclic matching, the critical points of M are those x ∈ P such
that there is no arc in M having x as an endpoint. M is an acyclic perfect matching
if M is acyclic and has no critical points. A Morse matching on a simplicial complex
Σ is an acyclic matching in D(Σ).

The next theorem is a special case of the main result of [Fo1].
Theorem 3.1 (see [Fo1, Corollary 3.5]). Let M be a Morse matching on a

nonempty simplicial complex Σ. Assume that ∅ is not a critical point of M . Then
Σ is homotopy equivalent to a CW-complex which has one 0-cell and, for k ≥ 0, one
additional k-cell for each k-dimensional face of Σ which is a critical point of M .

Remark. It follows immediately that if M is a Morse matching on Σ and there
is some k such that each critical point of M is k-dimensional, then Σ is homotopy
equivalent to a wedge of k-dimensional spheres.

The next three results are useful in verifying that a given M is a Morse matching
and will be used repeatedly in what follows. The first result, which allows one to
produce a Morse matching on a complex Σ by piecing together acyclic matchings
on subposets of the face poset of Σ, first appeared in [Jo]. The second result first
appeared in [Sh1]. Both have straightforward proofs. The third result gives a general
method for defining Morse matchings. It gives a uniform explanation of the ad hoc
constructions of Morse matchings found in [BBLSW, Jo] and [Sh1, Sh2].

Lemma 3.2 (Cluster Lemma [Jo, Lemma 2.2]). Let P1, . . . ,Pr be pairwise dis-
joint, order convex subposets of P. For each i ∈ [r], let Mi be an acyclic matching on
D(Pi). Define a relation on the Pi by Pi ≤c Pj if there exist x ∈ Pi and y ∈ Pj such
that x ≤ y. Assume that the Pi satisfy the following condition:

(P) The relation ≤c defines a partial order on the Pi’s.
Then

M :=
r⋃

i=1

Mi

is an acyclic matching on D(P).
Lemma 3.3 (Cycle Lemma [Sh1, Proposition 3.1]). Let P be an order con-

vex subposet of the face poset of a simplicial complex Σ and assume that M ⊆
A(P) satisfies condition (M1). Then every directed cycle in DM (P) is of the form
σ1, τ1, σ2, τ2, . . . , σr−1, τr−1, σr = σ1, where

1. r ≥ 3;
2. for each i ∈ [r − 1], there is some xi ∈ τi such that τi = σi ∪ {xi} and
(τi, σi) ∈M ;

3. for each i ∈ [r − 1], there is some yi ∈ τi such that σi+1 = τi \ {yi};
4. the multisets {xi : i ∈ [r]} and {yi : i ∈ [r]} are equal.
Lemma 3.4 (Pairing Lemma). Let Σ be a simplicial complex on a partially

ordered vertex set (V,�). Let P be an order convex subposet of the face poset of Σ.
For a function f : P→ V , set

Pf := {σ ∈ P : f(σ) 
∈ σ} .
For σ ∈ Pf , set

σ+ := σ ∪ {f(σ)} ,
and for τ ∈ P \ Pf set

τ− = τ \ {f(τ)} .
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Assume that f satisfies the following conditions:
(A) If σ ∈ Pf , then σ

+ ∈ P.
(B) If σ ∈ Pf , then f(σ

+) = f(σ).
(C) If τ ∈ P \ Pf and τ

− ∈ P, then f(τ−) = f(τ).
(D) If x ∈ σ ∈ Pf and σ

+ \ {x} ∈ P, then f(σ) � f(σ+ \ {x}).
Then

Mf :=
{
(σ+, σ) : σ ∈ Pf

}

is an acyclic matching on D(P), and the critical points of Mf are those ρ ∈ P \ Pf
such that ρ \ {f(ρ)} 
∈ P.

Proof. Since f satisfies condition (A), the endpoints of each arc in Mf lie in P.
For any arc (ρ, τ) in Mf we have ρ ∈ P \ Pf and τ ∈ Pf . It follows that for σ ∈ Pf
there is exactly one arc inMf with σ as an endpoint, namely, (σ

+, σ). Say τ ∈ P\Pf .
If τ− ∈ P then, since f satisfies condition (C), we have τ− ∈ Pf and (τ, τ

−) ∈ Mf .
Since τ ∈ P \ Pf , we see that there is no arc (ρ, τ) ∈ M , and any arc (τ, σ) ∈ Mf

satisfies σ ∈ Pf and τ = σ ∪ {f(σ)}. Since f satisfies condition (B), we have σ = τ−.
Therefore, if τ− ∈ P, then (τ, τ−) is the unique arc in Mf having τ as an endpoint,
while if τ− 
∈ P, there is no arc in M having τ as an endpoint. Thus Mf satisfies
condition (M1), and the elements of P that are not covered by an arc in Mf are the
elements that are claimed to be critical points of Mf . It remains to show that Mf

satisfies condition (M2). Assume for contradiction that

σ1, τ1, . . . , σr−1, τr−1, σr = σ1

is a cycle in DMf
(P), which satisfies the conditions of Cycle Lemma 3.3. Then for

each i ∈ [r − 1] we have (τi = σ+
i , σi) ∈Mf and σi+1 = τi \ yi, where yi 
= xi = f(σi).

Since f satisfies condition (D), we have

f(σ1) = x1 � f(σ2) = x2 � · · · � f(σr) = xr = x1,

so xi = x1 for all i ∈ [r − 1]. Now, since condition 4 of Cycle Lemma 3.3 is satisfied,
we have yi = x1 for all i, contradicting our assumption that yi 
= xi.

Convention. When applying Lemma 3.4 to a complex Σ of graphs on vertex set
[n] so that the vertices of Σ are the elements of

(
[n]
2

)
, we will assume, unless otherwise

stated, that the order � on
(
[n]
2

)
is the lexicographic order, so {a < b} � {c < d} if

either a < c or a = c and b ≤ d.

4. The complex of bipartite graphs. In this section we will prove Theorem
1.1 by producing a Morse matching on D(Γ2

n) whose critical points are the trees in the
set T (n) defined in section 1. As we will discuss in more detail below, a more general
result has been obtained by Chari (see [Ch2]), who produced a Morse matching whose
critical points are trees for the complex of bipartite subgraphs of any graph G such
that each edge of G is contained in an odd cycle.

For the reader’s convenience, we repeat the definition of T (n), recalling that
d(x, y) is the length of the shortest path between two vertices x, y of G (with d(x, y) =
∞ if no such path exists). For any graph G = ([n] , E) and i ∈ N ∪ {∞}, we define

Di(G) := {x ∈ [n] \ {1} : d(1, x) = i}
and

md(G) = max {i ∈ N : Di(G) 
= ∅} .
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For 1 ≤ i ≤ md(G), define

ai(G) := minDi(G).

Now T (n) is defined to be the set of all trees on vertex set [n] satisfying the following:
1. For 1 ≤ i < md(T ), the only element of Di(T ) that has neighbors in Di+1(T )
is ai(T ).

2. For 1 ≤ i < md(T ), there is some element of
⋃
j≥iDj(T ) that is larger than

ai(T ).
3. |Dmd(T )(T )| > 1.
As stated above, we will prove the following result, from which Theorem 1.1

follows immediately upon application of Theorem 3.1 and the remark following it.
Theorem 4.1. For n ≥ 2, there is a Morse matching on D(Γ2

n) whose critical
points are all trees T ∈ T (n).

Before proving Theorem 4.1 we will discuss the general result of Chari mentioned
above. Fix a graph G = ([n] , E(G)) and a linear order � on E(G). Let T be a
spanning tree of G. For an edge e ∈ E(T ), let A(e), B(e) be the connected components
of T−e. Then e is called internally active (with respect to T ) if e is least (with respect
to �) among all edges of G which have one endpoint in A(e) and one endpoint in
B(e). The internal activity IA(T ) is the set of all e ∈ e(T ) which are internally active
with respect to T . Let e ∈ E(G) \ E(T ) be an edge such that the unique cycle C(e)
in T + e has odd length. Then e is called oddly externally active (with respect to T )
if e is the least element of C(e). The odd external activity OEA(T ) is the set of all
e ∈ E(G) \ E(T ) which are oddly externally active with respect to T . Using a result
of Colbourn and Pulleyblank (see [CP]), Chari proves the following theorem.

Theorem 4.2 (see [Ch2]). For any graph G such that each e ∈ E(G) is con-
tained in an odd cycle in G, let Γ2(G) be the complex of bipartite subgraphs H =
(V (G), E(H)) of G. Then D(Γ2(G)) admits a Morse matching whose critical points
are those spanning trees T of G such that IA(T ) = OEA(T ) = ∅.

If some e ∈ E(G) is not contained in any odd cycle, then

{(H,H − e) : e ∈ E(H)}

is a Morse matching on Γ2(G) with no critical points, so Γ2(G) is contractible (actually,
collapsible). Note that the set of critical points of the Morse matching given in
Theorem 4.2 depends on the chosen linear order � on E(G). It is straightforward to
show that when n = 4 there exists no linear ordering of the edges of K4 such that
the trees in T (4) are the trees satisfying IA(T ) = OEA(T ) = ∅. Indeed, if for each
i ∈ [4] we let Ti be the unique tree on vertex set [4] such that |NG(i)| = 3, then
T (4) = {T1, T2, T3}. If IA(T1) = OEA(T1) = ∅, then the given linear order on E(K4)
must be either

34 ≺ 13 ≺ 23 ≺ 12 ≺ 24 ≺ 14

or

12 ≺ 23 ≺ 13 ≺ 34 ≺ 14 ≺ 24.

If the first order is chosen, then 13 is externally active with respect to T2, while if the
second order is chosen, then 12 is internally active with respect to T2. Therefore we
cannot have IA(Ti) = OEA(Ti) = ∅ for i = 1 and i = 2 simultaneously. Enumerating
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the trees with no internal activity and no odd external activity in an arbitrary graph
G seems quite difficult, and it would be interesting if one could find another Morse
matching on D(Γ2(G)) (for arbitrary G) whose critical points are easy to enumerate.

We now prove Theorem 4.1 by induction on n. If n = 2, then Γ2
n consists of the

empty graph and K2, so there is a Morse matching on D(Γ
2
2) with no critical points.

Since no tree on two vertices satisfies condition 3 in the definition of T (n), we see
that T (2) = ∅ and the theorem holds. Now assume n > 2. Define the following:

• In :=
{
G ∈ Γ2

n : NG(1) = ∅
}
.

• Jn :=
{
G ∈ Γ2

n \ In : if x ∈ D2(G), then NG(x) ∩D1(G) = {a1(G)}
}
.

• For 2 ≤ i ≤ n, Jn(i) := {G ∈ Jn : a1(G) = i}.
So, G ∈ In if and only if 1 is isolated in G, and for G ∈ Γ2

n \ In we have G ∈ Jn if
and only if every path 1, x, y in G satisfies x = a1(G). Also, Jn =

⋃n
i=2 Jn(i), and

G ∈ Jn(n) if and only if NG(1) = {n}. It is straightforward to verify the following
facts:

• In is a subcomplex of Γ2
n, as is In ∪ Jn.

• If G ∈ Jn(i) and e ∈ E(G) \ {1a1(G)}, then G− e ∈ Jn(i).
• If G ∈ Jn(i), then G− 1a1(G) ∈ In ∪

⋃
j>i Jn(j).

It follows from these facts that the pairwise disjoint, order convex subsets In,Jn(2), . . . ,
Jn(n), Γ

2
n \ (In ∪ Jn) cover Γ2

n and satisfy condition P of Cluster Lemma 3.2.
Set P = P1 := In ∪ Jn(n). Note that P is a subcomplex of Γ2

n. Define f = f1 :

P→ (
[n]
2

)
by f1(G) = {1, n} for all G. Then f satisfies conditions (A)–(D) of Pairing

Lemma 3.4, with Pf = In. Since G − {1, n} ∈ In for each G ∈ Jn(n), M1 := Mf is
an acyclic perfect matching on P1.

Now set P = Pn := Γ
2
n \ (In ∪ Jn). Note that G ∈ Pn if and only if the set

R2(G) := {x ∈ D2(G) : NG(x) ∩D1(G) 
= {a1(G)}}

is not empty. For G ∈ Pn, set b2(G) = minR2(G). Note that in any proper 2-coloring
φ of G

φ(a1(G)) 
= φ(1) = φ(b2(G)).
❝

❝ ❝ ❝ ❝

❝

❅❅ ✡✡✟✟✟✟
❅❅

1

a1

2b

Therefore, if G ∈ Pn with {a1(G), b2(G)} 
∈ E(G), then G+ {a1(G), b2(G)} ∈ Pn. It

follows that if we define f = fn : Pn →
(
[n]
2

)
by

fn(G) := {a1(G), b2(G)} ,

then f satisfies condition (A) of Pairing Lemma 3.4. Adding or removing f(G) from
E(G) changes neither D1(G) nor R2(G), so f satisfies conditions (B) and (C), and
every element of P is an endpoint of some arc in Mf . As stated in section 3, we order
the vertices of Γ2

n, which are the edges of Kn, lexicographically. Say G ∈ Pf and
H = G+ − e for some e ∈ E(G) \ {f(G)}. If e 
= {1, a1(G)}, then a1(H) = a1(G).
Also, R2(H) ⊆ R2(G), so either R2(H) = ∅ and H 
∈ P or b2(H) ≥ b2(G). Say
e = {1, a1(G)}. If H ∈ P, then we again have R2(H) ⊆ R2(G), since the edge f(G)
is not in any path 1, x, y in H. Thus b2(H) ≥ b2(G) and a1(H) > a1(G). Therefore,
f satisfies condition (D) of Lemma 3.4 and Mn :=Mf is an acyclic perfect matching
on Pn.
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We use our inductive hypothesis to define our matching on the remaining parts
of Γ2

n. Fix i ∈ {2, . . . , n− 1} and set P = Pi := Jn(i). For X ⊆ [n] \ [i], set
P(X) := {G ∈ P : NG(1) = X ∪ {i}} .

The order convex subsets P(X) of P satisfy condition P of Cluster Lemma 3.2, and we
will define an acyclic matching Mi on D(Pi) by defining an acyclic matching M(X)
on each D(P(X)) and then setting Mi :=

⋃
XM(X). Set Y = [n] \ (X ∪ {1}) and

let m = |Y |. Note that G = ([n] , E) ∈ P(X) if and only if G satisfies the following
conditions:

• NG(1) = X ∪ {i}.
• NG(x) = {1} for all x ∈ X.
• GY is bipartite.

If m = 1, then i = 2 and NG(1) = [n] \ {1} for all G ∈ P(X). It follows that the
unique element of P(X) is the tree T in which vertex 1 is the only vertex which is not
a leaf. In this case we define M(X) = ∅, so T is a critical point of M(X).

Now assume m > 1. Define ψ : Y → [m] by the following:
• ψ(i) = 1.
• If x, y ∈ Y \ {i} with x < y, then 1 < ψ(x) < ψ(y).

Let Γ2
Y be the complex of bipartite graphs on vertex set Y . Then ψ determines a

simplicial isomorphism from Γ2
Y to Γ2

m. For G ∈ P(X) let π(G) = GY . By the
characterization of P(X) given just above, ψπ determines a digraph isomorphism
between D(P(X)) and D(Γ2

m). In this case, by the inductive hypothesis there exists
a Morse matching Mm on D(Γ2

m) whose critical points are the elements of T (m). Set
τ = (ψπ)−1 and define

M(X) := {(τ(G), τ(H)) : (G,H) ∈Mm} .
Then M(X) is an acyclic matching on P(X). The critical points of M(X) are those
trees T satisfying the following conditions:

• a1(T ) = i.
• NT (1) = X ∪ {i}.
• NT (x) = {1} for all x ∈ X.
• For 2 ≤ r ≤ md(T ), there is some element of ∪j>rDj(T ) that is larger than
ar(T ).

• |Dmd(T )(T )| > 1.
In other words, the critical points of M(X) are all T ∈ T (n) such that a1(T ) = i and
D1(T ) = X ∪ {i}. Now the critical points of Mi =

⋃
XM(X) are exactly those trees

T ∈ Tn such that a1(T ) = i. Finally, by Cluster Lemma 3.2,

Mn :=

n⋃

i=1

Mi

is a Morse matching on D(Γ2
n) whose critical points are the elements of T (n). The

proof of Theorem 4.1 is complete.

5. Complexes of highly colorable graphs. In this section, we will prove
Theorems 1.3 and 1.4 by finding Morse matchings with the appropriate number of
critical points in the appropriate dimensions. First we will find a Morse matching on
Γtn for arbitrary n, t whose critical points are graphs which are quite large, given that
they are t-colorable, thereby proving Proposition 1.5. The notation introduced in the
next definition will be used repeatedly.
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Definition 5.1. For a graph G = ([n] , E), G′ is the subgraph of G induced on
[n] \ {1}.

For n ∈ N and t ∈ [n], define
I(n, t) := {G ∈ Γtn : χ(G′) ≤ t− 1} .

Note that if H is any graph on vertex set W := {2, 3, . . . , n} with χ(H) ≤ t− 1 and
G is any graph on vertex set [n] such that the subgraph of G induced on W is H,
then G ∈ I(n, t).

For G ∈ Γtn \ I(n, t), define
Θ(G) := {v ∈ V (G′) : |NG′(v)| < t− 1}

and

J (n, t) := {G ∈ Γtn \ I(n, t) : Θ(G) 
= ∅
}
.

Also, define

K(n, t) := I(n, t)
⋃
J (n, t).

Lemma 5.2. Let n ∈ N and t ∈ [n]. Then K(n, t) is a subcomplex of Γtn and
D(K(n, t)) admits an acyclic perfect matching.

Proof. Removing an edge from any graph G = ([n] , E) cannot increase χ(G′) or
increase |NG′(v)| for v ∈ V (G′), so both I(n, t) and K(n, t) are subcomplexes of Γtn.
By Cluster Lemma 3.2, it is now sufficient to produce acyclic perfect matchings on
I(n, t) and J (n, t).

We begin with I(n, t). Define
I0(n, t) := {G ∈ I(n, t) : {1, 2} 
∈ E(G)} .

For G ∈ I0(n, t), set

G+ := G+ {1, 2} .
Then G′ = (G+)

′
, so G+ ∈ I(n, t). For G ∈ I(n, t) \ I0(n, t), set

G− := G− {1, 2} .

Then G− ∈ I0(n, t) and G = (G−)+, so

I(n, t) = I0(n, t)
⋃{

G+ : G ∈ I0(n, t)
}
.

Now define f(G) := {1, 2} for all G ∈ I(n, t). Setting P = I(n, t) and using the
language of Pairing Lemma 3.4, we have Pf = I0(n, t). By the arguments given just
above, f satisfies conditions (A), (B), and (C) of Pairing Lemma 3.4. Since f is a
constant function, f satisfies condition (D). It now follows that

Mf =
{
(G,G−) : G ∈ I(n, t) \ I0(n, t)

}

is an acyclic perfect matching on D(I(n, t)).
For G ∈ J (n, t), define

θ(G) := maxΘ(G)
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and

J0(n, t) := {G ∈ J (n, t) : {1, θ(G)} 
∈ E(G)} .
For G ∈ J0(n, t), set

G+ := G+ {1, θ(G)} .
First note that |NG+(θ(G))| < t, so one can obtain a proper t-coloring of G+ from
a proper t-coloring φ of G by assigning to θ(G) any color i such that φ−1(i) ∩
NG+(θ(G)) = ∅. Hence G+ ∈ Γtn. Furthermore G′ = (G+)

′
, so G+ ∈ J (n, t)

and θ(G+) = θ(G). For G ∈ J (n, t) \ J0(n, t), set

G− = G− {1, θ(G)} .
Then G− ∈ J (n, t) and θ(G−) = θ(G), so G− ∈ J0(n, t). It follows that

J (n, t) = J0(n, t)
⋃{

G+ : G ∈ J0(n, t)
}
.

For G ∈ J (n, t), define f(G) := {1, θ(G)}. Then, again using the language of Pairing
Lemma 3.4 and setting P = J (n, t), we have Pf = J0(n, t). By the arguments given
just above, f satisfies conditions (A), (B), and (C) of the lemma. Say G ∈ J0(n, t)
and e ∈ E(G)\{{1, θ(G)}} with G+−e ∈ J (n, t). For any H ∈ J (n, t) and d ∈ E(H)
such that H − d ∈ J (n, t), we have θ(H) ≤ θ(H − d). Thus

f(G) = f(G+) � f(G+ − e),
so f satisfies condition (D). Therefore,

Mf =
{
(G,G−) : G ∈ J (n, t) \ J0(n, t)

}

is an acyclic perfect matching on D(J (n, t)).
Note that we now have a Morse matching on Γtn whose critical points are the

elements of Γtn \ K(n, t), that is, the graphs G ∈ Γtn which satisfy the conditions
• χ(G′) = t, and
• |NG′(v)| ≥ t− 1 for all v ∈ V (G′).

Each such graph has at least � (n−1)(t−1)
2 � edges, and Proposition 1.5 now follows

from Theorem 3.1. When t = n − k and k is small, the graphs satisfying these
conditions have highly restricted structure, as we shall see. Recall the notation G for
the complement of G, that is, the graph on the same vertex set with complementary
edge set.

Say k = 2, so t = n−2. If G′ contains two nonadjacent edges vw and xy, then we
can construct a proper (t−1)-coloring of G′ by assigning one color to v and w, another
color to x and y, and t− 3 = n− 5 additional colors to the remaining n− 5 vertices of
G′. Therefore, if G ∈ Γtn \ K(n, t), then G′ does not contain two nonadjacent edges.
Also, each vertex of G′ has degree at least n− 3 in G′, so G′ has no vertex of degree
more than 1. On the other hand, G′ must contain at least one edge, since otherwise
χ(G′) = n− 1. Therefore,

Γtn \ K(n, t) =
{
G ∈ Γtn : |E(G′)| = 1

}
.

For {x, y} ∈ (V (G′)
2

)
, define

P(x, y) :=
{
G ∈ Γtn : E(G′) = {xy}

}
.
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The pairwise disjoint, order convex subsets K(n, t) and P(x, y) (where {x, y} runs
through all of

(
V (G′)

2

)
) cover Γtn and satisfy condition P of Cluster Lemma 3.2, so we

will concentrate on the posets P(x, y) and then apply the lemma.

Fix {x, y} ∈ (V (G′)
2

)
with x < y. If G ∈ P(x, y), then every proper t-coloring of G′

assigns one color to both of x, y and all of the n−3 remaining colors to the remaining
n− 3 vertices of G′. It follows that either

• NG(1) ⊆ V (G′) \ {x, y}, or
• there is some z ∈ V (G′) \ {x, y} such that z 
∈ NG(1).

Conversely, if G = ([n] , E) with E(G′) = {xy} and NG(1) satisfies either of the two
conditions itemized just above, then G ∈ P(x, y). Let G(x, y) be the graph in P(x, y)
defined by

NG(x,y)(1) := V (G′) \ {x, y} .

Set

P1(x, y) := P(x, y) \ {G(x, y)}

and

P0(x, y) := {G ∈ P1(x, y) : 1x 
∈ E(G)} .

Then P1(x, y) is an order ideal in P(x, y), and it is straightforward to show that

M(x, y) := {(G+ 1x,G) : G ∈ P0(x, y)}

is an acyclic perfect matching on D(P1(x, y)). Thus M(x, y) is an acyclic matching
on D(P(x, y)) whose unique critical point is G(x, y). Now applying Cluster Lemma
3.2 gives the following result, which is stronger than Theorem 1.3.

Theorem 5.3. There is a Morse matching on Γn−2
n , whose critical points are the

graphs G(x, y) defined by

E(G(x, y)) := {1x, 1y, xy} ,

for all {x, y} ∈ ([n−1]
2

)
. Therefore, Γn−2

n has the homotopy type of a wedge of
(
n−1

2

)

spheres of dimension
(
n
2

)− 4.
To handle the case t = n− 3 we introduce additional notation. Let j ∈ N. Then

Maj will denote a graph with 2j vertices and j pairwise nonadjacent edges. If these
edges are x1y1, . . . , xjyj , then the graph may be denoted by Ma(x1, y1; . . . ;xj , yj).
Also, Cyj will denote a graph with j vertices and j edges which form a cycle of
length j. If the edges are x1x2, . . . , xj−1xj , xjx1, then the graph may be denoted by
Cy(x1, . . . , xj). Finally, Paj will denote a graph with j+1 vertices and j edges which
form a path of length j. If these edges are x1x2, . . . , xjxj+1, then the graph may be
denoted by Pa(x1, . . . , xj+1).

For any pair of integers 1 ≤ t ≤ n, define a set of graphs

Λ(n, t) := {H : V (H) = [2, n], χ(H) = t and |NH(v)| ≥ t− 1 for all v ∈ [2, n]} .

For H ∈ Λ(n, t) set

K(H) :=
{
G ∈ Γtn : G′ = H

}
.
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Note that K(H) ⊆ Γtn \ K(n, t) for all H ∈ Λ(n, t), and that as H ranges over Λ(n, t)
the pairwise disjoint, order convex subsets K(H) cover Γtn \ K(n, t).

For any graph G, set

U(G) := {v ∈ V (G) : NG(v) 
= V (G) \ {v}} .
Note that if G is not a complete graph, then U(G) 
= ∅. In particular, if G ∈ Γtn and
t < n− 1, then U(G′) 
= ∅.

For H ∈ Λ(n, t), set
L(H) := {G ∈ K(H) : V (G′) \ U(G′) 
⊆ NG(1)} ,

so, in plain English, L(H) consists of those G ∈ K(H) such that there is some v ∈ [2, n]
with NG(v) = [2, n] \ {v}. Note that L(H) is an order ideal in K(H) and is therefore
convex. A special case of the following lemma was used in the proof of Theorem 5.3.

Lemma 5.4. Given integers n − 2 ≥ t ≥ 1 and H ∈ Λ(n, t), we define for each
G ∈ L(H)

α(G) = maxU(H).

Set also
L0(H) := {G ∈ L(H) : 1α(G) 
∈ E(G)} .

Then {(G+ 1α(G), G) : G ∈ L0(H)} is an acyclic perfect matching on D(L(H)).
Proof. We will apply Pairing Lemma 3.4 to the order convex subset P := L(H)

of Γtn. Define f : P → (
[n]
2

)
by G �→ {1, α(G)}. Then Pf = L0(H). Let G ∈ Pf

and let φ be a proper t-coloring of G′. We can extend φ to a proper t-coloring of
G+ := G + 1α(G) by giving vertex 1 the same color as any element of (V (G′) \
U(G′)) \NG(1). Therefore, G+ ∈ Γtn. Since changing NG(1) does not change G′, we
have G+ ∈ L(H) = P. Moreover, α(G+) = α(G). It follows that f satisfies conditions
(A), (B), and (C) of Pairing Lemma 3.4. Finally, if G ∈ Pf and e ∈ E(G) with
H := G+ − e ∈ P, then α(H) ≥ α(G+), so

f(G) = f(G+) � f(H).

Therefore, f satisfies condition (D).
Now assume t = n− 3. If G,H are graphs with disjoint vertex sets, then G+H

will denote the graph (V (G)∪V (H), E(G)∪E(H)). We want to describe Λ(n, t). Let
G ∈ Γtn.

If G 
∈ K(n, t), then every vertex of G′ has degree at least n− 4, so every vertex
of G′ has degree 0, 1, or 2. It follows that the induced subgraph G′U(G′) is a union of

paths and cycles. If G′ contains a subgraph isomorphic to either Ma3 or Cy3 +Ma1,
then χ(G′) ≤ n−4 and G ∈ K(n, t). Conversely, in order for G′ to be (n−3)-colorable
it is necessary that G′ contain either Ma2 or Cy3. The next proposition follows.

Proposition 5.5. Let n ∈ N with n ≥ 4. Set t = n − 3 and let G ∈ Γtn. Then
G ∈ Γtn \ K(n, t) if and only if one of the following conditions holds:

• |U(G′)| = 3 and G′U(G′) is isomorphic to Cy3

❛

❛
❛��✏✏ .

• |U(G′)| = 4 and G′U(G′) is isomorphic to one of Ma2 ❛

❛ ❛

❛, Pa3 ❛

❛ ❛

❛, or Cy4 ❛

❛ ❛

❛.

• |U(G′)| = 5 and G′U(G′) is isomorphic to one of Ma1 + Pa2 ❛

❛ ❛

❛

❛

, Pa4 ❛

❛ ❛

❛

❛

,

or Cy5 ❛

❛ ❛

❛
❛��✏✏ .

• |U(G′)| = 6 and G′U(G′) is isomorphic to Pa2 + Pa2 ❛

❛ ❛

❛

❛

❛.
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Therefore, H = ([2, n], E) lies in Λ(n, t) if and only if HU(H) is isomorphic to one of
Cy3, Ma2, Pa3, Cy4, Ma1 + Pa2, Pa4, Cy5, or Pa2 + Pa2.

It is natural to try to apply Cluster Lemma 3.2 to the posets K(H) as H ranges
over Λ(n, t), as Lemma 5.4 gives us some insight into how to handle each K(H).
However, this approach will not yield the desired result before it is slightly modified,
as we now describe. For {a < b < c < d} ⊆ [2, n], set

J(a, b, c, d) :=
⋃

H∈Λ(n,t)
U(H)={a,b,c,d}

K(H).

We consider all subsets K(H) of Γtn \K(n, t) as H runs through all elements of Λ(n, t)
such that |U(H)| 
= 4 along with all the subsets J(a, b, c, d) as {a < b < c < d} runs
through

(
[2,n]

4

)
. First note that each K(H) is convex, as if F,G, I ∈ Γtn with E(F ) ⊆

E(G) ⊆ E(I) and F ′ = I ′ = H, then G′ = H. It is also the case that each J(a, b, c, d)
is convex. Indeed, if F, I ∈ J(a, b, c, d), then U(F ′) = U(I ′) = {a, b, c, d}, and thus if
E(F ) ⊆ E(G) ⊆ E(I), then U(G′) = {a, b, c, d} so G ∈ J(a, b, c, d).

Now we show that the subsets under consideration satisfy condition P of Cluster
Lemma 3.2. We use ∼ to indicate the equivalence relation determined by the partition
of Γtn\K(n, t) into these subsets. Thus if F ∼ G, then U(F ′) = U(G′). Conversely, by
Proposition 5.5, we see that if U(F ′) = U(G′) and F 
∼ G, then |U(G′)| ∈ {5, 6} and
for all I we have I ∼ G if and only if I ′ = G′. We begin with antisymmetry. Note that
for any F,G ∈ Γtn \K(n, t), if E(F ) ⊆ E(G), then U(F ′) ⊇ U(G′). If U(F ′) 
= U(G′),
then there are no I ∼ G, J ∼ F such that E(I ′) ⊆ E(J ′). Say U(F ′) = U(G′). If
F 
∼ G, then E(FU(F ′)) � E(GU(G′)) and, as noted above, if I ∼ G and J ∼ F , then
I ′ = G′, J ′ = F ′, and E(I) 
⊆ E(J). Now we prove transitivity. It suffices to show
that if G1 ∼ G2 and E(G1) ⊆ E(I1) and E(F1) ⊆ E(G2), then there exist I2 ∼ I1
and F2 ∼ F1 with E(F2) ⊆ E(I2). If G

′
1 = G′2, we can take I2 = I1 and let F2 be the

graph obtained from F1 by removing all edges which contain vertex 1. If G
′
1 
= G′2,

then G1, G2 ∈ J(a, b, c, d) for some a < b < c < d, and inspection of the cases listed
in Proposition 5.5 shows that I1 ∈ J(a, b, c, d), and we are done.

Now we will define useful acyclic matchings for each of the subsets described
above, and Theorem 1.4 will follow from Cluster Lemma 3.2. For H ∈ Λ(n, t), set

R(H) := K(H) \ L(H).

Note that, by Lemma 5.4 and the fact that L(H) is an ideal in K(H), any Morse
matching on R(H) can be extended to one on K(H) with the same critical points.

We begin with the posets J(a, b, c, d). Fix {a < b < c < d} ⊆ ([2,n]
4

)
and set

L(a, b, c, d) :=
⋃

H∈Λ(n,t)
U(H)={a,b,c,d}

L(H).

Note that L(a, b, c, d) is an ideal in J(a, b, c, d). Indeed, for all G ∈ J(a, b, c, d) we
have U(G′) = {a, b, c, d} and G ∈ L(a, b, c, d) if and only if NG(1) 
⊇ {a, b, c, d}. Thus
L(a, b, c, d) is order convex. It is also the case that the order convex subsets L(H), as
H runs over all elements of Γ(n, t) such that U(H) = {a, b, c, d}, satisfy condition P
of Cluster Lemma 3.2. Indeed, in this case the relation ≤c from Cluster Lemma 3.2 is
simply the containment relation on E(H). Thus by Cluster Lemma 3.2 and Lemma
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5.4, there is an acyclic perfect matching on D(L(a, b, c, d)). Therefore, if we define

R(a, b, c, d) :=
⋃

H∈Λ(n,t)
U(H)={a,b,c,d}

R(H),

then any acyclic matching on R(a, b, c, d) extends to one on J(a, b, c, d) with the same
critical points.

For a graph X on vertex set W ⊆ [2, n] which has no vertex of degree |W | − 1,
H[X] will denote the unique graph H = ([2, n], E) such that HU(H) = X. Set

Q1 := R(H[Ma(a, b; c, d)])
⋃

R(H[Pa(b, a, d, c)]), ❜

❜ ❜

❜

b

a

c

d
Q2 := R(H[Ma(a, c; b, d)])

⋃
R(H[Pa(c, a, d, b)]),

Q3 := R(H[Ma(a, d; b, c)])
⋃

R(H[Pa(d, a, c, b)]).

Then the Qi are pairwise disjoint dual order ideals in R(a, b, c, d) and therefore satisfy
condition P of Cluster Lemma 3.2. We will find an acyclic matching on D(R(a, b, c, d))
whose critical points are those graphs not contained in

⋃3
i=1 Qi by finding an acyclic

perfect matching on each D(Qi). The D(Qi) are pairwise isomorphic, so it suffices
to find an acyclic perfect matching on D(Q1). If G ∈ R(H[Ma(a, b; c, d)]), then every
proper (n−3)-coloring of G′ is obtained by assigning one color to vertices a, b, another
color to vertices c, d, and all of the remaining n−5 colors to the remaining n−5 vertices
of G′. Such a coloring can be extended to a proper coloring of G, so NG(1)∩{a, b, c, d}
must be contained in either {a, b} or {c, d}. Conversely, if G = ([n] , E) satisfies

1. E(G′) = {ab, cd},
2. V (G′) \ {a, b, c, d} ⊆ NG(1), and
3. NG(1) ∩ {a, b, c, d} is contained in one of {a, b} or {c, d},

then G ∈ R(H[Ma(a, b; c, d)]), so the three conditions just given characterize the
set R(H[Ma(a, b; c, d)]). Now a similar argument shows that R(H[Pa(b, a, d, c)]) is
characterized by conditions 2, 3 and

1′. E(G′) = {ab, cd, ad}.
It now follows that

Q1 = R(H[Ma(a, b; c, d)]) ∪ {G+ ad : G ∈ R(H[Ma(a, b; c, d)])}
and that

M1 := {(G+ ad,G) : G ∈ R(Ma(a, b; c, d))}
is an acyclic perfect matching on D(Q1).

Now R(a, b, c, d) \ ⋃3
i=1 Qi is a union of the pairwise disjoint order convex sub-

posets R(H), where HU(H) is one of the three graphs Cy(a, b, c, d), Cy(a, b, d, c), or
Cy(a, c, b, d), or one of the nine graphs on vertex set {a, b, c, d} which are isomorphic
to Pa3, but not one of Pa(c, a, d, b), Pa(d, a, c, b), or Pa(b, a, d, c). These posets sat-
isfy condition (P) of Cluster Lemma 3.2. So, we will now produce acyclic matchings
on the posets R(H) for all H ∈ Λ(n, t), other than H[X] when X ≈ Ma2. For any
H ∈ Λ(n, t), define

∆(H) := {NG(1) ∩ V (H) : G ∈ R(H)} .
Then ∆(H) is a simplicial complex and D(R(H)) is isomorphic to D(∆(H)) via the
map G �→ NG(1) ∩ V (H). Thus a Morse matching on D(∆(H)) can be lifted to a
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Morse matching on D(R(H)). We will describe Morse matchings for each possible
isomorphism type of H. Each of the claims made without proof during these descrip-
tions can be verified by observation, as the complexes ∆(H) are quite small. Note
that if G ∈ R(H[X]), then any proper (n − 3)-coloring φ of G satisfies the following
conditions:

• Exactly |V (X)| − 2 colors are used to color V (X), and φ(1) is one of these
colors.

• All of the remaining n − |V (X)| − 1 colors are used to color the remaining
n− |V (X)| − 1 vertices of G′ = H[X].

The promised Morse matchings are described below.

• Say HU(H) = Cy(x, y, z) and G ∈ R(H). Then every proper (n−3)-coloring of
G is obtained by assigning one color to 1, x, y, and z and all of the remaining
n− 4 colors to the remaining vertices of G′. Therefore, NG(1)∩ {x, y, z} = ∅
and the only face in ∆(H) is the empty face. The associated acyclic matching
on D(R(H)) is the empty matching, with one critical point, namely the graph
G, defined by

E(G) := {1x, 1y, 1z, xy, xz, yz} .
❝

❝

❝

❝

❅❅
�� ❅❅

��
1

z

x

y

There are
(
n−1

3

)
such graphs G in Γtn.

• Say HU(H) = Pa(w, x, y, z) with w < z, and G ∈ R(H). Then every proper
(n−3)-coloring of G is obtained by assigning one color γ to w and x, another
color γ′ to y and z, the remaining n − 5 colors to the elements of V (G) \
{1, w, x, y, z}, and giving vertex 1 either color γ or γ′. It follows that the
maximal elements of ∆(H) are {w, x} and {y, z}. Now

{({w} , ∅), ({w, x} , {x}), ({y, z} , {y})}

is a Morse matching on ∆(H) whose unique critical point is the 0-simplex
{z}. The unique critical point of the associated acyclic matching on D(R(H))
is the graph G defined by

E(G) := {1w, 1x, 1y, wx, xy, yz} . ❝

❝

❝

❝

❝❅❅
�� ❅❅

��
1 x

z
y

w

There are 12
(
n−1

4

)
posets R(Pa(w, x, y, z)) to be considered. However, 3

(
n−1

4

)

of them are contained in the posets Qi described above. Therefore, there are
9
(
n−1

4

)
such graphs G in Γtn that are critical points of the matchings just

described.
• Say HU(H) = Cy(w, x, y, z) with min {w, x, y, z} = w, and G ∈ R(H). Then
every proper (n − 3)-coloring φ of G is obtained by coloring w, x, y, z with
two colors γ, γ′ so that φ(w) 
= φ(y) and φ(x) 
= φ(z), coloring the remaining
n−5 vertices in V (G′) with all of the remaining n−5 colors, and then giving
vertex 1 color γ or γ′. It follows that the maximal faces of ∆(H) are {w, x},
{w, z}, {x, y}, and {y, z} and that

{({w} , ∅), ({w, x} , {x}), ({w, z} , {z}), ({y, z} , {y})}
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is a Morse matching on D(∆(H)) whose unique critical point is the 1-simplex
{x, y}. The unique critical cell of the associated acyclic matching on D(R(H))
is the graph G defined by

E(G) := {1w, 1z, wx, xy, yz, wz} .
❝

❝

❝

❝

❝

❅❅
��

1

y
z

x
w

There are 3
(
n−1

4

)
such graphs G.

• Say HU(H) = Pa(a, b)+Pa(x, y, z) and G ∈ R(H). Then every proper (n−3)-
coloring of G is obtained by coloring a and b with some color γ, coloring x, y,
and z with two additional colors δ, δ′ so that x and z do not get the same
color, coloring the remaining n−6 vertices in V (G′) with the remaining n−6
colors, and then giving vertex 1 one of the colors γ, δ, δ′. It follows that the
maximal faces of ∆(H) are {a, b, x, y}, {a, b, y, z}, and {x, y, z}. Define

∆y(H) := {σ ∈ ∆(H) : y 
∈ σ} .
Every maximal face in ∆(H) contains vertex y, so

M(H) := {(σ ∪ {y} , σ) : σ ∈ ∆y(H)}
is an acyclic perfect matching on D(∆(H)). Therefore, D(R(H)) admits an
acyclic perfect matching.

• Say HU(H) = Pa(v, w, x, y, z) with v < z, and G ∈ R(H). Then any proper
(n − 3)-coloring φ of G is obtained by assigning three distinct colors β, γ, δ
to v, x, z, respectively; assigning one of β, γ to w and one of γ, δ to y so that
φ(w) 
= φ(y), assigning all of the remaining n − 6 colors to the remaining
n − 6 vertices in V (G′), and assigning one of β, γ, δ to vertex 1. It follows
that the maximal faces of ∆(H) are {v, w, x, y}, {v, w, y, z}, and {w, x, y, z}.
Now every maximal face contains y, and we can argue, as we did in the case
just above to show that D(R(H)) admits an acyclic perfect matching.

• Say HU(H) = Cy(v, w, x, y, z) with min {v, w, x, y, z} = v and G ∈ R(H).
Then every proper (n− 3)-coloring of G is obtained by assigning three colors
β, γ, δ to {v, w, x, y, z} so as to obtain a proper 3-coloring of C(v, x, z, w, y);
assigning all of the remaining n− 6 colors to the remaining n− 6 vertices in
V (G′); and assigning one of the colors β, γ, δ to vertex 1. It follows that the
maximal faces of ∆(H) are {v, w, x, y}, {v, w, x, z}, {v, w, y, z}, {v, x, y, z},
and {w, x, y, z}, so ∆(H) is the boundary of the simplex {v, w, x, y, z}. Set

∆v(H) := {σ ∈ ∆(H) : v ∈ σ} .
Then

M(H) := {(σ, σ \ {v}) : σ ∈ ∆v(H)}
is a Morse matching on D(∆(H)) whose unique critical point is the 3-simplex
{w, x, y, z}. The unique critical point of the associated acyclic matching on
D(R(H)) is the graph G defined by

E(G) := {1v, vw,wx, xy, yz, vz} .
❝ ❝ ❝

❝ ❝

❝

❍❍
✟✟

1
w

x

yz

v

There are 12
(
n−1

5

)
such graphs G.
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Table 1
Table of nonzero Betti numbers for the complex Γt

nof all t-colorable graphs on n vertices. All

known nonzero Betti numbers occur in dimension n(t − 1) −
(
t
2

)
− 1 except ∗. The values † have

been calculated by computer. We have also computed χ̃(Γ38) = 31, 846.

n\t 2 3 4 5 6 7 8

3 β1=1

4 β2=3 β4=1

5 β3=16 β6=6 β8=1

6 β4=105 β8=82 β11=10 β13=1

7 β5=841 β†
10=1535 β14=272 β17=15 β19=1

8 β6=7938 ?

β†
17=9396

β∗†
19=1 β21=707 β24=21 β26=1

9 β7=86311 ? ? ? β29=1568 β32=36 β34=1

• Say HU(H) = Pa(a, b, c) + Pa(x, y, z) and G ∈ R(H). Then every proper
(n − 3)-coloring χ of G is obtained by assigning two colors γ, γ′ to {a, b, c}
so that χ(a) 
= χ(c); assigning two additional colors δ, δ′ to {x, y, z} so that
χ(x) 
= χ(z); assigning all of the remaining n − 7 colors to the remaining
n − 7 vertices in V (G′); and assigning one of the colors γ, γ′, δ, δ′ to vertex
1. It follows that the maximal faces of ∆(H) are {a, b, c, x, y}, {a, b, c, y, z},
{a, b, x, y, z}, and {b, c, x, y, z}. Again, every maximal face of ∆(H) contains
vertex y, and it follows that D(R(H)) admits an acyclic perfect matching.

All possibilities for R(H) have now been examined, and all the critical points G
of all the acyclic matchings that have been obtained satisfy

|E(G)| = 6.
There are

(
n− 1
3

)
+ 9

(
n− 1
4

)
+ 3

(
n− 1
4

)
+ 12

(
n− 1
5

)
=

(
n− 1
3

)
+ 12

(
n

5

)

critical points. The next theorem, which is stronger than Theorem 1.4, now follows
from Cluster Lemma 3.2.

Theorem 5.6. Let n ∈ N with n ≥ 4. Then there is a Morse matching on Γn−3
n

whose critical points are
(
n−1

3

)
+ 12

(
n
5

)
faces of dimension

(
n
2

) − 7. Therefore, Γn−3
n

has the homotopy type of a wedge of
(
n−1

3

)
+ 12

(
n
5

)
spheres of dimension

(
n
2

)− 7.
6. Remarks. As noted in section 1, we used computer calculations to show that

it is not the case that Γtn has the homotopy type of a wedge of spheres of dimension
n(t − 1) − (t2

) − 1 for all n, t. Our knowledge of the homology of Γtn when n ≤ 9 is
summarized in Table 1. The only pairs (n, t) for which the results are not determined
by the theorems in this paper are (7, 3) and (8, 4).

As noted in the introduction, many questions remain. Is there a nice generating
function (or another good description) for the Euler characteristic of Γtn, similar to the
result given in Corollary 1.2? Is “most” of the nontrivial homology of Γtn in dimension
n(t − 1) − (t2

) − 1? In what dimensions does nontrivial homology occur? Is the
homology torsion free? Is Γtn homotopy equivalent to a wedge of spheres? The work
on complexes of non-Hamiltonian graphs by Jonsson [Jo], along with our computer
calculations with Γ4

8, indicates that reasonable conjectures about graph complexes
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arising from computations with small vertex sets are often false. We finish by noting
that we have not examined the character of the symmetric group Sn determined by
its action on the homology of Γtn, and it might be interesting to do so in the case
t = 2.

Acknowledgments. We thank Anders Björner, Manoj Chari, and Michelle
Wachs for encouragement and helpful comments. All our computer computations
have been done using a C-program by Frank Heckenbach.
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Abstract. We show that there are no full-rank tilings of F
8
2 , using a carefully designed exhaustive

search. This solves an open problem posed in [T. Etzion and A. Vardy, SIAM J. Discrete Math.,
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1. Introduction. Let F
n
2 be a vector space of dimension n over GF(2). A tiling

of F
n
2 is a pair (V,A) of subsets of F

n
2 , such that every x ∈ F

n
2 has a unique represen-

tation of the form x = v + a, with v ∈ V and a ∈ A. A tiling (V,A) of F
n
2 is trivial

if one of the sets V,A is F
n
2 and the other is {0}, where 0 denotes the all-zero vector

in F
n
2 . It is of full rank if rank(V ) = rank(A) = n and 0 ∈ (V ∩ A). The work of [3]

shows that any tiling of F
n
2 can be uniquely decomposed into (or constructed from)

smaller tilings that are either trivial or have full rank. This reduces the classification
of tilings of F

n
2 to the study of full-rank tilings. Hence, the following question is of

interest: For which values of n does F
n
2 admit a full-rank tiling?

It is established in [3, 4] that full-rank tilings of F
n
2 exist for n = 14 and n ≥ 112

and do not exist for n ≤ 7. Proposition 5.1 of [5] shows that if F
n0
2 admits a full-rank

tiling, then so does F
n
2 for all n ≥ n0. Thus full-rank tilings of F

n
2 exist for all n ≥ 14.

There is also an interesting connection between full-rank tilings and full-rank
perfect codes. A binary code C of length n is a subset of F

n
2 . A code C ⊂ F

n
2 is

perfect if for some r ≥ 1, the Hamming spheres of radius r about the codewords of C

partition F
n
2 . A code C ⊆ F

n
2 is full rank if 0 ∈ C and rank(C) = n. It is known [4]

that full-rank perfect codes exist if and only if r = 1 and n = 2m − 1 for m ≥ 4. The
kernel of a code C ⊆ F

n
2 , denoted kerC, is the set of all x ∈ F

n
2 such that x+ C = C.

It is easy to see that kerC is a linear subspace of F
n
2 . It is shown in [5] that there

exists a full-rank perfect code of length n = 2m−1 with a kernel of dimension k if and
only if there exists a full-rank tiling (V,A) of F

n−k
2 with |V | = 2m and kerA = {0}.

LeVan and Phelps [8] found by computer search full-rank perfect codes of length 15
with kernels of dimension 2, 3, 4, and 5. This implies [5] that full-rank tilings of F

n
2

exist for all n ≥ 10.
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Thus the only unresolved cases where it is not known whether F
n
2 admits a full-

rank tiling are n = 8 and n = 9. We quote the following problem posed in [5, p. 220]:

Construct full-rank tilings of F
n
2 for n = 8 and n = 9, or prove

that such tilings do not exist. This problem appears to be quite
challenging despite the small size of the sets involved.

The main objective of this paper is to provide an answer to this problem for n = 8.
We describe a carefully designed exhaustive search that proves the following theorem.

Theorem 1. A full-rank tiling of F
8
2 does not exist.

Theorem 1, along with Proposition 5.9 of [5], also implies that there is no full-rank
perfect binary code of length 15 with a kernel of dimension 7. For more details on the
rank and kernel-dimension of perfect binary codes, we refer the reader to [1, 2, 5, 9].

2. Nonexistence of full-rank tilings in eight dimensions. Let (V,A) be a
full-rank tiling of F

8
2 . Since every x ∈ F

8
2 can be represented uniquely as x = v + a

with v ∈ V and a ∈ A, we have |V ||A| = 28. By definition, 0 ∈ V and 0 ∈ A.
Since rank(V ) = rank(A) = 8, we must have |V | ≥ 9 and |A| ≥ 9, implying that
|V | = |A| = 16.

Lemma 2. Let (V,A) be a full-rank tiling of F
n
2 , let M be an invertible n × n

binary matrix, and let ϕM (x) = xM . Then (ϕM (V ), ϕM (A)) is a full-rank tiling
of F

n
2 .

Proof. Since M is invertible, we have ϕM (x) = ϕM (v) + ϕM (a) if and only if
x = v+a. It is clear that the mapping ϕM is one-to-one and preserves the rank.

Let {e1, e2, . . . , e8} denote the set of vectors of weight one in F
8
2 . Using Lemma 2,

we can transform a full-rank tiling (V,A) of F
8
2 into a full-rank tiling (ϕM (V ), ϕM (A))

with the property that {e1, e2, . . . , e8} ⊂ ϕM (V ). Thus we will henceforth assume
without loss of generality that {e1, e2, . . . , e8} ⊂ V . Together with 0 ∈ V , this
determines 9 out of the 16 vectors of V .

Lemma 3. Let (V,A) be a full-rank tiling of F
8
2 . Then d(a1, a2) ≥ 3 for any

distinct vectors a1, a2 ∈ A, where d(·, ·) denotes the Hamming distance.

Proof. Assume to the contrary that wt(a1+a2) ≤ 2. Since {0, e1, . . . , e8} ⊂ V by
assumption, it follows that there exist distinct v1, v2 ∈ V such that v1+ v2 = a1+ a2.
But this implies that a1 + v1 = a2 + v2, which violates the unique representation
property of a tiling.

If (V,A) is a full-rank tiling of F
8
2 and π is any permutation of the eight positions,

then (πV, πA) is also a full-rank tiling of F
8
2 . Since the set {0, e1, . . . , e8} is preserved

under all permutations π ∈ S8, we have {0, e1, . . . , e8} ⊂ πV , and Lemma 3 holds
with A replaced by πA. Hence, as potential candidates for A, it suffices to consider
the nonisomorphic (8, 16, 3) codes of full rank containing the vector 0.

To efficiently reject isomorphisms, we convert the set isomorphism problem to a
graph isomorphism problem, as in [7]. Specifically, given a set S = {a1, . . . , as} ⊂ F

8
2 ,

we define the bipartite graph G(S) as follows: There are s left-hand vertices α1, . . . , αs
and eight right-hand vertices β1, . . . , β8, with (αi, βj) in the edge set of G(S) if and
only if the jth position of ai is nonzero. Then two sets S1,S2 ⊂ F

8
2 are isomorphic

if and only if the corresponding graphs G(S1) and G(S2) are isomorphic (cf. [7]).
We check for graph isomorphism using the well-tested program nauty of [6]. Due to
memory constraints, we have limited isomorphism rejection to a subset of A consisting
of seven linearly independent vectors. Finally, we have also made use of the following
lemma, which implies that any one vector in either A or V can be computed as the
sum of the other vectors in this set.
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Lemma 4. Let (V,A) be a full-rank tiling of F
8
2 , let V = {0, v1, v2, . . . , v15}, and

let A = {0, a1, a2, . . . , a15}. Then v1 + v2 + · · ·+ v15 = a1 + a2 + · · ·+ a15 = 0.
Proof. Let H(V ) be the 8 × 15 matrix having v1, v2, . . . , v15 as its columns, and

consider the code C = {x ∈ F
15
2 : H(V )xt ∈ A }. It follows from [5, Theorem 5.3 and

Propositions 5.4, 5.5] that C is a full-rank perfect code with a kernel of dimension
7+dim(kerA). It is furthermore shown in [3, Proposition 8.3] that v1+v2+ · · ·+v15 ∈
kerA. Thus if v1 + v2 + · · ·+ v15 �= 0, then kerC has dimension at least 8. In view of
Proposition 5.6 of [5] this, in turn, implies the existence of a full-rank tiling of F

n
2 for

n ≤ 7. But it was established in [3, Corollary 7.3] that such a tiling does not exist.
The fact that a1 + a2 + · · ·+ a15 = 0 follows by symmetry.

An exhaustive search based on the foregoing results did not produce a full-rank
tiling of F

8
2 , thereby proving Theorem 1. The source code of our search program

is available at http://people.bu.edu/trachten/. The search takes about a week on a
contemporary PC workstation.
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Abstract. A set X of points in �d is (k, b)-clusterable if X can be partitioned into k subsets
(clusters) so that the diameter (alternatively, the radius) of each cluster is at most b. We present
algorithms that, by sampling from a set X, distinguish between the case that X is (k, b)-clusterable
and the case that X is ε-far from being (k, b′)-clusterable for any given 0 < ε ≤ 1 and for b′ ≥ b. By
ε-far from being (k, b′)-clusterable we mean that more than ε · |X| points should be removed from X
so that it becomes (k, b′)-clusterable. We give algorithms for a variety of cost measures that use a
sample of size independent of |X| and polynomial in k and 1/ε.

Our algorithms can also be used to find approximately good clusterings. Namely, these are
clusterings of all but an ε-fraction of the points in X that have optimal (or close to optimal) cost.
The benefit of our algorithms is that they construct an implicit representation of such clusterings in
time independent of |X|. That is, without actually having to partition all points in X, the implicit
representation can be used to answer queries concerning the cluster to which any given point belongs.
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1. Introduction. Clustering problems arise in many areas and have a variety of
applications (cf. [7, 30, 41, 32, 15, 47, 34, 31]). There are many definitions of optimal
clustering, and the choice of the appropriate definition depends on the particular
application studied. Here we consider one of the standard forms, where the problem
is to decide whether a given setX of n points in the d-dimensional Euclidean space can
be partitioned into k subsets (clusters) so that the cost of each cluster is at most b.
Two of the most well-studied cost measures are the radius cost and the diameter
cost. In the first case, the cost of a cluster is defined as the minimum radius of a
ball containing all the points in the cluster. In the latter case, the cost of a cluster
is defined as the maximum distance between pairs of points in the cluster.1 If such
a k-way partition of X exists, then we say that X is (k, b)-clusterable (with respect
to the radius or the diameter cost). Unfortunately, both decision problems are NP-
complete for d ≥ 2 (and variable k) [19, 36] and remain hard even when only a certain
constant approximation of the cluster size is sought [17].

In this work we consider the following relaxation of the above decision problems:
For a given approximation parameter β ≥ 0 and distance parameter 0 ≤ ε ≤ 1, we
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would like to determine whether the set X is (k, b)-clusterable or ε-far from being
(k, (1 + β)b)-clusterable. By ε-far from (k, (1 + β)b)-clusterable we mean that more
than an ε-fraction of the points in X should be removed (or moved) so that X be-
comes (k, (1+β)b)-clusterable. Given this relaxation of the decision problem, we seek
algorithms that will be significantly faster than those required for solving the exact
decision problems. In particular, we ask that our algorithms observe as few points as
possible from X and run in time sublinear in n = |X| or even independent of n.

We refer to algorithms that perform such relaxed (approximate) decision tasks as
testing algorithms: they are required to output accept if X is (k, b)-clusterable, and to
output reject with probability at least 2/3, if X is ε-far from (k, (1+ β)b)-clusterable.
(If neither holds, the testing algorithm may output either accept or reject.) Such
testing algorithms can be useful as an alternative to an exact or even approximate
decision procedure when the number of points n is very large. Even if n is not too
large and there is time to run a clustering algorithm on all the points, testing can
be applied as a preliminary step to approximate the quality of the best achievable
clustering.

1.1. Our results. We present and analyze testing algorithms both for the radius
cost and for the diameter cost. All our algorithms run in time independent of n = |X|
and use a sample from X that has size polynomial in k and ε.

We describe algorithms for the L2 metric (Euclidean distance) as defined above,
which in the case of the radius cost easily extend to other metrics (such as L∞).
We also give algorithms that work under any general metric for β = 1. With the
exception of our algorithms for general metrics, all our algorithms have the following
form: They uniformly select a sample of points from X and run an exact decision
procedure for verifying whether the sample is (k, b)-clusterable. Specifically, we show
the following:

1. For general metrics we give algorithms that work for β = 1. For both costs,
the sample selected is of size O(k/ε), and the running time is O(k2/ε). We
also observe that any algorithm for testing diameter clustering for β < 1
under a general metric requires a sample of size Ω(

√
n/ε).

2. For the L2 metric and the radius cost, the algorithm works for β = 0 and the
sample size is Õ(d ·k/ε). We also show how the analysis of this algorithm can
be easily extended to clusters that do not correspond to d-dimensional balls,
as is the case with radius clustering under the L2 metric, but rather are deter-
mined by other “simple” geometric regions (that is, where the family of sets
defined by these regions has a small Vapnik–Chervonenkis (VC)-dimension).
An alternative analysis of the algorithm that allows for β > 0 uses a sample

of size Õ( k2

ε·β2 ), which is independent of the dimension d.

3. For the L2 metric and the diameter cost, the sample is of size Õ(k
2

ε ·( 2
β )

2d). A

dependence on 1/β, as well as an exponential dependence on the dimension,
are unavoidable. We prove a lower bound of Ω(β−(d−1)/4) on the size of the
sample required for testing for k = 1 and a constant ε.

In items 2 and 3 we stated only the size of the sample selected by the algorithms.
The running times depend on the exact decision procedures applied and, given the
difficulty of the problems, are exponential in k and d. We also note that in many
settings k and b are not predetermined, in which case one wants to find a setting of
these parameters that is appropriate for the data. Using the above algorithms it is
possible to search for such good settings.
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Approximately good clusterings. In addition to the above, our algorithms can be
used to obtain approximately good clusterings.

Definition 1 (ε-good clustering). A k-way partition P of X is an ε-good (k, b′)-
clustering of X if it is a partition having cost at most b′ of all but at most an ε-fraction
of the points in X.

If X is (k, b)-clusterable, then using our testing algorithms it is possible to obtain
in time independent of n an implicit representation of an ε-good (k, (1+β)b)-clustering
of X. Namely, given this implicit representation we can determine for any given point
x ∈ X the cluster to which it belongs. This can be done in time O(k) per point,
or even O(log k), depending on the cost measure. For example, in the case of radius
clustering, the implicit representation is simply a set of k cluster centers. The benefit
of such an implicit representation is that it allows us to answer queries of the form “Do
points x, y ∈ X belong to the same cluster?” without actually having to partition all
points. This approach was applied previously in [22] to graph partitioning problems,
and a related approach was applied in [20].

Independently from our work, Mishra, Oblinger, and Pitt [37] study the prob-
lem of approximately good clustering when the cost measure is the sum of distances
(or distances squared) to the cluster centers. Their algorithms use a sample of size
independent of n and polynomial in 1/ε, d, k, and M , where the points belong to
[0,M ]d.

Possible implications. We can draw several conclusions from the above results.
First, suppose that it suffices for one’s purposes to distinguish between a set that
is (k, b)-clusterable and a set that is ε-far from (k, 2b)-clusterable (or, in the case of
finding a clustering, it suffices to find an ε-good (k, 2b)-clustering). That is, a factor
of 2 in the size of the radius/diameter of the clusters is of no great consequence. Then
we have a very simple and efficient algorithm for the task both for the radius cost and
for the diameter cost (as well as under different metrics). On the other hand, if we
would like to go below a factor of 2 in the cost (i.e., to go from β = 1 to β < 1), then
the two cost measures will exhibit a very different behavior. While for the radius cost
we can easily achieve β = 0, with a sample having almost linear dependence on the
dimension d, testing under the diameter cost can be done only with a sample of size
Θ(β−Θ(d)). One possible conclusion is that if there is no special (application-specific)
reason to use the diameter cost, then the radius cost is preferable.

Techniques. The following approach is a common thread passing through the
analysis of most of our testing algorithms. Recall that our algorithms work by sam-
pling from X. The sample is viewed as being selected in phases, where we show that,
with high probability, in each phase certain progress is made. In particular, in the
case that X is ε-far from being (k, (1+β)b)-clusterable, this progress leads to rejection
after a bounded number of phases. For example, in the case of the diameter cost and
a single cluster (k = 1), progress is measured in terms of reducing the volume of the
region in �d which contains all the points having distance of at most b from every
sample point.

For the radius cost under the L2 metric, our analysis uses ε-nets and their relation
to the VC-dimension of families of sets. This relation was previously exploited both
in the context of learning and in the context of computational geometry.

1.2. Perspective. In this paper we approach the problem of clustering from
within the framework of property testing [45, 22]. In property testing the goal is to
decide whether a given object (e.g., graph or function) has a predetermined property
(e.g., connectivity or monotonicity) or is far from having the property. The notion
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of being far from having the property depends on the type of object considered. For
example, if the object is a graph, then we say that it is far from having a particular
property if many edge modifications should be made so that it obtains the property.
By “many” we mean at least a certain ε-fraction of all the edges in the graph.

Previous work in property testing has mainly dealt with properties of functions
[9, 45, 44, 16, 33, 21, 13] and properties of graphs [22, 24, 23, 4, 39, 5, 8]. More
recently, property testing has been applied in other domains; cf. [6, 16, 12]. (For
surveys see [43, 18].)

Here we further extend the scope of property testing to the domain of clustering
problems. Our proof techniques combine geometric analysis with probabilistic analysis
that is characteristic of work in property testing. We thus hope to enrich both areas
of research.

Other related work. Hochbaum and Shmoys [29] were the first to show that it is
hard to approximate the cost of an optimal clustering to within a factor of 2 for a
general distance function. They also give a 2-approximation algorithm for the problem
[28, 29]. As noted above, Feder and Greene [17] show that constant approximation is
also hard for L2 and L∞ metrics (where the specific constants depend on the metric
and cost measure used). An approximation factor of 2 can be achieved efficiently for
all geometric variants we consider [25, 17]. For the radius cost, and under both L∞
and L2 metrics, Agrawal and Procopiuc [1] give an algorithm for finding a clustering
having a radius of at most (1 + β) times larger than the optimal radius in time

O(n · log k+(k/β)O(d2k1−1/d)). For more information on clustering, see [14, 2, 40] and
references therein. In recent work [11], Czumaj and Sohler improve on our result for
testing diameter clustering. They show that for any Lp norm the sufficient sample

size for testing is Õ(k(2/β)d−1/ε).

1.3. Organization. In section 2 we introduce notation and definitions used in
the paper. In section 3 we discuss testing when the underlying distance function
is a general metric. In section 4 we present and briefly discuss our generic testing
algorithm, whose different variants will be presented in the subsequent sections. In
section 5 we consider the basic 1-dimensional case for both radius and diameter testing.
In sections 6 and 7, we present the variants of the generic algorithm for the radius
cost and the diameter cost, respectively, when d ≥ 1 and when the L2 metric is used.
In section 7 we also give our lower bound for the diameter cost. Finally, in section 8
we describe the alternative analysis for radius clustering that works for β > 0 and
uses a sample whose size is independent of d.

2. Preliminaries. We denote by dist(x, y) the distance between two points x, y.
We follow the standard practice of assuming that the distance between a pair of points
can be computed in constant time. Since most of this paper deals with the L2 metric,
in what follows we refer to the Euclidean distance. Thus, if x, y ∈ �d, that is,
x = (x1, . . . , xd) and y = (y1, . . . , yd), then the Euclidean distance between x and y

is dist(x, y)
def
=
√∑d

i=1(xi − yi)2.
Given a subset S ⊆ X, denote by d(S) the diameter of S, that is, the maximum

distance between any two points in S. Denote by r(S) the radius of the smallest ball
containing S, that is, r(S) = miny∈�d maxx∈S dist(x, y). The point y ∈ �d for which
the minimum radius is achieved is the center of the minimum bounding ball of S.

Let P = (X1, . . . , Xk) be a k-way partition of X. The diameter of the partition P
is defined as D(P ) = maxj d(X

j). The radius of P is defined as R(P ) = maxj r(X
j).

For such a k-way partition P of X, we consider the following cost measures:
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1. Diameter cost: Cost(P ) = D(P ).
2. Radius cost: Cost(P ) = R(P ).

Hence, a set X is (k, b)-clusterable according to one of the above cost measures if
there exists a k-way partition P = (X1, . . . , Xk) of X such that Cost(P ) ≤ b. The
set X is ε-far from being (k, (1 + β)b)-clusterable for a given 0 ≤ ε ≤ 1 and β ≥ 0
if for every subset Y ⊆ X of size at most (1 − ε)|X|, and for every k-way partition
PY = (Y 1, . . . , Y k) of Y , we have Cost(PY ) > (1 + β)b.

Since all our algorithms have a one-sided error, we shall use the following definition
of testing algorithms for clustering. We say that an algorithm is a diameter-clustering
(radius-clustering) tester if, given access to points in a set X ⊂ �d and parameters
k, b, ε, and β, the algorithm accepts X if it is (k, b)-clusterable with respect to the
diameter cost (radius cost) and rejects X with probability of at least 2/3 if it is ε-far
from being (k, (1 + β)b)-clusterable.

3. Testing of clustering under general metrics. We begin by describing a
testing algorithm for diameter clustering when the underlying distance function is any
metric and β = 1. That is, the algorithm distinguishes between the case in which X
is (k, b)-clusterable and the case in which X is ε-far from (k, 2b)-clusterable under the
assumption that the distances between points in X obey the triangle inequality. A
slight variant of the algorithm works for radius clustering under the same conditions.
The basic idea of the algorithm is to try and find points in X that are representatives
of different clusters. That is, their pairwise distances are greater than the allowed
diameter b. This algorithm is reminiscent of the factor 2 approximation algorithm of
Gonzalez [25] for radius clustering. In the case that X is (k, b)-clusterable, there can
be at most k such representatives. On the other hand, as we show in the analysis
of the algorithm, if X is ε-far from (k, 2b)-clusterable, then with probability of at
least 2/3 the algorithm will find k + 1 such representatives. A certain refinement of
this idea serves as a basis for the analysis of some of our other algorithms.

Algorithm 1 (general metric, diameter cost, k ≥ 1, β = 1).
1. REPS← rep1, where rep1 is an arbitrary point in X.
2. For i = 2 to m = 6k/ε:

(a) Uniformly and independently select a point x ∈ X.
(b) If dist(x, repj) > b for every repj ∈ REPS, then REPS← REPS∪ {x}.
(c) If |REPS| > k, then halt and reject.

3. Accept.
Since the algorithm computes at most k · m distances, the running time of the

algorithm is O(k2/ε).
Theorem 1. Algorithm 1 is a diameter-clustering tester for β = 1 under any

metric.
Proof. We first observe that the algorithm rejects only if it finds at least k + 1

points whose pairwise distances are all greater than b. If X is (k, b)-clusterable, then
every two points that belong to the same cluster are at a distance of at most b from
each other, and hence in this case the algorithm never rejects. From now on assume
that X is ε-far from (k, 2b)-clusterable.

Consider any particular iteration i ≥ 2 at the start of which |REPS| ≤ k. We
say that a point x ∈ X \ REPS is a candidate representative with respect to REPS
if it has distance greater than b from each of the points in REPS. We claim that if
X is ε-far from (k, 2b)-clusterable, then there must be more than εn such candidate
representatives. To verify this, assume by contradiction that there are at most εn such
points, and let REPS = {rep1, . . . , rep�}, � ≤ k. Then we could remove all candidate
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representatives from X \ REPS, and for every other point y ∈ X, assign y to a
cluster j such that dist(y, repj) ≤ b. By the triangle inequality, every two points that
are assigned to the same cluster are at a distance of at most 2b, contradicting our
assumption on X.

Therefore, in each iteration at the start of which |REPS| ≤ k, there is a proba-
bility of at least ε that we obtain a candidate representative (which becomes a new
representative and increases the size of REPS). By a multiplicative Chernoff bound,
the probability that there are less than (1/6) · εm = k iterations, in which a new rep-
resentative is added to REPS, is less than exp(−(1/2)(1 − 1/6)2εm) < 1/3.2 Hence,
with probability of at least 2/3, there exists an iteration in which |REPS| > k, and
the algorithm rejects as required.

Finding an approximately good clustering. Suppose that X is (k, b)-clusterable.
Then Algorithm 1 always terminates with at most k representatives in REPS. More-
over, by a slight variant of the above analysis, with probability of at least 2/3, the
number of candidate representatives in X \REPS at the time of the termination is at
most εn. To see why this is true, observe first that if the number of representatives in
REPS is exactly k, then there are no candidate representatives. Next observe that the
number of candidate representatives is monotonically nonincreasing. As long as their
number is greater than εn, the probability of adding a new representative to REPS
is at least ε. Hence, if the number of candidate representatives does not go below εn,
then with probability of at least 2/3 the final set REPS contains k representatives.

This implies that with probability of at least 2/3, the final set REPS = {rep1, . . . ,
rep�}, where � ≤ k, has the following property: It defines an implicit representation
of a partition having diameter of at most 2b of all but at most an ε-fraction of the
points in X. That is, excluding the at most εn points in X \ REPS that are can-
didate representatives (i.e., that are at a distance greater than b from the points in
REPS), every other point x ∈ X \REPS can be assigned to some cluster j for which
dist(x, repj) ≤ b. We thus obtain � ≤ k clusters with diameter of at most 2b. The
time required to find the cluster to which a given point belongs is O(k).

A lower bound for β < 1. If all that is known about the distance function between
points in X is that it obeys the triangle inequality, then the above result is tight in
the following sense. It is not possible to test for diameter clustering for β < 1 using a
sample of size independent of n or even of size o(

√
n). To see why this is true consider

a metric that is defined by a complete graph on N = 2n vertices with the following
weights (distances) on the edges. There exists a perfect matching between the vertices
such that each edge in the matching has weight 2 and every other edge has weight 1.
If X corresponds to any subset of size n of the vertices such that no two vertices in X
are matched, then X is (1, 1)-clusterable. On the other hand, if X contains more
than εn pairs of matched vertices, then it is ε-far from (1, 2 − δ)-clusterable for any
δ > 0. However, in order to distinguish between the two cases with a nonnegligible
probability, the algorithm has to sample Ω(

√
n/ε) vertices.

Testing radius clustering under general metrics. The algorithm for radius cluster-
ing is the same as Algorithm 1, except that a point is selected as a new representative
only if it is at a distance greater than 2b from each representative selected so far. By
the triangle inequality, if X is (k, b)-clusterable, then there can be at most k repre-
sentatives. On the other hand, if X is ε-far from (k, 2b)-clusterable, then as long as

2The exact form of the Chernoff bound we are using is the following: Let X1, . . . , Xm be m inde-
pendent random variables where Xi ∈ [0, 1] and the expected value of each Xi is p. Then for every
γ ∈ [0, 1] we have Pr [

∑
Xi < (1− γ)pm] < exp(−(1/2)γ2pm).
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|REPS| ≤ k there must be more than εn candidate representatives (as the representa-
tives in REPS can serve as cluster centers). Hence the analysis of the radius-clustering
algorithm follows along the same lines as that of the diameter-clustering algorithm.
Furthermore, as in the case of diameter clustering, if X is (k, b)-clusterable, then
we can use the representatives found by the algorithm to induce an ε-good (k, 2b)-
clustering of X. In particular, the representatives in REPS serve as the centers of the
clusters.

4. A generic testing algorithm for clustering. As noted in the introduction,
with the exception of the algorithms for general metric presented in the previous
section, all our testing algorithms have the same generic form.

Algorithm 2 (generic testing algorithm for clustering).
1. Uniformly and independently select m(k, ε, d, β) points in X.
2. If there exists a k-way partition P of the selected sample points such that

Cost(P ) ≤ b, then output accept, otherwise, output reject.
The differences between the specific algorithms are
1. the range of parameters for which they work (e.g., β = 0 or β > 0);
2. the size of the sample m(k, ε, d, β);
3. the choice of the cost measure Cost(·) and the underlying distance metric,

and the corresponding implementation of step 2 of the algorithm.
Note that in all cases, if X is (k, b)-clusterable, then the algorithm always ac-

cepts. Hence, in analyzing the different variants of the above algorithm we focus on
proving that if X is ε-far from (k, (1 + β)b)-clusterable, then the algorithm rejects
with probability of at least 2/3.

Running times. Before we present and prove the different variants of this algo-
rithm, we discuss the running time for both the radius cost and the diameter cost as
a function of the sample size m. The running time is dominated, of course, by step 2
of the algorithm.

For the radius cost, step 2 requires finding k spheres with minimum radius that
contain all m points in the sample (known as the Euclidean k-center problem). For
k = 1, finding the minimum bounding sphere of a set of m points can be done by
linear programming in time polynomial in m and d. In the case that d is constant,
there are linear-(in m)-time algorithms for the problem [35, 3, 10]. For k > 1, finding
k minimum bounding spheres can be done in time O(mkd+2); cf. [2, sect. 7.1]. When d
is relatively small it is possible to obtain an improvement of this running time by using

the algorithm of Agrawal and Procopiuc [1], which has running time mO(f(d)·k1−1/d),
where f(d) is always bounded by O(d5/2).

As for the diameter cost, step 2 requires us to verify whether there exists a k-way
partition having diameter at most b of a given set of m points. For k = 1 the time
is clearly bounded by O(m2), since we only need to check whether all pairs of points
in the sample are at a distance of at most b from each other. If k = 1 and the
dimension d of the points is at most 3, then this can be done in time O(m logm) [42].

As for general values of k and d, this can be done in time (O(m))d·k
2

[46]. The basic
observation is that we may consider only partitions for which the convex hulls of the
different clusters are disjoint. This is true since, given a minimum diameter partition
for which some point in cluster i belongs to the convex hull of cluster i′, we can
move this point from cluster i to cluster i′ without increasing the diameter. Thus,
in step 2 the algorithm enumerates all such partitions of the sample and computes
their diameter. This is done by considering all choices of

(
k
2

)
hyperplanes among the

O(md+1) hyperplanes that separate the m sample points and then merging subsets of
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points that fall in the resulting regions into k clusters.

5. Clustering in one dimension. Before addressing the problem of testing
clustering in d-dimensional Euclidean space for a general d, we address the simple
special case of d = 1. In one dimension the radius and diameter problems are the
same (under any Lp norm): every cluster corresponds to an interval, where in the case
of radius clustering the interval is of length at most 2b, and in the case of diameter
clustering it is of length at most b. Determining whether a set of points in one
dimension is contained in a union of at most k intervals of a given bounded length
can be done by dynamic programming. As we show below, the sample size sufficient
for Algorithm 2 is Õ(k/ε), and hence the running time of the algorithm in this case
is poly(k/ε).

Theorem 2. Algorithm 2 with sample size m = Θ(kε · log k
ε ) and Cost =

R(Cost = D) is a testing algorithm for radius (diameter) clustering in one dimension
for k ≥ 1 and β = 0.

The proof of Theorem 2 follows directly from the following lemma (which is stated
for the radius cost) and by a standard “balls and bins” analysis.

Lemma 1. Let X be ε-far from being (k, b)-clusterable with respect to the radius
cost. Then there exist k nonintersecting segments [left i, right i], each of length 2b,
such that there are at least (εn)/(k+1) points from X between every two segments as
well as to the left of the leftmost segment and to the right of the rightmost segment.

Proof. Let us assume for simplicity that X contains distinct points. The first
(leftmost) segment is placed such that there are (εn)/(k + 1) points from X to the
left of it. Since X is ε-far from being (k, b)-clusterable, there must exist at least
(εnk)/(k + 1) points to the right of this first segment. We thus place the second
segment to the right of the first segment so that there are (εn)/(k+1) points from X
between the two segments. The remaining segments are placed in a similar way.

6. Testing of radius clustering under the L2 metric. In this section we
consider clustering of points in �d, d ≥ 1, when the cost measure is the radius cost
and the underlying distance metric is the L2 metric. Recall that for this cost and
metric all points in each cluster must be contained in a ball of radius b. We provide
sufficient conditions on the sample size so that the generic testing algorithm is a radius-
clustering tester for β = 0. As we show below, this analysis can be easily generalized
to testing clustering when the clusters correspond to other “simple” geometric regions
(that is, where the family of sets defined by these regions has a small VC-dimension).
For example, this is true for clusters that are contained in axis aligned cubes with
bounded side lengths and for clusters that are contained in ellipsoids of a bounded
size. (Note that the former are obtained when the cost measure is the radius cost
and the underlying metric is L∞.) As we see below, the size of the sample is almost
linear in d. An alternative analysis of the algorithm, which works for β > 0 and uses
a sample of size independent of d, is given in section 8.

Theorem 3. Algorithm 2 with sample size m = Θ(d·kε · log(d·kε )) and Cost = R
is a radius-clustering tester for k ≥ 1, d ≥ 1, and β = 0.

Remark. Using a result of [22] concerning the relation between learning algorithms
and testing algorithms, we could obtain a testing algorithm for radius clustering with
the same complexity as stated in Theorem 3 but with a two-sided error. This would
be based on the learnability of the concept class defined by unions of k balls. Here
we give a direct analysis and obtain a one-sided error. We note that the same idea
applied here can be used to obtain testing algorithms having a one-sided error for any
property that can be defined by a family of subsets having a bounded VC-dimension.
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In order to prove Theorem 3 we shall need the following definitions (which for
the sake of presentation are not given in their full generality). Let S be a family of
subsets of �d, let R be a finite subset of �d, and let 0 < ε < 1. We say that N ⊂ R
is an ε-net of R with respect to S if, for every S ∈ S such that |S ∩R| > ε · |R|, there
exists at least one point x ∈ S ∩ N . In other words, N is an ε-net if it “hits” every
subset in S that has a relatively large intersection with R. Our interest in ε-nets will
soon become clear, but first we need one more definition.

We say that a subset A ⊂ �d is shattered by a family of subsets S if, for every
A′ ⊆ A, there exists a set S ∈ S such that A′ = A ∩ S. The VC-dimension of S,
denoted by VCD(S), is the maximum size of a subset A ⊂ �d that is shattered by S.
The VC-dimension of a family of subsets is hence a certain measure of richness (or
diversity) of the family.

The following theorem is a special case of a theorem that was proved by Haussler
and Welzl [27] based on the work of Vapnik and Chervonenkis [48].

Theorem 4 (see [27]). Let S be any family of subsets of �d, let R be any finite

subset of �d, and let 0 < ε < 1. Consider a sample U of sizem ≥ 8VCD(S)
ε ·log 8VCD(S)

ε
selected uniformly and independently from R. Then with probability of at least 2/3,
U is an ε-net for R with respect to S.

The proof of Theorem 4 actually gives a bound on the sample size m in terms of
a slightly different measure from VCD(S), which we refer to as the shatter exponent
(where VCD(S) is an upper bound on this measure). In our case we can get a slightly
better bound on m if we use the shatter exponent directly. We next define it and
state a corresponding variant of Theorem 4.

For a subset A ⊂ �d, let ΦS(A) def
= {A ∩ S : S ∈ S} be the projection of S on A.

For any integer m, let φS(m) = maxA, |A|=m |ΦS(A)| be the maximum size of the
projection of S on a set of sizem. In particular, by the definition of the VC-dimension,
for every m ≤ VCD(S), φS(m) = 2m, while for m > VCD(S), φS(m) < 2m. Let the
shatter exponent, denoted SE(S), be the smallest integer such that for every m ≥ 2,
φS(m) ≤ c ·mSE(S) for some fixed constant c. It can be shown that for every family
of subsets S, SE(S) ≤ VCD(S), but as noted above, we can sometimes get a better
bound on SE(S).

Theorem 4′. Let S be any family of subsets of �d, let R be any finite subset

of �d, and let 0 < ε < 1. Consider a sample U of size m ≥ 8SE(S)
ε · log 8SE(S)

ε selected
uniformly and independently from R. Then with probability of at least 2/3, U is an
ε-net for R with respect to S.

Proof of Theorem 3. If X is (k, b)-clusterable, then Algorithm 2 clearly always
accepts. Hence, assume from now on that X is ε-far from being (k, b)-clusterable. We
shall show that the algorithm rejects with probability of at least 2/3.

Let Bk,b be the family of subsets of �d that are defined by unions of k balls each
of radius at most b, and let Bk,b be the family of complements of subsets in Bk,b. By
our assumption on X, we have that for every collection of k balls each having a radius
of at most b, there are more than εn points in X that do not belong to any of the
balls. In other words, for every S ∈ Bk,b, we have that |S ∩X| > ε|X|. This implies
that a subset N ⊂ X is an ε-net for X with respect to Bk,b if and only if it contains
at least one point from every S ∈ Bk,b.

Now assume that the sample U selected by Algorithm 2 is an ε-net for X. Then,
by the definition of ε-nets and our assumption on X, there is no k-way partition P
of U such that R(P ) ≤ b (and so the algorithm will reject). This is true since such a
partition corresponds to k balls having radius b that contain all points in the sample.
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However, this would contradict the assumption that U contains at least one point
from every S ∈ Bk,b.

In order to bound the size of a sample that is sufficient to ensure that it constitutes
an ε-net for X with respect to Bk,b, we bound SE(Bk,b). It is easy to verify that
SE(Bk,b) = SE(Bk,b), and so it remains to bound SE(Bk,b). Given any set A of
m points in �d, the number of different subsets A′ = A∩B, where B ∈ B1,b (i.e., sets
defined by single balls), is at most md+1.3 This follows from the fact that for each
subset A′ such that there exists balls B ∈ B1,b for which A

′ = A∩B, let BA′ be such
a ball having minimum radius. It is well known that for any such bounding ball there
exists a subset A′′ ⊆ A′ having size of at most d + 1 such that BA′ = BA′′ . Hence
the number of balls enclosing different subsets of A is at most

(
m
d+1

)
< md+1. Since

Bk,b includes unions of k balls, we have that SE(Bk,b) ≤ k(d+ 1). Hence, Theorem 3
follows by applying Theorem 4′.

Testing of clustering for clusters having shapes other than balls. Let S be a family
of subsets of �d that are defined by containment in certain geometric regions (such as
d-dimensional cubes or ellipsoids). Let size(·) be a fixed size measure of these regions
(such as side lengths in the case of cubes). Let Sk,b be the family of subsets of �d that
are defined by unions of k sets (regions) in S, each having a size of at most b. Consider
the instantiation of Algorithm 2, where for a given partition P = (Y 1, . . . , Y k) of the
sample we define

Cost(P ) = max
Y j∈P

min
S∈S, Y j⊂S

size(S).

Then the above analysis implies that this instantiation of Algorithm 2 with a sample
of size O(SE(Sk,b) log SE(Sk,b)) is a testing algorithm for clusters bounded by sets
(regions) in S. Depending on the particular choice of S, one can obtain a bound
on SE(Sk,b) either directly (as done in the proof of Theorem 3) or through the VC-
dimension of Sk,b, which by known results is at most k times the VC-dimension of S.

Finding an approximately good clustering. Suppose that X is (k, b)-clusterable. In
such a case Algorithm 2 finds a k-way partition P of the sample such that R(P ) ≤ b.
That is, the algorithm finds k centers z1, . . . , zk of balls of radius b that contain all
sample points. An argument similar to the proof of Theorem 3 shows that with
probability of at least 2/3 the centers found by the algorithm actually define an ε-
good (k, b)-clustering of X. Specifically, as shown in the proof of Theorem 3, with
probability of at least 2/3 the sample selected by the algorithm is an ε-net for X
with respect to Bk,b. That is, for every S ∈ Bk,b such that |X ∩ S| > ε|X|, the
sample contains at least one point in S. (Note that here it is not true that for every
S, |X ∩ S| > ε|X|, since X is assumed to be (k, b)-clusterable. However, this is
immaterial to the claim.) Assume that the sample is in fact an ε-net for X. Then by
the definition of Bk,b, this means that for every k balls of radius b such that more than
ε|X| points of X fall outside these balls, the sample contains such a point outside the
balls. This in turn implies that for the k balls defined by the centers z1, . . . , zk found
by the algorithm, there are at most ε|X| points in X that do not belong to these balls.
Thus the k centers induce an ε-good (k, b)-clustering of X.

Testing and the VC-dimension. The above analysis can be extended to obtain
the following relation between the VC-dimension and testing similarly to how such a
relation is obtained between the VC-dimension and PAC (Probably Approximately
Correct) learning.

3In fact, the bound b on the radius of the balls can be used to obtain a bound of md. However,
the reasoning is slightly more complicated.
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Consider any property P of Boolean functions over some domain Z, and let FP
be the class of functions having property P . A testing algorithm for property P is
given query access to the tested function f (and in particular may ask for the value
of f on a uniformly selected sample). If f has property P (that is, f belongs to FP ),
then the algorithm should accept. If f is ε-far from having property P (that is, for
every function g ∈ FP , Pr[g(z) �= f(z)] > ε, where the probability is over a uniformly
selected z), the algorithm should reject with probability of at least 2/3.

In what follows we shall sometimes view Boolean functions as sets. In particular,
the VC-dimension of FP is defined as the VC-dimension of the family of subsets:

{Sf}f∈FP
where Sf

def
= {z : f(z) = 1}. Suppose that there is an algorithm A that,

given a sample of labeled examples {zi, bi} where zi ∈ Z and bi ∈ {0, 1}, determines
whether there exists a function in FP that is consistent with the sample. That is, if
∃g ∈ FP , such that g(zi) = bi for every i, then A outputs accept, and otherwise it
outputs reject. We shall refer to A as a consistency checker for FP .

Theorem 5. For any property P , a consistency checker for FP can be used

for testing P by applying it to a uniformly selected sample of size m ≥ 8VCD(FP )
ε ·

log 8VCD(FP )
ε .

Proof. The proof of Theorem 5 is a generalization of the proof of Theorem 3. By

the definition of a consistency checker, if f ∈ FP , then it accepts. Let FP def
= {¬g :

g ∈ FP } (so that in particular VCD(FP ) = VCD(FP )). Then by Theorem 4, for
any function f with probability of at least 2/3, a sample of size m as stated in the
theorem is an ε-net for f (i.e., Sf ) with respect to FP (i.e., {Sg}g∈FP

). As argued in
the proof of Theorem 3, this implies that if f is ε-far from having property P , then it
is rejected with probability of at least 2/3.

We note that in many cases (e.g., the property of monotonicity), the VC-dimension
of the class of functions defined by the property is prohibitively large, and we seek
other techniques (that in particular may use adaptive querying).

7. Testing of diameter clustering under the L2 metric.

7.1. The case k = 1. We start by studying the problem of testing for a single
cluster. In the next subsection we extend the analysis to any number of clusters k.
In all that follows the underlying distance metric is the L2 metric.

Theorem 6. Algorithm 2 with sample size m = Θ(1
ε · d3/2 · log( 1

β )(
2
β )
d) and

Cost = D is a diameter-clustering tester for k = 1, d ≥ 1, and 0 < β ≤ 1.

We start by proving the theorem for two dimensions and then show how it gen-
eralizes to any number of d dimensions.

Proof of Theorem 6 for d = 2. Clearly ifX is (1, b)-clusterable, then the algorithm
accepts. We thus focus on proving that ifX is ε-far from being (1, (1+β)b)-clusterable,
then the algorithm rejects with probability of at least 2/3.

We shall view the sample as being selected in p = 2π/β2 phases, where in each
phase Θ(log(p)/ε) points are selected uniformly and independently. We shall show
that, with high probability over the choice of the sample, in each phase certain progress
is made. The progress is such that, after at most p phases, the diameter of all sample
points is greater than b (causing the algorithm to reject).4 For each 1 ≤ j ≤ p, let

4We note that by slightly modifying the analysis to require progress only in a sufficient fraction
of the phases, we could save a factor of log 1

β
in the sample size. However, the current analysis

is slightly simpler, and in the general case of k ≥ 1 (which is based on the current analysis), the
log 1

β
factor becomes negligible.
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Uj denote the union of all points selected in the first j phases. We shall need the
following definitions.

Definition 2.
• For x ∈ �2, let Cx denote the disk of radius b centered at x.
• For T ⊆ �2, let I(T ) denote the intersection of all disks Cx of points x ∈ T .
• For any region R in �2, let A(R) denote the size (area) of R.

By the above definition, for each phase j, every point y ∈ I(Uj) is at a distance of
at most b from every point in the sample selected so far. If in phase j+1 a new sample
point x falls outside I(Uj), then the algorithm rejects, as this means that the new
point is at a distance greater than b from some sample point. Otherwise, x ∈ I(Uj),
and we consider the decrease in the area of the intersection caused by the addition
of x. That is, A(I(Uj))−A(I(Uj ∪ {x})) = A(I(Uj) \ Cx).

Definition 3. We say that a point x ∈ X is influential with respect to I(Uj)
if x /∈ I(Uj) or if x causes a significant decrease in the area of I(Uj), namely, if the
area A(I(Uj) \ Cx) that is removed from the intersection is greater than (βb)2/2.

We claim that if X is ε-far from being (1, (1 + β)b)-clusterable, then for every
1 ≤ j ≤ p−1, in phase j+1 there are at least εn points in X that are influential with
respect to I(Uj). Subject to this claim, if the sample in each phase is of size of at
least ln(3p)/ε, then the probability that an influential point is not selected in a fixed
phase is at most

(1− ε)ln(3p)/ε < exp(−ln(3p)) = 1/(3p).

Hence, the probability that for some phase no influential point is selected is less
than 1/3.

Thus, assume from now on that for every 1 ≤ j ≤ p − 1, the sample selected in
phase j + 1 contains an influential point x with respect to I(Uj). As stated above, if
x /∈ I(Uj), then Algorithm 2 rejects. Otherwise, x decreases the area of I(Uj) by at
least (βb)2/2. However, since the area of the initial disk (defined by the first sample
point) is πb2, then the number of phases in which such a decrease can occur is at most
p = 2π/β2.

In order to complete the proof of Theorem 6 for d = 2, we must show that for
every 1 ≤ j ≤ p − 1, there are at least εn points in X that are influential with
respect to I(Uj). Assume, contrary to the claim, that there are at most εn influential
points with respect to some I(Uj). Then we can remove these (at most) εn influential
points from X. The points that remain in X all belong to I(Uj) and, as the following
lemma shows, they form a cluster of diameter at most (1 + β)b, in contradiction to
our assumption on X.

Lemma 2. Let T be any finite subset of �2. Then for every x, y ∈ I(T ) such
that x is noninfluential with respect to T , dist(x, y) ≤ (1 + β)b.

In order to prove Lemma 2, we shall need the following geometrical claim. For
an illustration see Figure 7.1.

Claim 3. Let C be a circle of radius at most b. Let s and t be any two points
on C, and let o be a point on the segment connecting s and t such that dist(s, o) ≥ b.
Consider the line perpendicular to the line through s and t at o, and let w be its
(closer) meeting point with the circle C. Then dist(w, o) ≥ dist(o, t)/2.

Proof. Denote � = dist(o, t) and �′ = dist(w, o). We place the center of the
circle C at the origin (0, 0) and set the y axis to be parallel to the line connecting s
and t. Let r ≤ b be the radius of C. If we denote the y coordinate of t by η, then
its x coordinate is α =

√
r2 − η2. Given the distances between the points (and the
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Fig. 7.1. An illustration for the proof of Claim 3.

orientation of the coordinate system), the point o is at coordinates (α, η− �), and the
point w is at (α+ �′, η − �). Since w is on the circle, we must have that

(α+ �′)2 + (η − �)2 = r2,(7.1)

which implies that

�′ =
√
r2 − (η − �)2 − α.(7.2)

If we now substitute α =
√
r2 − η2, we get

�′ =
√
r2 − (η − �)2 −

√
r2 − η2

=
(r2 − (η − �)2)− (r2 − η2)√
r2 − (η − �)2 +

√
r2 − η2

=
η2 − (η − �)2√

r2 − (η − �)2 +
√
r2 − η2

=
�(2η − �)√

r2 − (η − �)2 +
√
r2 − η2

>
�(2η − �)

2r
.

Since both s and t are on the circle and dist(s, t) = dist(s, o) + dist(o, t) ≥ b + �, we
have that 2η ≥ b+ �. Hence, since r ≤ b, we obtain that �′ ≥ �/2 as claimed.

Proof of Lemma 2. It is clear of course that if y ∈ Cx, then dist(x, y) ≤ b.
Therefore, let y ∈ Ij \ Cx. Consider the line through x and y, and let o be the point
where it intersects with Cx. Then,

dist(x, y) = dist(x, o) + dist(o, y).

Clearly dist(x, o) = b. Thus, we want to show that dist(o, y) ≤ βb.
Let us draw the tangent to Cx at o and let z and w be the first two points it

meets on the boundary of Ij . The points y, w, z define a triangle T , whose height is
h = dist(o, y). Let �1 = dist(w, o) and �2 = dist(z, o). Thus, the length of the base of
the triangle S is �1 + �2. Let A(T ) denote the area of T . Since T ⊆ Ij \ Cx, and x is
noninfluential, we have

A(T ) =
h(�1 + �2)

2
≤ (βb)2

2
.(7.3)
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We will now show that h ≤ �1 + �2 and from this conclude that h ≤ βb as required.
We prove that �1 ≥ h/2. Let C1 be the circle on which w sits, and let s and t be the

intersection points of the line connecting x and y with the circle C1 (see Figure 7.2).

C1 C2
C3

Cx

x

.
z

y

t

w

h

.

.

.

. .o

s

.l2 l1

Fig. 7.2. An illustration for the proof of Lemma 2. The circles Cx and C1 are as defined in
the proof. The circles C2 and C3 denote additional circles defined by points in the sample.

We have that dist(o, t) ≥ h and dist(s, o) ≥ b. We can thus apply Claim 3 and
get that

�1 = dist(w, o) ≥ dist(o, t)/2 ≥ h/2.
In an analogous way we can show that �2 ≥ h/2. This implies that h ≤ 2·min(�1, �2) ≤
�1 + �2. By (7.3) we can conclude that

h2

2
≤ h(�1 + �2)

2
≤ (βb)2

2
.

Extending the proof to higher dimensions. For each sample point x let Bx denote
the d-dimensional ball of radius b centered at x. Let I(Uj) be the intersection of all
balls centered at points selected in phases 1 through j, and let V (I(Uj)) denote the
volume of the intersection. Let Vd denote the volume of the d-dimensional unit ball.
Here we shall say that a point x is influential with respect to I(Uj) if x /∈ I(Uj), or
if the volume removed by x is at least

V (I(Uj))− V (I(Uj ∪ {x})) = V (I(Uj) \Bx)

>
(βb)d · Vd−1

d · 2d−1
.

Since the volume of the initial ball of radius b (defined by the first sample point) is
Vd · bd, then the number p of phases required is at most

d · Vd
2 · Vd−1

·
(
2

β

)d
= O

(√
d

(
2

β

)d)
.
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Once again, the following lemma completes the proof of Theorem 6 for any d > 2.
Lemma 4. Let T be any finite subset of �d. Then for every x, y ∈ I(T ) such

that x is noninfluential with respect to T , dist(x, y) ≤ (1 + β)b.
Proof. Let y ∈ Ij \Bx. Consider the line through x and y, and let o be the point

where it intersects with Bx. Then,

dist(x, y) = dist(x, o) + dist(o, y),

where dist(x, o) = b. Again we show that h = dist(o, y) ≤ βb.
Consider some plane that passes through the line defined by x and y. Draw in

this plane the line tangent to Bx at o. Let z and w be the first two points that this
line meets on the boundary of Ij . Notice that any such plane intersects each of the
d-dimensional balls defining Ij in a disk of radius at most b. Thus, we can again use
Claim 3 and prove (as in Lemma 2) that dist(z, o) ≥ h/2 and dist(w, o) ≥ h/2. This
will be true for any plane passing through the line defined by x and y.

Therefore, a (d−1)-dimensional ball of radius h/2 is contained in the intersection
of Ij \Bx with the (d−1)-dimensional hyperplane tangent to Bx at o. Thus, the cone
of height h, whose base is this (d− 1)-dimensional ball of radius h/2, is contained in
Ij \Bx. The volume of this cone is

h(h/2)d−1Vd−1

d

and, since x is noninfluential, we have that

h(h/2)d−1Vd−1

d
≤ (βb)d · Vd−1

d · 2d−1
.

Thus, h ≤ βb as required.
7.2. General k. We obtain the following theorem for k ≥ 1.

Theorem 7. Algorithm 2 with sample size m = Θ(k
2 log k
ε ·d·( 2

β )
2d) and Cost = D

is a diameter-clustering tester for k ≥ 1, d ≥ 1, and 0 < β ≤ 1.
We start by extending the notion of influential points.
Definition 4. Let PS = (S1, . . . , Sk) be a partition of a subset S ⊂ X. We say

that a point x is influential with respect to PS if either x /∈ ⋃ki=1 I(S
i) (that is, x is

at a distance greater than b from some point in every Si) or for every Si,

V (I(Si) \Bx) > (βb)d · Vd−1

d · 2d−1

(that is, the volume of I(Si) is reduced significantly by x for every Si). Let Y (PS) ⊂ X
denote the set of all points that are influential with respect to PS.

Claim 5. Suppose that X is ε-far from (k, (1 + β)b)-clusterable, and let PS =
(S1, . . . , Sk) be a partition of some S ⊂ X. Then for any given 0 < δ < 1, with
probability of at least 1 − δ, a uniformly and independently selected sample of size

s ≥ ln(1/δ)
ε contains at least one point y ∈ Y (PS).

Proof. By Lemma 4, if X is ε-far from (k, (1 + β)b)-clusterable, then necessarily
|Y (PS)| > εn. Otherwise, we could remove all influential points and assign each of
the other points x ∈ X to a cluster i such that x is noninfluential with respect to Si.
This would result in a k-way partition of all but at most an ε-fraction of the points
in X such that each cluster has diameter of at most (1 + β)b.
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Therefore, the probability that a sample of size s ≥ ln(1/δ)
ε will not contain any

point in Y (PS) is at most (1− ε)s < exp(−ε · s) = δ, as desired.
Proof of Theorem 7. Once again, if X is (k, b)-clusterable, then the algorithm

always accepts. We thus focus on the case in which X is ε-far from being (k, (1+β)b)-
clusterable.

As in the proof of Theorem 6, we view the sample as being selected in phases.
Let p = Θ(

√
d · (2/β)d) be the number of phases sufficient for the k = 1 case, and let

p(k) = k · (p + 1) be the number of phases used here in the analysis of k > 1. Let

mj be the size of the sample selected in the jth phase, where
∑p(k)
j=1 mj = m. Let Uj

denote the union of all the samples selected in the first j phases. Thus, U = Up(k) is
the complete sample.

Our goal is to show that, with probability of at least 2/3 over the choice of the
sample, for every partition P of Up(k) we have that D(P ) > b. To this end we
define a family of influential partitions. For each phase j there is a subfamily of
influential partitions that correspond to that phase. These are partitions of subsets
of Uj . We show that with probability of at least 2/3, for every phase j and every

influential partition P̂ corresponding to that phase, the sample selected in the next
phase contains an influential point for P̂ . This will imply that, after at most p(k) =
k(p+ 1) phases, the diameter of each influential partition, and consequently of every
partition of the sample, is greater than b.

We define the influential partitions in an inductive manner. In the initial phase
(phase 0) there is a single influential partition of a sample of size 1 (i.e., m0 = 1).
Suppose that for each influential partition P̂ = (S1, . . . , Sk) in phase j − 1, the jth
sample contains a point from Y (P̂ ), and let us denote this point by y(P̂ ). (If there is
more than one such point, then y(P̂ ) is defined as the one having the smallest index.)
Then in phase j we shall have the k influential partitions

(S1 ∪ {y(P̂ )}, S2, . . . , Sk), . . . , (S1, . . . , Sk−1, Sk ∪ {y(P̂ )}).

This implies that the total number of influential partitions in phase j is at most kj .
We now apply Claim 5 to each one of the kj−1 influential partitions in phase j−1

(having diameter at most b). If

mj =
(j − 1) ln k + ln(3p(k))

ε
,

then with probability of at least 1 − 1
3p(k) , the jth sample in fact contains a point

y(P̂ ) ∈ Y (P̂ ) for every influential partition P̂ in phase j − 1. Setting

m =

p(k)∑

j=1

mj = Θ

(
p(k)

2 · log k + p(k) log p(k)
ε

)

= Θ

(
k2 log k

ε
· d · (2/β)2d

)
,

we get that, with probability of at least 2/3, the jth sample contains a point y(P̂ ) ∈
Y (P̂ ) for every phase j and every influential partition P̂ from phase j − 1.

Assume that the above event holds and so, in particular, the influential partitions
are well defined. We now show that this implies that, after at most p(k) phases, the
diameter of every partition of the sample must be greater than b.
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Consider any partition P = (U1
p(k), . . . , U

k
p(k)) of Up(k), and let Pj = (U1

j , . . . , U
k
j )

be its restriction to Uj . That is, U ij = U ip(k) ∩ Uj . We claim that there must exist a

sequence of influential partitions P̂1, . . . , P̂p(k), where P̂j = (S1
j , . . . , S

k
j ), so that the

following holds: For every i, Sij ⊆ U ij , and for some i, Sij = Sij−1 ∪ {y(P̂j−1)}. This
follows immediately by induction on j: The base of the induction, j = 0, is clear.
We assume that it is true for j − 1 and prove it for j. Let 1 ≤ i ≤ k be such that
y(P̂j−1) ∈ U ij . Then we let P̂j = (S1

j−1, . . . , S
i
j−1 ∪ {y(P̂j−1)}, . . . , Sk), which by the

definition of the influential partitions is an influential partition.
Let us fix the above sequence of influential partitions. Since there are p(k) =

k · (p + 1) phases, there must be some 1 ≤ i ≤ k such that in at least p + 1
phases j1, . . . , jp+1, S

i
jt

= Sijt−1 ∪ {y(P̂jt−1)} (the first such phase will cause Sij1 to

be nonempty). But by our analysis of the k = 1 case, this implies that d(Sip(k)) > b.

Since Sip(k) ⊆ U ip(k), we have that d(U ip(k)) > b, and so D(P ) > b. Since the above
holds for every partition P of U = Up(k), the theorem follows.

7.3. Finding an approximately good clustering. Similarly to what was
shown in section 6 for radius clustering, if X is (k, b)-clusterable, then Algorithm 2
can be used to find an implicit representation of an approximately good (k, (1+β)b)-
clustering of X. Here the process is slightly more complex.

Recall that for a set T of points in �d, I(T ) denotes the intersection of all
d-dimensional balls Bx having radius b that are centered at points x ∈ T .

Definition 5. Let PS = (S1, . . . , Sk) be a partition of a subset S ⊆ X. A point
x ∈ X is compatible with PS if there exists an index 1 ≤ i ≤ k such that x ∈ I(Si)
and dist(x, y) ≤ (1 + β)b for every y ∈ I(Si). Otherwise, x is incompatible with PS.

A partition PS is α-successful for a given 0 ≤ α ≤ 1 if the number of points that
are incompatible with PS is at most αn. Otherwise, PS is α-unsuccessful.

Observe that given an ε-successful partition PS of a subset S ⊆ X, the parti-
tion PS can be used to induce an ε-good (k, (1 + β)b)-clustering of X (as defined
in Definition 1). Also note that by Lemma 4 if a point x is incompatible with a
partition PS , then x must be influential with respect to PS .

Algorithm 3 (approximately good clustering, diameter cost).

1. Call Algorithm 2 with a sample of size m = O(d
5/2·k3

ε · ( 2
β )
d log(d·kε·β )) and

Cost = D.
2. Let P be the k-way partition of the sample that is found by Algorithm 2 (if

such a partition is found).
3. View the sample as being selected in p(k) = Θ(k · √d · (2/β)d) phases, where
Uj denotes the union of all samples selected in the first j phases, and |Uj | =
Θ( jε · d · k2 · log d·k·j·p(k)

ε ). Let Pj be the restriction of P to Uj. That is, if
P = (U1, . . . , Uk), then Pj = (U1 ∩ Uj , . . . , Uk ∩ Uj).

4. Take an additional sample of size Θ(log(p(k))/ε), and count the number of
points that are incompatible with each partition Pj in this additional sample.5

5. Select the restriction Pg that has the smallest number of incompatible points
in the sample and use it to induce a partition of X. That is, if Pg =
(U1

g , . . . , U
k
g ), then for every x ∈ X, if there exists an index i such that

x ∈ I(U ig) and dist(x, y) ≤ (1 + β)b for every y ∈ I(U ig), then assign x to
cluster i.

5Checking whether a point is incompatible with a given partition can be done by linear
programming.
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Notice that the above algorithm calls Algorithm 2 with a sample of size slightly
larger than what was needed in the proof of Theorem 7. We shall return to this issue
at the end of this subsection.

Theorem 8. With a probability of at least 2/3, the selected partition Pg is ε-
successful.

Definition 6. Let S ⊆ X be a set of points. A partition PS = (S1, . . . , Sk) of S
is called a convex partition if the convex hulls of the different Si’s are disjoint.

Lemma 6. Let S be a fixed set of points from X, and let c be a sufficiently

large constant. Consider the uniform selection of a sample of s = d·k2·ln(c|S|)+ln(6p(k))
ε

points from X. Then with a probability of at least 1−1/(6p(k)) over the choice of the
sample, for every (ε/2)-unsuccessful convex partition Q of S there exists at least one
point in the sample that is incompatible with Q.

Proof. Let Q be any fixed (ε/2)-unsuccessful convex partition of S. The proba-
bility that a sample of size s, as stated in the lemma, does not contain a point that
is incompatible with Q is at most

(1− (ε/2))s < exp(−(ε/2)s) = 1

(c|S|)dk2 · 6p(k) .

It remains to verify that the number of convex partitions of S is at most (c|S|)dk2

for some constant c. Each convex partition of S can be defined by first selecting(
k
2

)
hyperplanes among the O(|S|d+1) hyperplanes that separate |S| points in d di-

mensions, and then by merging subsets of points that fall into the resulting regions
into k clusters. The total number of convex partitions is hence O(|S|)dk2

.
Lemma 7. With a probability of at least 5/6, if we select a sample of size

m = Θ

(
d

5
2 · k3

ε
·
(
2

β

)d
log

(
d · k
ε · β

))
,

then for every phase j and for every convex partition Q of Uj that is (ε/2)-unsuccessful,
the sample selected in phase j + 1 contains at least one point that is incompatible
with Q.

Proof. Let mj be the size of the sample selected in phase j so that |Uj | =
|Uj−1|+mj , where |U0| = 1. If we apply Lemma 6 with S = Uj−1 and mj = s, then
it is not hard to verify that

|Uj | ≤ 2j

ε
·
(
d · k2 · log c · d · k

2 · j · (6p(k))
ε

)
.

Since p(k) = Θ(k ·√d · (2/β)d), we have that |Up(k)| = O( 1
ε ·d5/2 ·k3 · (2/β)d · log d·k

ε·β ).
Hence, if we take a sample of size m = |Up(k)|, then the probability that, for some
1 ≤ j ≤ p(k) and for some (ε/2)-unsuccessful convex partition of Uj , the (j + 1)
sample does not contain a point that is incompatible with the partition is at most
p(k) · 1

6(p(k)) = 1
6 .

Corollary 8. With a probability of at least 5/6, there exists an index 1 ≤ a ≤
p(k) such that the restriction Pa is (ε/2)-successful.

Proof. Algorithm 2 with Cost = D finds an optimal partition P of the sam-
ple by enumerating all convex partitions of the sample. Since the partition P that
Algorithm 2 finds is convex, so is each of its restrictions Pj .
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By Lemma 7, with a probability of at least 5/6, for every phase j and for every
(ε/2)-unsuccessful convex partition Q of the sample Uj selected so far, the sample
selected in phase j+1 contains a point that is incompatible with Q. Suppose that this
in fact happens. Then there exists a phase 1 ≤ a ≤ p(k) such that the restriction Pa is
(ε/2)-successful. Otherwise, since every incompatible point is an influential one then,
similarly to what was argued in the proof of Theorem 7, the partition P could not
have diameter at most b.

Proof of Theorem 8. Let Pa be an (ε/2)-successful partition guaranteed with a
probability of at least 5/6 by Corollary 8. Then, the probability that the partition Pg
selected by Algorithm 3 is ε-successful is lower bounded by the probability that the
following two events occur:

1. For every ε-unsuccessful partition Pj , the fraction of points in the sample that
are incompatible with Pj is greater than 3ε/4;

2. the fraction of points in the sample that are incompatible with the (ε/2)-
successful partition Pa is at most 3ε/4.

Clearly, if both events occur, then the selected partition Pg cannot be ε-unsuccessful.
To lower bound the probability that both these events occur, we upper bound the
probability that either one of them does not occur.

Consider any fixed ε-unsuccessful partition Pj . The probability that a uniformly
selected sample point is incompatible with Pj is greater than ε. Since the points are
selected independently, by a multiplicative Chernoff bound, the probability that the
fraction of incompatible points is at most 3ε/4 (i.e., (1− 1/4) of the expected value)
is less than exp(−(1/2)ε(1/4)2m), where m is the size of the sample. Similarly, for
the (ε/2)-successful partition Pa, the probability that any uniformly selected sample
point is incompatible with Pa is at most ε/2. By a multiplicative Chernoff bound, the
probability that the fraction of incompatible points is greater than 3ε/4 is less than
exp(−(1/3)ε(1/2)2m). Since the number of ε-unsuccessful partitions is less than p(k),
by a probability union bound, a sample of size m = Θ(log(p(k))/ε) ensures that the
probability that any one of these “bad” events occurs is at most 1/6, as required.

Adding the two sources of failure, that is, (1) the probability that there is no
(ε/2)-successful partition Pa and (2) the probability that the selected partition Pg is
ε-unsuccessful (given that an (ε/2)-successful partition Pa exists), we get a total of
1/3 failure probability.

As noted previously, the size of the sample used by Algorithm 3 is larger than that
used for proving Theorem 7. The reason is that in the proof of Theorem 7 we used
influential partitions, while here we use convex partitions, whose number is larger.
We could not see how to use the former in our (constructive) argument here.

7.4. A lower bound for testing diameter clustering. We obtain the follow-
ing lower bound for testing diameter clustering.

Theorem 9. For any β > 0, any algorithm that successfully determines, with
probability of at least 2/3, whether X is either (1, b)-clusterable or whether X is (1/2)-
far from being (1, (1 + β)b)-clusterable with respect to the diameter cost must sample
Ω(( 1

β )
(d−1)/4) points from X.

In order to prove the theorem we shall need the following lemma. We note that
a related analysis is performed in [26] in the context of constructing codes.

Lemma 9. For any dimension d, value r ∈ �, and δ > 0, it is possible to choose
Ω(
√
d · ( 1

δ )
d−1) antipodal pairs of points on the surface of the (d − 1)-dimensional

sphere of radius r, where the distance between any two points is larger than δ · r.
Proof. We choose the pairs one by one in the following way. Choose a pair of
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antipodal points that are at a distance greater than δ · r from all the points chosen so
far. Continue to choose antipodal pairs in this way as long as possible.

We claim that the (d− 1)-dimensional caps of radius δ · r centered at the points
we chose cover the surface of the (d− 1)-dimensional sphere of radius r. Otherwise, if
there exists a point that is not covered, then it must also be the case that its antipodal
point is not covered, and thus we can add an additional pair of antipodal points.

Let θ be the angular diameter of a cap of radius δ · r, and let θ0 = π/2 − θ/2.
Then, δ =

√
2− 2 sin θ0.

Hence, the ratio between the surface area of a (d − 1)-dimensional sphere of
radius r and the surface area of a cap of such a sphere of radius δ · r is

∫ π/2
−π/2 cos

d−2 t dt
∫ π/2
θ0

cosd−2 t dt
.

The numerator is Θ(1/
√
d) and the denominator is equal to

∫ π/2

θ0

cosd−2 t dt =

∫ π/2

θ0

(1− sin2 t)
d−3
2 cos t dt

≤
∫ π/2

θ0

(2(1− sin t))
d−3
2 cos t dt

= −1

2
· 2

d− 1
· (2(1− sin t))

d−1
2

∣∣∣∣
π/2

θ0

=
1

d− 1
· (2(1− sin θ0))

d−1
2

=
δd−1

d− 1
.

Hence the number of points we can choose is Ω(
√
d · ( 1

δ )
d−1).

Proof of Theorem 9. Consider the d-dimensional ball of radius r, where r is slightly
greater than (1+β)b/2. By definition, the distance between any two antipodal points
on the surface of this ball is greater than b(1 + β). By Lemma 9 we can choose
Ω(
√
d · ( 1

δ )
d−1) antipodal pairs of points on the surface of this ball such that the

distance between any two points is at least δ · r. Thus, by the Pythagorean theorem,

if we choose δ >
2
√
β(2+β)

1+β = Ω(
√
β), then the distance between any two points that

are not antipodal is at most b.
Let us fix such a selection of s = Ω(

√
d · ( 1√

β
)d−1) antipodal pairs of positions

on the surface of the ball and suppose that X is such that we have n/(s/2) points in
each position.6 Clearly, X is 1/2-far from being (1, (1 + β)b)-clusterable. However,
by the “birthday paradox” (see, for example, [38]), with high probability, a sample of
size c · √s will not contain a pair of points in antipodal positions (for some constant
c < 1). That is, all the points in the sample will be at a distance of at most b from
each other. This implies that our “natural” algorithm (and actually any algorithm
having a one-sided error) requires Ω(( 1

β )
(d−1)/4) sample points.

6To ensure that X is an actual set and not a multiset, we can place the points at slightly different
but very close positions. Note that our algorithms do not rely on the fact that the points in X are
different from each other (or at any minimal distance from each other).



TESTING OF CLUSTERING 413

To prove the claim for any algorithm, we can apply an argument similar to that
used in the lower bound proofs of [24]. Here we sketch the idea. We define two
families of sets of n points, where in the first family all the sets are far from being
(1, (1+β)b)-clusterable, and in the second family all the sets are (1, b)-clusterable. The
first family is defined by all namings of the n points on the surface of a d-dimensional
ball as defined above. In the second family, a set X is defined by selecting, for each
one of the s pairs of antipodal positions, one of the positions and putting n/s points
in that position. Every such X is (1, b)-clusterable.

We now define two processes, one for each family. Each process constructs a
random set X in the family as it answers the algorithm’s queries, and it completes
this construction after the algorithm terminates. Without loss of generality we may
assume that the algorithm never queries the same point twice. Then, for each query
of the algorithm, the process selects a new point on the sphere in a random fashion
which depends on the family to which X belongs.

Assume that we are now answering the jth query, and the processes must decide
where to position the new point. Each of the two processes first flips a coin with
bias τ , where τ is approximately j/s. According to the outcome, the new point will
be placed in the same (or antipodal) position of a previously selected point or placed
in an unoccupied position (whose antipodal position is also unoccupied). In the latter
case, an antipodal pair is selected uniformly among all unoccupied pairs, and the
new point is placed with equal probability on each position in the pair. In the former
case, both processes randomly select an occupied position, whereas the second process
places the new point in the selected position and the first process places the new point
either in this position or in its antipodal position.

Note that as long as the former case does not occur, the distributions on the
positions of the points are exactly the same for both processes. However, for a number
of queries j < c · √s, for some constant c < 1, the probability that an occupied
position is selected (in either process) is less than 1/3. This implies that the statistical
difference between the distributions on sequences of queries and answers for the two
processes is less than 1/3, and the theorem follows.

Remark. Essentially the same argument as in the above proof gives an Ω(
√
n)

lower bound for β = 0.

8. An alternative analysis for radius clustering. Here we present an alter-
native analysis of Algorithm 2 when Cost = R. Recall that the analysis presented in
section 6 which works for β = 0 assumes that the size of the sample is roughly linear
in the dimension d. Below we show that it is possible to trade the dependence on d
(in terms of the sample complexity) for a dependence on 1/β (and a slightly higher
dependence on k).

We start by analyzing the algorithm for k = 1.

Theorem 10. Algorithm 2 with sample size m = Θ( log(1/β)
ε·β ) and Cost = R is a

radius-clustering tester for k = 1, d ≥ 1, and 0 < β ≤ 1.
We shall prove the theorem by appealing to the following lemma.
Lemma 10. Let S ⊂ �d, and let z ∈ �d be the center of the minimum sphere

bounding S. Consider any point y ∈ �d such that dist(y, z) > t for some t ≥ r(S).
Then

r(S ∪ {y}) > r(S) · 1
2
·
(

t

r(S)
+
r(S)

t

)
.

Proof. Let r = r(S), let r′ = r(S ∪ {y}), and let z′ ∈ �d be the center of the
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minimum sphere bounding S ∪ {y}. Let H be the hyperplane that passes through z
and is perpendicular to the line z z′. Let H− be the closed half-space defined by H
that does not contain z′. It is easy to verify that there must be a point in S∩H− that
is at a distance of exactly r from z. Indeed, if no such point exists, we could move the
center z by a small distance so that a sphere of radius strictly smaller than r centered
at the new position of z would contain all points in S.

Hence, let a be a point in S ∩H− that is at a distance of exactly r from z. Since
the angle z′ z a is obtuse, we have

(dist(z′, a))2 ≥ (dist(z, z′))2 + (dist(z, a))2.(8.1)

By our choice of a, we have that (dist(z, a))2 = r2, and by definition of z′, (dist(z′, a))2 ≤
(r′)2. By the triangle inequality,

dist(z, z′) ≥ dist(z, y)− dist(z′, y) > t− r′,

where the last inequality follows from the premise of the lemma and the definition
of r′. Combining these inequalities with (8.1), we get that (r′)2 ≥ (t − r′)2 + r2. It
directly follows that r′ ≥ t/2+r2/2t, which is equivalent to r′ > (r/2)(t/r+r/t).

Proof of Theorem 10. If X is (1, b)-clusterable, then the algorithm clearly always
accepts. Hence, assume from now on that X is ε-far from (1, (1 + β)b)-clusterable.
We shall show that the algorithm rejects with probability of at least 2/3.

We view the sample of size m as being selected in p = Θ(1/β) phases, where in
each phase Θ(log(p)/ε) points are selected (uniformly and independently). Let Ui be
the union of the samples selected in the first i phases, and let ri = r(Ui).

We show that with probability of at least 2/3 over the choice of the sample, for
every phase i, ri ≥ ri−1(1+αi) for some sufficiently large αi. It will follow that after
O(1/β) phases, we must obtain that ri > b, causing the algorithm to reject.

For each new phase i, let zi−1 ∈ �d be the center of the minimum sphere bounding
Ui−1. Since X is ε-far from (1, (1 + β)b)-clusterable, there are at least εn points
y ∈ X such that dist(y, zi−1) > (1 + β)b. We shall say that each such point is
(1 + β)b-distant from zi−1. Suppose that in each phase the sample taken is of size
at least ln(3p)/ε. Then for any fixed phase i, the probability that no point that is
(1+β)b-distant from zi−1 is selected is at most (1−ε)ln(3p)/ε < exp(−ln(3p)) = 1/(3p).
The probability that for some phase no point that is (1 + β)b-distant from zi−1 is
selected is therefore less than 1/3. Hence, assume from now on that for every phase i,
the sample selected in this phase contains a point y that is (1+β)b-distant from zi−1.

We now show that O(1/β) phases suffice until ri > b. Let y be a point that is

(1+β)b-distant from zi−1. By Lemma 10, r(Ui−1∪{y}) ≥ r(Ui−1)· 12 ( (1+β)b
ri−1

+ ri−1

(1+β)b ).

Therefore, assuming such a point is selected in the ith sample, we have

ri ≥ ri−1 · 1
2

(
(1 + β)b

ri−1
+

ri−1

(1 + β)b

)
=

1

2

(
(1 + β)b+

r2i−1

(1 + β)b

)
.(8.2)

We first observe that for every i > 1, ri ≥ b
2 . Thus, we may assume that r2 ≥ b

2 .

On the other hand, since (1+β)b
ri−1

+ ri−1

(1+β)b decreases as ri−1 increases, then as long as

ri−1 ≤ b,

ri ≥ ri−1 · 1
2

(
1 + β +

1

1 + β

)
= ri−1 ·

(
1 +

β2

2(1 + β)

)
.(8.3)
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By applying this lower bound on the rate of increase of ri (for i > 2), we get that
after O(1/β2) phases, ri > b. However, we can do a slightly more refined analysis and
exploit the fact that for smaller radii, the rate of increase is greater. In particular,
let γ be such that ri−1 ≤ b(1 − γ). Given (8.2), it can be shown (using simple
manipulations) that for every γ ≤ β,

ri ≥ ri−1 · 1
2

(
(1 + β)

(1− γ) +
(1− γ)
(1 + β)

)
≥ ri−1 ·

(
1 +

γ2

2

)
.(8.4)

For each integer 1 ≤ a < log(1/β), let s(a) be the first phase such that b · (1− 2−a) ≤
rs(a) < b · (1− 2−(a+1)) (if there exists such a phase). We would like to upper bound

the number t of phases required so that rs(a)+t ≥ b · (1− 2−(a+1)). By (8.4), as long

as ri ≤ (1− 2−a+1) we have that ri+1 ≥ ri · (1 + 2−(2(a+1)+1)). Therefore, we need t
to be such that

(1− 2−a) · (1 + 2−(2(a+1)+1))t ≥ (1− 2−(a+1)).

Since for every δ ≤ 1/2 we have the bounds (1−δ) ≥ exp(−2δ) and (1+δ) ≥ exp(δ/2),
it suffices that t = 2a+4. It follows that the number of phases required to get from

r2 ≥ b/2 to ri ≥ b(1 − β) is at most 16 ·∑log(1/β)
a=1 2a = O(1/β). Finally, to get from

ri ≥ b(1− β) to ri+t > b, we use the bound from (8.3) and conclude that it takes an
additional O(1/β) phases.

8.1. k > 1. The proof of the following theorem is analogous to the proof of
Theorem 7, where in Theorem 11 we use the arguments from the proof of Theorem 10
as a basis.

Theorem 11. Algorithm 2 with sample size m = Θ(k
2 log k
ε·β2 ) and Cost = R is a

radius-clustering tester for k ≥ 1, d ≥ 1, and 0 < β ≤ 1.
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Abstract. Cycle prefix digraphs comprise a class of vertex symmetric digraphs with many inter-
esting properties, such as large order for a given degree and diameter, Hamiltonicity, and hierarchical
structure. From their known structural properties, we determine the spectra of the digraphs. We also
show that, although cycle prefix digraphs are not distance regular according to the usual definition,
they have properties that fully characterize, in the undirected case, distance regular graphs.
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1. Introduction and notation. Cycle prefix digraphs were first introduced as
Cayley coset digraphs by Faber and Moore in 1988 (see [7]) and have been proposed
as a model of interconnection networks for their remarkable properties such as high
symmetry, large order for a given degree and diameter, simple shortest path routing,
Hamiltonicity [9], pancyclicity [4], optimal connectivity [10], and hierarchical struc-
ture [3]. Together with new families constructed from them, cycle prefix digraphs
constitute most of the entries of the table of largest known vertex-symmetric (∆, D)
digraphs [2]. When the diameter is two, the cycle prefix digraphs are Kautz digraphs.
The spectra of the Kautz digraphs, for any value of the diameter, was given by
Delorme and Tillich in [6]. The knowledge of the spectrum of a graph is of interest
for its connection to important structural properties of the graph (diameter, bisection
width, expansion, etc.).

From the known structural properties of cycle prefix digraphs, we obtain in sec-
tion 2 their distance matrices as polynomials on the adjacency matrix, and we show
that the distance matrices constitute a basis of the adjacency algebra of the digraph.
This property fully characterizes, in the undirected case, distance regular graphs, but
cycle prefix digraphs are not distance regular, according to the usual definition; see
[5]. In section 3 we determine the spectra of the digraphs and we see that, although
the adjacency matrix of a cycle prefix digraph is nonsymmetric, its spectrum is real
and the number of distinct eigenvalues is the minimum possible.

A cycle prefix digraph Γ∆(D) may be defined as a digraph on an alphabet of
∆ + 1 symbols {1, 2, . . . ,∆+ 1} as follows: Each vertex x1x2 · · ·xD is a sequence of
distinct symbols from the alphabet. The adjacencies are given by

x1x2 · · ·xD →





x2x3x4 · · ·xDxD+1, xD+1 �= x1, x2, . . . , xD,
x2x3x4 · · ·xDx1,
x1x2 · · ·xk−1xk+1 · · ·xDxk, 2 ≤ k ≤ D − 1.
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18, 2002; published electronically April 30, 2003. This research was supported by the CICYT, Spain,
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The cycle prefix digraph Γ∆(D) is a vertex-symmetric digraph that has order

(∆ + 1)D = (∆+1)!
(∆+1−D)! , has diameter D, and is ∆-regular (∆ ≥ D).

Let dk be the number of vertices at distance k, k ≤ D, from a given vertex. In
[7], it is shown that there are (∆ + 1)k vertices in Γ∆(D) within distance k from the
vertex 12 · · ·D. Therefore, the value of dk may be determined from here and is also
computed in a different way in [11]. We use this result in section 2.

Proposition 1.1. For Γ∆(D), ∆ ≥ D, the number of vertices dk at distance k
from a given vertex is

dk = (∆+ 1)∆(∆− 1) · · · (∆− k + 3)(∆− k + 1),

where 1 < k ≤ D, d0 = 1, and d1 = ∆.

2. The distance matrices. Let A be the adjacency matrix of a digraph Γ of
order N and diameter D. For every k, k = 0, . . . , D, we define the k-distance matrix
Ak as a matrix with entries

(Ak)ij =

{
1 if d(i, j) = k,
0 otherwise.

Thus, it follows from the above definition that A0 = I, A1 = A, and A0 +A1 +A2 +
· · · + AD = J , where J is the matrix in which each entry is 1. When Γ= Γ∆(D),
the distance matrices Ak are polynomials of degree k on the adjacency matrix; more
precisely, see the following proposition.

Proposition 2.1. Let Γ∆(D) be the cycle prefix digraph of degree ∆ and diameter
D, A its adjacency matrix, Ak the k-distance matrix, and vk(x) ∈ Rk[x] the polynomial
defined by v0(x) = 1, v1(x) = x, vk(x) = (x + 1)x(x − 1) · · · (x − k + 3)(x − k + 1),
k = 2, . . . , D. Then Ak = vk(A), k = 0, . . . , D.

Proof. From Proposition 1.1, we know that the number of vertices at distance k
from a fixed vertex is dk = vk(∆), where ∆ is the degree of the digraph.

To prove that Ak = vk(A), we will proceed by induction on k. We denote by d
(k)
ij

the (i, j) entry of vk(A) and by aij the (i, j) element of the adjacency matrix A.
We will first verify that A2 = v2(A).

Since v2(A) = A2 − I, we have to show that d
(2)
ij equals 1 if d(i, j) = 2 and 0

otherwise. From v2(A),

d
(2)
ij =

N∑

l=1

ailalj if i �= j,

d
(2)
ii =

N∑

l=1

ailali − 1 if i = j.

When a summand in d
(2)
ii is not 0 it is ailalj = 1, and vertex i is adjacent to vertex l,

whereas vertex l is adjacent to vertex j. Since the shortest path between two different
vertices in the cycle prefix digraph is unique [7], there is only a single vertex l that

verifies ail = 1 and alj = 1 so that d
(2)
ij = 1 if d(i, j) = 2. Note that, from the

definition of Γ∆(D), vertex i cannot be adjacent to vertex j. When i = j, we have

the (only) digon of vertex i and, in that case, d
(2)
ii = ailali − 1 = 0.

Let us now assume that matrix vk(A) is the k-distance matrix, Ak. We wish to
prove that vk+1(A) is the k+1-distance matrix, Ak+1 for Γ∆(D). From the definition
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of the distance polynomials,

A0 +A1 + · · ·+Ak−1 = (A+ I)A · · · (A− (k − 4)I)(A− (k − 3)I)

and vk+1(A) is

vk+1(A) = (A− (k − 1)I)Ak − (A0 +A1 + · · ·+Ak−1)

= AAk − (A0 +A1 + · · ·+Ak−1 + (k − 1)Ak).

Entries in matrix vk+1(A) fulfill

d
(k+1)
ij =

N∑
l=1

d
(k)
il alj − d(0)

ij − · · · − d(k−1)
ij − (k − 1)d

(k)
ij .

For each vertex i in Γ∆(D), the element d
(k+1)
ii = d

(k)
il ali − d(0)

ii = 1 − 1 = 0 since
vertex i is in a unique k + 1-cycle.

For each vertex j at distance q from i, 0 < q < k, there exists only one vertex
l such that d(i, l) = k and d(l, j) = 1. This follows from calculating the distance

between vertices given in [7] and [11]. Thus d
(k+1)
ij = d

(k)
il alj − d(q)

ij = 1− 1 = 0.
It is also shown in the above references that, if d(i, j) = k, when we calculate the

neighbors of vertex j, we obtain k − 1 vertices at distance also k from i. In such a

situation, d
(k+1)
ij = 0.

Finally, if d(i, j) = k + 1, there exists a unique vertex l such that d(i, l) = k and

d(l, j) = 1 because the shortest path is unique. Thus d
(k+1)
ij = 1.

Corollary 2.2. Given the cycle prefix digraph Γ∆(D) and its adjacency matrix
A, we have

(A+ I )A(A− I ) · · · (A− (D − 2 )I ) = J.

Note that the polynomial obtained above is in fact the so-called Hoffman poly-
nomial of Γ∆(D).1

We define the adjacency algebra A of Γ∆(D) as the algebra generated by all the
powers of the adjacency matrix A of the cycle prefix digraph of diameter D and de-
gree ∆. From Proposition 2.1 it is not difficult to verify that each power of A is a
linear combination of the D + 1 linearly independent matrices A0, A1, A2, . . . , AD.
Since I, A,A2, . . . , AD are also linearly independent, both {I, A,A2, . . . , AD} and
{A0, A1, A2, . . . , AD} are bases for A. This property, in the undirected case, fully
characterizes a distance regular graph [1], but Γ∆(D) is not a distance regular di-
graph in the sense of the definition given by Damerell in [5].

From the equations Ak = pk0I+p
k
1A+· · ·+pkDAD, 0 ≤ k ≤ D, and Proposition 2.1,

we obtain the matrix

C =





1
p1
0 1
...

...
. . .

pD−1
0 pD−1

1 · · · 1
pD0 pD1 · · · pDD−1 1




,

1We recall the following result (see, for example, [8]).
Theorem. Let Γ be a strongly connected digraph with order n and adjacency matrix A. There

exists a polynomial P (x) such that P (A) = J if and only if Γ is ∆-regular. In this case, the unique

polynomial P of least degree is known as the Hoffman polynomial H(x) =
nS(x)
S(∆)

, where (x−∆)S(x)

is the minimal polynomial of A.
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which is the transition matrix from {A0, A1, A2, . . . , AD} to {I, A,A2, . . . , AD}, and
hence the inverse transition matrix is (qji ), where A

k =
∑D
i=0 q

k
i Ai.

The next result follows from this last equality.
Proposition 2.3. The number of walks of length k between any two vertices at

distance j of Γ∆(D)is qkj , j ≤ k ≤ D.
3. The spectrum of Γ∆(D). The knowledge of the Hoffman polynomial of a

cycle prefix digraph allows for a straightforward determination of its spectrum.
Theorem 3.1. Let Γ∆(D) be the cycle prefix digraph of degree ∆ and diameter

D and A its adjacency matrix. Then
(i) A diagonalizes.
(ii) The eigenvalues of A are

λ0 = ∆, λ1 = D − 2, λ2 = D − 3, . . . , λD−1 = 0, and λD = −1.

Proof. The minimal polynomial of A is obtained from the Hoffman polynomial
found in Corollary 2.2 and is

(x−∆)(x+ 1)x · · · (x− (D − 3))(x− (D − 2)).

The number of distinct eigenvalues is therefore D + 1, the minimum possible.
Note that Γ∆(D) and Γ∆′(D) have the same eigenvalues (but distinct multiplicities),
except λ0, which takes values ∆ and ∆′, respectively. Note also that Γ∆(D + 1) has
the same eigenvalues as Γ∆(D), except D − 1, which is the second largest eigenvalue
of Γ∆(D + 1).

Acknowledgments. We thank Charles Delorme, Miquel Angel Fiol, and Joan
Gimbert for helpful discussions and comments on the manuscript.
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Given a lattice L in n dimensions, let λ1(L) denote the Euclidean length of any
shortest nonzero vector in L. SVP-Length is the problem of exactly computing λ1(L)
for a given lattice L. An ρ-approximate solution of SVP-Length is an algorithm that,
given L, produces a number λ such that λ1(L)/ρ ≤ λ ≤ ρλ1(L). The complexity of
approximately solving SVP-Length is an intriguing problem. This problem is

(1) in time O(nn) when the factor is 1 (i.e., exact) [9];
(2) NP-hard when the approximation factor is less than

√
2 [2, 13];

(3) in NP ∩ co-AM when the factor is
√
n/ log n [8];

(4) in NP ∩ co-NP when the factor is n [11];
(5) in polynomial time when the factor is (1 + ε(n))n for ε(n) = o(1) [12, 14].

An interesting question is, What is the complexity of SVP-Length when the approx-
imation factor is poly(n)? This is not only a natural mathematical question but is
also important from the viewpoint of lattice-based cryptography. Indeed, the Ajtai–
Dwork cryptosystem [3]—the only known cryptosystem whose security depends on
the worst-case hardness of the underlying computational problem—depends precisely
on the hardness of finding polynomial approximations to the shortest lattice vector
(in a special family of lattices). By results (2) and (3), this problem is unlikely to be
NP-hard and, therefore, its precise (deterministic or randomized) complexity becomes
important for the cryptographic applications.

An obvious candidate for producing polynomial approximations to SVP-Length—
Schnorr’s improvement of the Lovász basis reduction algorithm [14]—turns out to be
uninteresting: Schnorr’s algorithm takes O(n2(kk/2+o(k) + n2)) arithmetic steps (on
polynomial-size operands) to produce a (

√
6k)n/k approximation. To obtain poly(n)

approximation factors, k = Ω(n), so the running time is 2Ω(n logn), which is pointless
in light of result (4). In this paper, we show the following theorem.

Theorem 1. There is an absolute constant γ > 1 such that for any ε > 0,
SVP-Length can be approximated to within n3+ε in probabilistic time 2γn(1/2+1/ε).

Remark 1. Subsequent to the appearance of this paper in preliminary form [10],
Ajtai, Kumar, and Sivakumar [4] obtained a 2O(n) time randomized algorithm for
finding the shortest vector in the lattice (and thus subsumes the result in this paper).

∗Received by the editors October 16, 2000; accepted for publication (in revised form) October
25, 2002; published electronically April 30, 2003. A preliminary version of this paper appeared in
Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, Washington, D.C.,
2001, pp. 126–127.
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The algorithm of [4] is inspired by the algorithm in this paper, together with additional
ideas.

Before we present the proof of Theorem 1, we will briefly outline our approach.
Our algorithm uses Ajtai’s [1] reduction of SVP-Length to the problem of finding a
short vector in a special class of lattices; we solve the latter problem by adapting an
idea of Blum, Kalai, and Wasserman [5]. To obtain the best approximation factors,
we use the sharpest form of the reduction, due to Cai [6] and Cai and Nerurkar [7].

For integers n,m, and q, Ajtai [1] defines a family of lattices in Zm defined by
Λ(n,m, q) = {L(A)}, where A is an n×mmatrix over Zq, and L(A) = {x ∈ Zm | Ax ≡
0(mod q)}. The main result of [1] is that if there is an algorithm A that, with certain
settings of q andm, computes a nonzero vector of length n in a lattice chosen uniformly
at random from Λ(n,m, q) (i.e., the lattice L(A) when A is a uniformly chosen n×m
matrix over Zq) with nonnegligible probability, then there is a randomized algorithm B
that computes poly(n) approximations to SVP-Length for any n-dimensional lattice.
The improved version (see Remark 2) of Ajtai’s reduction [7, 6] gives the following
theorem.

Theorem 2 (see [1, 7, 6]). Let c > 2, and let m be such that there is a prob-
abilistic algorithm A that computes a nonzero vector of length nc−2/2 in a uniform
random lattice in Λ(n,m, nc) with nonnegligible probability. Then there is an algo-

rithm B that, for any δ > 0, and any lattice L ∈ Rn, computes a number λ̃ such that
λ1(L)/n

c+1+δ ≤ λ̃ ≤ λ1(L), where λ1(L) is the length of the shortest nonzero vector
in L. Furthermore, if we assume that A runs in time t(n,m), then the B runs in time
poly(t(n,m)/δ).

Remark 2. In [1], c ≈ 8, m = Θ(n log n); in [7], c = 3, m = Θ(n). Since we will
use Theorem 2, the parameter c determines the approximation factor. The parameter
m in Theorem 2 has only one role: it should be suitably large to ensure that with
nonnegligible probability a random lattice in Λ(n,m, nc) does have a nonzero vector
of length at most nc−2/2. This is shown in [1, 7] (for every lattice in Λ(n,m, nc)) by
applying Minkowski’s theorem. Other than that, m has no bearing on the approxi-
mation factor. It does, however, figure in the running time of B, given A.

Remark 3. Note that for m > n, for every lattice in Λ(n,m, nc), Gaussian elimi-
nation gives only a vector of Euclidean length Θ(nc+(1/2)).

Proof of Theorem 1. Let c = 2 + ε/2, q = nc, a = ε log n, and b = n/a. Let

m = (a + n + ln(aqb))qb ≤ 2(
1
2+ 2

ε )dn for any constant d > 1. We now show that
with these settings, given a uniformly random lattice L(A) from Λ(n,m, q), with high
probability, we will be able to find a nonzero vector of length nε/2 in L(A) in poly(m)
time. Once we find such a vector, we can apply Theorem 2 with δ = ε/2 to get an
algorithm that can find n3+ε-approximations to the SVP-Length in 2O(n/ε) time.

Since A is a random n ×m matrix over Zq, the multiset S that consists of the
columns of A is a uniform sample (with replacement) of m vectors in Znq . We will
show below how to express any vector u ∈ Znq as a sum of at most nε vectors from S;

the 0–1 coefficient vector clearly has Euclidean length nε/2. A nonzero vector in L(A)
is obtained by considering the coefficient vector for u = 0. The arguments below are
adaptations of the arguments by Blum, Kalai, and Wasserman [5].

Divide the n coordinates into a groups of b coordinates each. (Recall that a =
ε log n and b = n/a.) Number the groups 1 through a. We will create a + 1 sample
sets S0, S1, . . . , Sa ⊆ Znq as follows.

Let S0 = S. The inductive step is to create Si from Si−1, which is done as follows.
Partition Si−1 into q

b multisets, one for each α ∈ Zbq, defined by S
α
i−1 = {v ∈ Si−1 |
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v agrees with α in group i}. Let ui denote the projection of u to the coordinates in
the ith group. For each α, pick (arbitrarily) a representative rαi−1 ∈ Sαi−1 and define
the multiset

Si =
⋃

α

{
(rui−α
i−1 + v) | v ∈ Sαi−1\{rαi−1}

}
.

We claim that the sample sets S0, . . . , Sa satisfy the following properties:
(1) For every i, 0 ≤ i ≤ a, every v ∈ Si agrees with u on every coordinate in the

groups 1, . . . , i.
(2) For every i, 0 ≤ i ≤ a, the projection of Si to the coordinates in groups

i + 1, . . . , a is a collection of m − iqb independent and uniformly distributed points
from Z

b(a−i)
q (with replacement—thus there could be repetitions).

(3) For every i, 1 ≤ i ≤ a, every v ∈ Si can be written as the sum of two vectors
in Si−1.

It is easy to see that if the construction proceeds successfully, then properties (1)
and (3) above are satisfied. We prove property (2) by induction; the base case i = 0
is trivial. Assume inductively for i > 0 that the projection of Si−1 to the coordinates
in groups i through a gives a collection of m − (i − 1)qb independent and uniformly
distributed points in Z

b(a−(i−1))
q . Note that |Si−1| = m − (i − 1)qb ≥ m − aqb =

(a + n + ln(aqb))qb − aqb = (n + ln(aqb))qb. Since Si−1 contains ≥ n + ln(aqb)qb

samples whose projection to group i gives uniform and independent vectors in Zbq,

it follows that for any fixed α ∈ Zbq, the probability that S
α
i−1 is empty is at most(

1− 1/qb)(n+ln(aqb))qb ≤ e−n/(aqb). Summing this error probability over all α and
over all a stages of the construction, the total error probability is at most e−n. Thus
with high probability every Sαi−1 is nonempty; furthermore, since the projection of
Si−1 to the coordinates in groups i through a is uniform, the value of r

α
i−1 in groups

i + 1 through a is uniformly distributed. Therefore, the projection of every sample
in Si to the coordinates in groups i + 1 through a is uniform. For independence, let
x, y ∈ Sαi−1. The projection of x and y to groups i + 1 through a are independent

random variables, and so x + r and y + r are independent, where r = rui−α
i−1 . (Note

that it is to maintain stochastic independence that the representatives are thrown out
in going from Si−1 to Si.) This completes the induction step.

Finally, note that by property (1), Sa = {u} (with certain multiplicity). By
properties (2) and (3), u can be written as the sum of 2a = nε vectors in S0.

The running time is poly(m), which is 2O(n/ε).
Remark 4. Blum, Kalai, and Wasserman [5] recently gave the first 2o(n) time

algorithm for learning noisy parity functions in the probably approximately correct
(PAC) model. The key idea in their work, which we use in the proof of Theorem 1
above, is to express any vector in Zn2 as a linear combination of O(

√
n) vectors from

a set of 2O(n/ logn) uniformly chosen vectors in Zn2 . They note that if there is an
algorithm that can express any vector as the sum of O(

√
n) vectors from a randomly

chosen set of 2O(
√
n) vectors in Zn2 (which is possible, with high probability), then one

can solve the noisy parity problem in 2O(
√
n) time. We note that such an algorithm—if

it generalizes to Zq (as the algorithm in [5] does)—would lead to a 2
o(n) time algorithm

for finding poly(n) approximations to SVP-Length.
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Abstract. A list channel assignment problem is a triple (G,L,w), where G is a graph, L is
a function which assigns to each vertex of G a list of integers (colors), and w is a function which
assigns to each edge of G a positive integer (its weight). A coloring c of the vertices of G is proper
if c(v) ∈ L(v) for each vertex v and |c(u) − c(v)| ≥ w(uv) for each edge uv. A weighted degree
degw(v) of a vertex v is the sum of the weights of the edges incident with v. If G is connected,
|L(v)| > degw(v) for at least one v, and |L(v)| ≥ degw(v) for all v, then a proper coloring always
exists. A list channel assignment problem is balanced if |L(v)| = degw(v) for all v. We characterize all
balanced list channel assignment problems (G,L,w) which admit a proper coloring. An application
of this result is that each graph with maximum degree ∆ ≥ 2 has an L(2, 1)-labeling using integers
0, . . . ,∆2 + ∆ − 1.

Key words. graph coloring, list-coloring, channel assignment problem

AMS subject classification. 05C15

PII. S0895480101399449

1. Introduction. We study a common generalization of coloring, list-coloring,
and channel assignment problem. We call this generalization a list channel assignment
problem. A list channel assignment problem is a triple (G,L,w) in which G is a graph,
L is a function which assigns to each vertex of G a set of positive integers, i.e.,
L : V (G) → 2N, and w is a function which assigns to each edge of G a positive
integer, i.e., w : E(G) → N. An assignment c : V (G) → N of colors to the vertices
of G is proper if c(v) ∈ L(v) for each v ∈ V (G) and |c(u) − c(v)| ≥ w(uv) for each
uv ∈ E(G). A weighted degree degw(v) of a vertex v of G is the sum of the weights
of the edges incident with v. The maximum weighted degree ∆w(G) is the largest
degw(v), where v ∈ V (G). If w(e) = 1 for all e ∈ E(G), then the problem becomes
a list-coloring problem [9, 16]. If L(v) = N, then the problem becomes a channel
assignment problem [12]. In the latter case, we define χw(G) to be the smallest
number for which there is a proper assignment c such that 1 ≤ c(v) ≤ χw(G) for all
v ∈ V (G). If both w(e) = 1 for all e ∈ E(G) and L(v) = N, then the problem becomes
just an ordinary coloring problem for a graph G; note that χ(G) = χw(G) in this case.
A list channel assignment problem can be interpreted as follows: The vertices of G
are transmitters, L(v) is a set of frequencies which can be assigned to a vertex v, and
w(uv) corresponds to interference between transmitters u and v (the minimal distance
between frequencies assigned to u and v).
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Some theorems for ordinary colorings, list-colorings, or channel assignment prob-
lems may be (naturally) extended to list channel assignment problems but others
cannot. A (weighted) graph is called k-degenerated if each of its induced subgraphs
contains a vertex of (weighted) degree at most k. If |L(v)| ≥ k+1 for each v ∈ V (G)
and w(e) = 1 for each e ∈ E(G), then there exists a proper coloring. This can
be reformulated using terminology of [9, 16]: Each k-degenerated graph is (k + 1)-
choosable; i.e., it admits a proper assignment for any lists such that |L(v)| ≥ k + 1
for all v ∈ V (G). If we remove the condition w(e) = 1, the conclusion becomes false,
as noted in [14].

In light of the previous paragraph, it might be surprising to know that if |L(v)| =
degw(v) for each v ∈ V (G) and |L(v)| > degw(v) for at least one v ∈ V (G), then
(G,L,w) admits a proper assignment (Theorem 2.3). This is a counterpart of a well-
known inequality χ(G) ≤ ∆(G) + 1, where χ(G) is the chromatic number of G and
∆(G) is the maximum degree of G. The inequality χw(G) ≤ ∆w(G) + 1 for the
channel assignment problem was recently proved by McDiarmid in [11, 13, 14]. In this
paper, we state and prove an analogue of Brooks’ theorem for list channel assignment
problems. Brooks’ theorem for ordinary colorings is proved in [3, 10], for choosability
in [5, 17], for list-colorings in [1, 2, 5], and for list-colorings with separation in [8]. An
extension of Brooks’ theorem for channel assignment problems was stated as an open
problem in [12].

A list channel assignment problem is balanced if |L(v)| = degw(v) for each v ∈
V (G). We characterize all balanced list channel assignment problems which admit
a proper assignment (Theorem 4.1). In particular, we prove that a balanced list chan-
nel assignment problem (G,L,w) admits a proper assignment if G is a 2-connected
graph and is neither a complete graph nor an odd cycle (for definitions see subsec-
tion 1.1).

We first describe in section 1 a greedy algorithm which was previously used by
McDiarmid [11, 13, 14] for channel assignment problems. Then in section 3 we prove
Brooks’ theorem for list channel assignment problems (G,L,w), where G is a 2-
connected graph. Distinct theorems for odd cycles (Theorem 3.5), complete graphs
(Theorem 3.8), and remaining 2-connected graphs (Theorem 3.3) are stated. We prove
the main theorem, Brooks’ theorem for list channel assignment problems, in section 4
(Theorem 4.1). Brooks’ theorem for channel assignment problems, and previously
known Brooks-type theorems for other problems mentioned earlier can be easily de-
rived from Theorem 4.1. Our result suggests a polynomial algorithm (Corollary 4.2)
which, given a balanced list channel assignment, either outputs a proper assignment
or states its nonexistence.

We devote subsection 4.1 to corollaries of Theorem 4.1 for the channel assignment
problem. We state that if χw(G) = ∆w(G)+1 and G is connected, then G is a Gallai
tree in Theorem 4.3, and we show an example of such a Gallai tree in Proposition 4.4.
Theorem 4.3 can be modified to the “if and only if” form as discussed in subsection 4.1,
and those pairs of G and w, for which χw(G) = ∆w(G) + 1, can be recognized in
polynomial time. This gives a complete characterization of pairs of a graph G and a
weight function w for which χw(G) = ∆w(G) + 1, but we do not provide a complete
characterization of graphs G for which there exists a weight function w such that
χw(G) = ∆w(G) + 1.

Subsection 4.2 is devoted to L(2, 1)-labelings of graphs. An L(2, 1)-labeling of
a graph is an assignment of integers 0, . . . , k to its vertices such that the numbers
assigned to every two neighbors differ by at least two and the numbers assigned
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to every two vertices at distance two differ by at least one (note that, unlike in
the channel assignment problem, the number zero can be assigned to vertices in an
L(2, 1)-labeling). An L(2, 1)-labeling may be viewed as a special type of the channel
assignment problem: The weights of the original edges are set to two and edges of
weight one are added between each pair of vertices at distance two. It was conjectured
in [7] that there always exists an L(2, 1)-labeling using integers 0, . . . ,∆2, where ∆
is the maximum degree of the graph for a connected graph G with ∆ ≥ 2. The
existence of an L(2, 1)-labeling using numbers 0, . . . ,∆2 + ∆ was proved in [4]; this
corresponds to the bound of McDiarmid from [14]. Since the underlying graph of the
channel assignment problem obtained from the graph through the above described
construction is always 2-connected, our Brooks-type theorem yields that there is an
L(2, 1)-labeling using integers 0, . . . ,∆2+∆−1 for every graph with maximum degree
∆, as stated in Theorem 4.5.

1.1. Notation. We often deal with sets of integers in the paper; we write [a, b]
for the interval of integers between a and b (inclusively). We write G − v for the
graph obtained from G by deleting the vertex v together with the edges incident with
v. We use standard graph notation throughout the paper and, when necessary, refer
the reader to various books about graph theory. We briefly recall some lesser-known
definitions: A graph with at least k+1 vertices is k-connected if it remains connected
after removing any k − 1 or less vertices. A block of a graph is a maximal (in edge-
inclusion) subgraph which is 2-connected. A graph whose blocks are complete graphs
and odd cycles is a Gallai forest. Gallai forests form an important class of graphs
related to colorings of graphs, as shown in [6].

2. Greedy algorithm. The following greedy algorithm was used by McDiarmid
[11, 13, 14] to prove an upper bound for the span of channel assignment problems.

Algorithm 1.
Input: ordering of the vertices v_1,...,v_n

edge-weight function w

lists of colors L[1],...,L[n]

Output: assignment c of the colors to the vertices

color := minimum color in L[i]’s

maxcol := maximum color in L[i]’s

while color <= maxcol do

for i := 1 to n do

if v_i is not colored and color is in L[i] then

if for all neighbors v_j of v_i which are colored holds

| c[v_j] - color | >= w ( v_i, v_j ) then

c[v_i] := color

fi

fi

color := color + 1

done

We first state two propositions about Algorithm 1 that are straightforward to
prove.

Proposition 2.1. If Algorithm 1 assigns colors to all the vertices, then the ob-
tained assignment is proper.

Proposition 2.2. A vertex v of G does not get a color k ∈ L(v) when Algorithm 1
is applied if and only if
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(a) it is assigned a color k′ < k, k′ ∈ L(v), or
(b) the color k is assigned to a neighbor of v preceding v in the ordering, or
(c) a color k′ < k is assigned to a neighbor v′ of v such that k − k′ < w(vv′).
We will prove the list channel assignment counterpart of the well-known inequality

χ(G) ≤ ∆(G) + 1.
Theorem 2.3. Let (G,L,w) be a list channel assignment problem. If |L(v)| ≥

degw(v) for each v ∈ V (G), the inequality is strict for at least one vertex, and G is
connected, then (G,L,w) admits a proper assignment.

Proof. Let v1, . . . , vn be an ordering of the vertices of G such that |L(vn)| >
degw(vn) and each vertex vi, i < n, has a neighbor vj such that j > i. Such an ordering
can be obtained as a postordering of the vertices produced by a depth-first search
algorithm started in vn. We prove that each vertex gets a color when we apply
Algorithm 1 to this ordering (this is sufficient due to Proposition 2.1). Let vi be
a fixed vertex of G. Each neighbor u preceding vi can prevent assigning a color to vi
at most w(viu) times, and each neighbor u following vi can prevent vi from assigning
a color at most w(viu) − 1 times by Proposition 2.2. This, together with the choice
of the ordering, implies that each vertex gets a color.

One can immediately generalize the usage of Proposition 2.2 in the previous proof
and state the following.

Proposition 2.4. Suppose that Algorithm 1 is applied to a list channel as-
signment problem (G,L,w) with an ordering v1, . . . , vn of its vertices. If vi has not
been assigned a color, then L(vi) is a subset of the union of intervals [c(vj), c(vj) +
w(vjvi)−1], where vj is a colored neighbor of vi preceding vi (i.e., j < i) and intervals
[c(vj) + 1, c(vj) + w(vjvi)− 1], where vj is a colored neighbor of vi following vi (i.e.,
j > i).

We also formulate Proposition 2.4 for the special case when (G,L,w) is balanced.
Proposition 2.5. Suppose that Algorithm 1 is applied to a balanced list channel

assignment problem (G,L,w) with an ordering v1, . . . , vn of its vertices such that for
each vertex vi, 1 ≤ i ≤ n − 1, there is j > i such that vi and vj are adjacent. Then
the vertices v1, . . . , vn−1 are assigned colors. If vn has not been colored, then

L(vn) =
⋃

vivn∈E(G)

[c(vi), c(vi) + w(vivn)− 1],

where the intervals in the above union are disjoint.

3. 2-connected graphs.
Lemma 3.1. Let (G,L,w) be a balanced list channel assignment problem. If

G is 2-connected and min
⋃
v∈V (G) L(v) or max

⋃
v∈V (G) L(v) is not contained in all

the lists, then (G,L,w) admits a proper assignment.
Proof. We first deal with the case where the minimum color is not contained in

all the lists. Let cm = min
⋃
v∈V (G) L(v). Since G is connected, there exist adjacent

vertices v1 and vn such that cm ∈ L(v1) and cm �∈ L(vn). Let v1, . . . , vn be an ordering
of the vertices of G such that each vertex vi, i < n, has a neighbor vj with j > i.
Such an ordering can be a postordering of the vertices produced by a depth-first search
algorithm applied to G − v1 started in vn. Let us apply Algorithm 1. Each vertex
(with the possible exception of vn) has been assigned a color due to Proposition 2.5.
If vn has not been assigned a color, then the facts that the color of v1 is cm and
cm �∈ L(vn) yield a contradiction due to Proposition 2.5.

The case when the maximum color is not contained in all the lists can be dealt
with as follows: Let L′(v) = {M−k|k ∈ L(v)} for sufficiently largeM . Then (G,L′, w)
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has a proper assignment c′ because the minimum color is not contained in all the lists.
The mapping c(v) =M − c′(v) is a proper assignment of (G,L,w).

The following lemma can be found in [15, Lem. 1.15].
Lemma 3.2. Every 2-connected graph G which is neither a cycle nor a complete

graph contains vertices x, y, and z such that x and y are neighbors of z, the vertices
x and y are nonadjacent, and G− x− y is connected.

Theorem 3.3. Let (G,L,w) be a balanced list channel assignment problem. If G
is 2-connected and is neither an odd cycle nor a complete graph, then (G,L,w) admits
a proper assignment.

Proof. Let c1 = min
⋃
v∈V (G) L(v) and c2 = max

⋃
v∈V (G) L(v). If c1 or c2 is not

contained in all the lists, we apply Lemma 3.1.
Suppose that G is an even cycle. Let v1, . . . , v2n be the vertices of the cycle and

let c(vi) = c1 for odd i and c(vi) = c2 for even i. The assignment c is proper due to

|c(vi)− c(vi+1)| = c2 − c1 ≥ |L(vi)| − 1 = w(vi−1vi) + w(vivi+1)− 1 ≥ w(vivi+1).

Now we deal with the case when G is not a cycle. Let x, y, and z be three vertices
with the properties of Lemma 3.2. Let x, y, v3, . . . , vn−1, vn = z be an ordering of the
vertices of G such that each vertex vi, 3 ≤ i < n, has a neighbor vj with j > i. Such
an ordering can be obtained as a postordering of the vertices produced by a depth-first
search algorithm applied to G − x − y started in vn = z. Let us apply Algorithm 1.
This yields a partial assignment c. Each vertex (with the possible exception of vn) has
been assigned a color due to Proposition 2.5. If vn = z has not been assigned a color,
then L(vn) =

⋃
vivn∈E(G)[c(vi), c(vi)+w(vivn)−1] and the intervals in the union have

to be disjoint by Proposition 2.5. Since c(x) = c(y) = c1, this is a contradiction.

3.1. Coloring odd cycles. We assume throughout this subsection that
(G,L,w) is a balanced list channel assignment problem such that G is an odd
cycle and {c1, c2} ⊆ L(v) for all v ∈ V (G), where c1 = min

⋃
v∈V (G) L(v) and c2 =

max
⋃
v∈V (G) L(v). Note that c2 − c1 ≥ w(e) for each edge e ∈ E(G).

Lemma 3.4. Suppose that (G,L,w), with the properties described in the beginning
of the subsection, does not admit a proper list assignment. Then, for each of its
vertices v incident with edges e1 and e2, one of the following holds:

L(v) =

{
[c1, c1 + w(e1)− 1] ∪ [c2 − w(e1) + 1, c2] if w(e1) = w(e2),
[c1, c2] otherwise.

Proof. Suppose that the claim is false. Let v be a vertex adjacent to the edges
e1 and e2, which does not satisfy either of the above cases. In particular, L(v) is not
an interval. Let us assume w(e1) ≤ w(e2). If c2 − w(e2) < c1 + w(e1), then we get
that w(e1) + w(e2) = c2 − c1 − 1 and L(v) is an interval. We prove that there is
k ∈ L(v) such that c1 + w(e1) ≤ k ≤ c2 − w(e2) or c1 + w(e2) ≤ k ≤ c2 − w(e1).
If there is no such k, then L(v) ⊆ [c1, c1 + w(e1) − 1] ∪ [c2 − w(e2) + 1, c2] and
L(v) ⊆ [c1, c1 +w(e2)− 1] ∪ [c2 −w(e1) + 1, c2]. This implies the following inclusion:

L(v) ⊆ [c1, c1 + w(e1)− 1] ∪ [c2 − w(e2) + 1, c1 + w(e2)− 1] ∪ [c2 − w(e1) + 1, c2].

Note that the middle interval in the above union might be empty. From the above
inclusion one gets easily that |L(v)| ≤ w(e1) + w(e2) − 1, which contradicts that
(G,L,w) is balanced.

Let k be such that c1 + w(e1) ≤ k ≤ c2 − w(e2) or c1 + w(e2) ≤ k ≤ c2 − w(e1).
Then we can alternately assign to the vertices of G (except for v) colors c1 and c2
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and to the vertex v the color k. The above inequalities ensure that one of the two
possible alternating assignments is proper.

Theorem 3.5. A list channel assignment problem (G,L,w) with the properties
described in the beginning of this subsection does not have a proper assignment if and
only if there exist integers 1 ≤ a ≤ b and 1 ≤ k such that one of the following holds
for each vertex v:

(a) The vertex v is adjacent to two edges with weights a and L(v) = [k, k + a −
1] ∪ [k + b, k + a+ b− 1].

(b) The vertex v is adjacent to two edges of different weights a and b (thus a < b
in this case) and L(v) = [k, k + a+ b− 1].

Proof. If (G,L,w) does not admit a proper assignment, then it is of the form
described in Lemma 3.4: Let a be the weight of the lightest edge, k the minimum
color contained in all the lists (cf. Lemma 3.1), and k′ the maximum one. Let
b = k′ − k − a+ 1. If a vertex is incident with two edges both of weight a, its list is
a disjoint union of two intervals of length a by Lemma 3.4 and, due to the choice of
a and b, it is of the form described in (a). On the other hand, if a vertex is incident
with an edge of weight a and an edge of another weight, its list has to be an interval
[k, k′] = [k, k + a + b − 1]. Thus the weight of its other edge is b by Lemma 3.4.
The other end-vertex of the edge of weight b cannot be incident with another edge
of weight b; thus its list has to be an interval [k, k′] and the weight of the other edge
(distinct from that with weight b) is a. In this fashion, one can prove that each vertex
of the cycle is incident with an edge of weight a and the lists of the vertices are of the
form described in the theorem.

Next, we will prove that the list channel assignment problems described in the
theorem do not admit proper assignments. We say a vertex has been assigned a low
color if its color is in [k, k+a−1] and it has been assigned a high color if its color is in
[k+b, k+a+b−1]. Each vertex must be assigned either a low or a high color: A vertex
incident with an edge with weight b cannot be assigned color in [k + a, k + b − 1]—
this would disable coloring the other end of such an edge because of a ≤ b. No
two adjacent vertices can be assigned both low and high colors (the weight of each
edge is at least a). This, together with the fact that G is an odd cycle, proves the
theorem.

3.2. Coloring complete graphs. We assume throughout this subsection that
(G,L,w) is a balanced list channel assignment problem such that G is a complete
graph.

Lemma 3.6. Suppose that (G,L,w) with the properties described in the beginning
of this subsection does not admit a proper assignment. Let v1, . . . , vn be an ordering of
the vertices of G and c the assignment obtained by Algorithm 1 applied to the sequence
v1, . . . , vn (this assigns all vertices except vn colors due to Proposition 2.4). The
following hold:

(a) c(v1) < · · · < c(vn−1);

(b)
⋃i−1
j=1[c(vj), c(vj)+w(vjvi)−1] = {k|k ∈ L(vi)∧k < c(vi)} for all 2 ≤ i ≤ n−1;

(c) L(vn) =
⋃

1≤i≤n−1[c(vi), c(vi) + w(vivn)− 1].

Proof. Let k1 be the least color contained in any of the lists; by Lemma 3.1, k1

is contained in all the lists. If there is i > 1 such that [k1, k1 + w(v1vi)− 1] �⊆ L(vi),
then Algorithm 1 applied to the sequence v1, . . . , vi−1, vi+1, . . . , vn, vi yields a proper
assignment due to Proposition 2.5 (the partitioning described in it cannot exist since
[k1, k1 + w(v1vi)− 1] �⊆ L(vi) and c(v1) = k1).
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Let k2 be the least color contained in the following set:

n⋃

i=2

(L(vi) \ [k1, k1 + w(v1vi)− 1]) .

The color k2 is the second (according to the time) color assigned to a vertex of G by
Algorithm 1 applied to the sequence v1, . . . , vn. We prove that k2 ∈ L(v2)\[k1, k1 +
w(v1v2)− 1] and [k2, k2 +w(v2vi)− 1] ⊆ L(vi)\[k1, k1 +w(v1vi)− 1] for i ≥ 3: If k2 �∈
L(v2)\[k1, k1 + w(v1v2)− 1], we apply Algorithm 1 to the sequence v1, v3, . . . , vn, v2.
We get a coloring of (G,L,w)—the partitioning described in Proposition 2.5 cannot
exist because there is a vertex with a color k2 and k2 �∈ L(v2)\[k1, k1 + w(v1v2) −
1]. Thus Algorithm 1 assigns color k2 to v2. If there is i ≥ 3 such that [k2, k2 +
w(v2vi)−1] �⊆ L(vi)\[k1, k1+w(v1vi)−1], then we apply Algorithm 1 to the sequence
v1, . . . , vi−1, vi+1, . . . , vn, vi. We get a coloring of (G,L,w) by Proposition 2.5 (the
partitioning described in it cannot exist since [k2, k2 +w(v2vi)− 1] �⊆ L(vi)\[k1, k1 +
w(v1vi)− 1], c(v1) = k1, and c(v2) = k2). Hence, [k2, k2 +w(v2vi)− 1] ⊆ L(vi) for all
i ≥ 3.

Let k3 be the third (according to the time) color assigned to a vertex of G by
Algorithm 1 applied to the sequence v1, . . . , vn. Then the following hold (for i ≥ 4):

k3 ∈ L(v3)\ ([k1, k1 + w(v1v3)− 1] ∪ [k2, k2 + w(v2v3)− 1])

and

[k3, k3 + w(v3vi)− 1] ∈ L(vi)\ ([k1, k1 + w(v1vi)− 1] ∪ [k2, k2 + w(v2vi)− 1]) .

The argument is essentially the same as in the previous paragraph: If the above is
not the case, then we apply Algorithm 1 to the sequence v1, v2, v4, . . . , vn, v3 (if the
first is false) or v1, . . . , vi−1, vi+1, vn, vi (if the latter is false), and we get a proper
assignment. We conclude that Algorithm 1 assigns color k3 to v3. We can continue
in this fashion, and we assign the colors k4, . . . , kn−1 to v4, . . . , vn−1, respectively.

Finally, claim (a) follows from k1 < k2 < · · · < kn−1. Claim (b) is established by
inclusions [k1, k1 + w(v1v2)] ⊆ L(v2), [k1, k1 + w(v1v3)] ∪ [k2, k2 + w(v2v3)] ⊆ L(v3),
etc. Claim (c) also follows from these inclusions as well as from Proposition 2.5.

Lemma 3.7. Suppose that (G,L,w) with the properties described in the beginning
of this subsection does not admit a proper assignment. If a vertex v is adjacent to at
least two edges of different weights, then L(v) is an interval.

Proof. Let v be a fixed vertex of G and k the smallest number of L(v). Let a be
the minimum weight of an edge adjacent to v and b the maximum weight of an edge
adjacent to v. Consider an ordering O = v1, . . . , vn of the vertices of G such that
vn = v, w(vn−2vn) = a, and w(vn−1vn) = b. Let wi = w(viv) for 1 ≤ i ≤ n − 1.
We prove by induction on i that [k, k + w1 + · · ·+ wi − 1] ⊆ L(v). Since (G,L,w) is
balanced, we get easily that L(v) is an interval.

If i = 1, it is enough to apply Lemma 3.6 to the above sequence of the vertices
of G. Let us suppose i > 1. Suppose first that wi−1 < b. If we apply Lemma 3.6
to the sequence v1, . . . , vi−2, vn−1, vi−1, vi, . . . , vn−2, vn, we get that k + w1 + · · · +
wi−1 ∈ L(v) since [k, k + w1 + · · ·+ wi−1 − 1] ⊆ L(v) and wi−1 < b. This is because
[k, k + w1 + · · · + wi−1 − 1] ⊆ L(v) and L(v) can be covered by intervals of length
w1, w2, . . . , wi−2, wn−1 = b, wi−1, wi, . . . , wn−2, which follow one after another. If we
apply Lemma 3.6 to the ordering O, then we get [k, k + w1 + · · · + wi − 1] ⊆ L(v)
since Algorithm 1 applied to the ordering O colors vi by k + w1 + · · ·+ wi−1.
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We deal with the remaining case wi−1 = b in this paragraph. We first prove that
k+w1+ · · ·+wi−1 ∈ L(v): Let us apply Lemma 3.6 to the sequence v1, . . . , vi−2, vn−2,
vi−1, vi, . . . , vn−3, vn−1, vn. Observe that [k, k+w1 + · · ·+wi−1− 1] ⊆ L(v), wn−2 <
b = wi−1 and L(v) can be covered by intervals of length w1, w2, . . . , wi−2, wn−2 =
a,wi−1, wi, . . . , wn−3, wn−1, which follow one after another. Next, we apply Lemma 3.6
to the ordering O, and we conclude that [k, k+w1+· · ·+wi−1] ⊆ L(v). The argument
is as in the previous case.

Theorem 3.8. Let (G,L,w) be a list channel assignment problem with the prop-
erties described in the beginning of this subsection and let V (G) = {v1, . . . , vn}. Then,
(G,L,w) does not admit a proper assignment if and only if one of the following holds:

(a) There exist integers 1 ≤ a and 1 ≤ k1 < · · · < kn−1 such that ki+a ≤ ki+1 for
1 ≤ i ≤ n−2, w(e) = a for all e ∈ E(G), and L(vi) =

⋃
1≤j≤n−1[kj , kj+a−1]

for all 1 ≤ i ≤ n.
(b) There exist integers 1 ≤ a < b and 1 ≤ k such that (possibly after an appropri-

ate permutation of the vertices) w(vivj) = b for 1 ≤ i, j ≤ n− 1, w(vivn) = a
for 1 ≤ i ≤ n − 1, L(vi) = [k, k + b(n − 2) + a − 1] for 1 ≤ i ≤ n − 1, and
L(vn) =

⋃
0≤j≤n−2[k + bj, k + bj + a− 1].

Proof. None of the list channel assignment problems described in the statement
admit a proper assignment. We prove that the problems described are the only ones
which do not admit a proper assignment. We distinguish several cases:

• The weights of all the edges are the same. Let a be the common weight
of all the edges. By Lemma 3.6, it is enough to prove that L(vi) = L(vj) for
all 1 ≤ i, j ≤ n. Suppose this is false. We may assume that L(vn−1) �= L(vn).
Let κ be the color assigned to vn−1 by Algorithm 1 applied to the sequence
v1, . . . , vn. Then by Lemma 3.6,

{i|i ∈ L(vn−1) ∧ i < κ} = {i|i ∈ L(vn) ∧ i < κ} and [κ, κ+ a− 1] ⊆ L(vn).
If we apply Lemma 3.6 to the sequence v1, . . . , vn−2, vn, vn−1, we get [κ, κ+
a− 1] ⊆ L(vn−1). This implies that L(vn−1) = L(vn).
• All the lists are intervals. We claim that the weights of the edges are
the same (which was dealt with in the first case). Otherwise, there exists
a vertex adjacent to two edges of different weights. We may assume that v1
is such a vertex, the edge v1v2 has the largest weight incident with v1, and
v1v3 has the smallest weight incident with v1. If we apply Algorithm 1 to
the sequence v1, . . . , vn, we get an assignment such that c(v3) < c(v2), which
is contradicted by Lemma 3.6.
• There exist edges of different weights and a vertex whose list is not
an interval. Let k be the smallest color in the lists. By Lemma 3.1, k is
contained in all the lists. Let vn be a vertex such that L(vn) is not an interval.
By Lemma 3.7, the edges incident with vn have the same weight. Let a be
their common weight. We first prove that the weight of any other edge is
at least a. Suppose the opposite and assume that w(v1v2) < a (note that then
L(v2) is an interval by Lemma 3.7). If we apply Algorithm 1 to the sequence
v1, vn, v2, . . . , vn−1, we get an assignment such that c(v2) < c(vn), which is
impossible due to Lemma 3.6. Thus the weight of each edge in the graph is
at least a. Further, let b be the largest weight of an edge. We may assume
that w(v1v2) = b. Note that a < b since there are edges of different weights,
and thus both L(v1) and L(v2) are intervals.
Lemma 3.6 applied to the sequence v1, v2, . . . , vn gives (because the algo-

rithm assigns k to v1 and k+w(v1v2) = k+ b to v2) that L(vn)∩ [k, k+ b] =
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[k, k+a−1]∪{k+b}. If there is an edge e = xy such that a ≤ w(e) < b where
neither x nor y is vn, then Algorithm 1 applied to the sequence x, y, . . . , vn
assigns x the color k and y the color k + w(e) (note that L(y) has to be
an interval by Lemma 3.7) due to Lemma 3.6. However, by the same lemma,
k + w(e) ∈ L(vn), which is false (note that k + a ≤ k + w(e) < k + b).
Thus the weights of all the edges which are not incident with vn are b.
Lemma 3.6 applied to the sequence v1, . . . , vi−1, vi+1, . . . , vn−1, vi, vn gives,
together with Lemma 3.7, that L(vi) = [k, k + (n− 2)b+ a− 1] and L(vn) =⋃

0≤i≤n−2[k + bi, k + bi+ a− 1].

4. Brooks’ theorem for a list channel assignment problem. We prove
that only bad list channel assignment problems can be obtained by pasting bad odd
cycles and bad complete graphs whose lists are disjoint. Recall that it is enough to
consider balanced list channel assignment problems by Theorem 2.3.

Theorem 4.1. A balanced list channel assignment problem (G,L,w) does not ad-
mit a proper assignment if and only if G is a Gallai forest whose blocks are G1, . . . , Gm
and there exist Li : V (Gi)→ 2N for 1 ≤ i ≤ m with the following properties:

• L(v) is a union of Li(v) for i such that v ∈ Gi and Li(v) ∩ Lj(v) = ∅ for
i �= j.
• Let wi be the weight function w restricted to the edges of Gi. Then (Gi, Li, wi)
is balanced and is one of the following three types:
(a) Gi is an odd cycle and there exist integers 1 ≤ a ≤ b and k such that

each vertex v of Gi is either incident with two edges with the weights a
in (Gi, Li, wi) and Li(v) = [k, k + a − 1] ∪ [k + b, k + a + b − 1] or v
is incident with an edge with weight a and an edge with weight b and
Li(v) = [k, k + a+ b− 1].

(b) Gi is a complete graph with n vertices. There exist integers 1 ≤ a and
1 ≤ k1 < · · · < kn−1 such that kj+a ≤ kj+1 for 1 ≤ j ≤ n−2, wi(e) = a
for all e ∈ E(Gi), and Li(v) =

⋃
1≤j≤n−1[kj , kj+a−1] for all v ∈ V (G).

(c) Gi is a complete graph with n vertices. There exist integers 1 ≤ a < b,
1 ≤ k, and a vertex v ∈ V (Gi) such that wi(e) = b for each edge e of Gi
which is not incident with v, wi(e) = a for each edge e of Gi incident
with v, the list Li(u) = [k, k+b(n−2)+a−1] for each u ∈ V (G), u �= v,
and L(v) =

⋃
0≤i≤n−2[k + bi, k + bi+ a− 1].

Proof. It is enough to prove the theorem for connected graphs. The proof pro-
ceeds by induction on the number of blocks. If G has just one block, then the proof
immediately follows from Theorems 3.3, 3.5, and 3.8.

Suppose G has at least two blocks. Let G1 be one of its end-blocks, v the cut
vertex separating G1 from the rest of G, and let G′ be the rest of G including v. Let
L1 (resp., L′) be the function L restricted to G (resp., G′) except for v, and let w1

(resp., w′) be the function w restricted to the edges of G (resp., G′). Let U1 (resp., U ′)
be the largest set of colors such that the list channel assignment problem (G1, L1, w1)
(resp., (G′, L′, w′)) with L1(v) = U1 (resp., L′(v) = U ′) does not admit a proper
assignment. Note that |U1| ≤ degw1

(v) and |U ′| ≤ degw′(v) due to Theorem 2.3.
The sets U1 and U ′ are uniquely determined (they are simply the sets of those colors
such that when assigned to v, there is no proper extension to the rest of the graph).
Thus for each k ∈ L(v)\U1 (resp., k ∈ L(v)\U ′) there is a proper assignment of
(G1, L1, w1) (resp., (G

′, L′, w′)) such that the color of v is k.

If there is k such that k ∈ L(v)\(U1∪U ′), we can assign to v the color k and extend
this to a proper assignment of G1 and G′, and thus to a proper assignment of G. If
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(G,L,w) does not admit a proper assignment, then |U1| = degw1
(v), |U ′| = degw′(v),

and L(v) = U1 ∪ U ′ (we have equality because (G,L,w) is balanced). In such a case,
(G1, L1, w1) has to be either an odd cycle described in (a) due to Theorem 3.5 or
a complete graph described in (b) or (c) due to Theorem 3.8. The channel assignment
problem (G′, L′, w′) is of the desired form due to the induction hypothesis.

On the other hand, if (G1, L1, w1) is a “bad” cycle or a “bad” complete graph
and (G′, L′, w′) is the union of “bad” cycles and complete graphs described in the
statement of the theorem, then (G,L,w) does not admit a proper assignment.

Note that the proof of Theorem 4.1 suggests an algorithm for recognizing balanced
channel assignment problems which admit proper assignments: We take an end-block
of the given graph and we consider one of its vertices which is not a cut vertex. This
vertex, together with the weights of the edges of that block, determines the type of
a bad graph (if it is bad) and the corresponding lists of colors at each vertex. We
remove this block and continue until either we find an end-block which is not bad or
we get an empty graph. If we find a block which is not bad, we use the way suggested
by the proofs of Theorem 3.3, Theorem 3.5, and Theorem 3.8 to color it. Hence, we
may conclude as follows.

Corollary 4.2. There exists a polynomial-time algorithm which for a given
balanced list channel assignment problem either finds a proper assignment or decides
that a proper assignment does not exist.

4.1. Channel assignment problem. Theorem 4.1 provides results for the
channel assignment problem when applied to the lists which all are equal to [1,∆w(G)],
where G is a given graph and w is a weight function on the edges of G. Recall that
if there is a vertex v in G such that degw(v) < ∆w(G) and G is connected, then
χw(G) ≤ ∆w(G) as proved in [11, 13, 14] (this also follows from Theorem 2.3). Thus
we immediately get from Theorem 4.1 the following.

Theorem 4.3. Let G be a connected graph and let w be a function which assigns
to the edges of G positive weights. If χw(G) = ∆w(G) + 1, then the weighted degree
of each vertex of G is equal to ∆w(G) and one of the following holds:

• G is an odd cycle and all its edges have the same weights.
• G is a complete graph and all its edges have the same weights.
• G is a Gallai tree with at least two blocks.

There really exist Gallai trees such that χw(G) = ∆w(G)+1 as shown in Proposi-
tion 4.4. On the other hand, there are also Gallai trees such that there is no function
w for which χw(G) = ∆w(G) + 1. It is possible to restate Theorem 4.3 in the “if
and only if” form by adding a condition that the set of colors [1,∆w] in the third
case can be partitioned into lists Li for each of the blocks in the way described in
Theorem 4.1. By Corollary 4.2, pairs of Gallai trees G and weight functions w for
which χw(G) = ∆w(G) + 1 can be recognized in polynomial time.

Proposition 4.4. There exists a connected graph G and a function w which
assigns to the edges of G positive weights such that χw(G) = ∆w(G)+ 1 and G is not
2-connected.

Proof. Let 1 ≤ a < b and 2 ≤ n be fixed integers. Let Gi be a complete graph on
n + 1 vertices and let vi be one of its vertices for 1 ≤ i ≤ n. We assign the weight b
to the edges of Gi which are not adjacent to vi and the weight a to the edges which
are adjacent to vi. We further form a complete graph on the vertices v1, . . . , vn and
we assign the edges of this graph the weights equal to b− a. It is easy to check that
the weighted degree of each of the vertices is equal to a + (n − 1)b and the minimal
span of this channel assignment problem is a+ (n− 1)b+ 1 by Theorem 4.1 (we use
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Theorem 4.1 with the set [1, a+ (n− 1)b] assigned to all the vertices).

We remark that the construction of Proposition 4.4 can be extended to Gallai
trees in which some blocks are odd cycles and the structure is more complex. But
we do not have a characterization of Gallai trees for which there exists a weight
function w such that χw(G) = ∆w(G)+1 (recall that the input of the algorithm from
Corollary 4.2 is a pair G and w), so this leads to the following problem.

Problem 1. For which Gallai trees G does there exist a weight function w such
that χw(G) = ∆w(G) + 1?

4.2. L(2, 1)-labeling of graphs. The definition of an L(2, 1)-labeling was pro-
vided in section 1. If G is a graph, an L(2, 1)-labeling of G is a solution of a channel
assignment problem for G2 with a weight function w, where G2 is the second power of
G and w is the weight function which assigns the weight 2 to the edges of G and the
weight 1 to the edges of G2 which are not edges of G. The second power of the graph
is the graph with the same vertex set where vertices u and v are joined by an edge if
their distance in G is at most two. The only difference between L(2, 1)-labeling and a
channel assignment problem is that here the color 0 can be used in an L(2, 1)-labeling.
We state the following theorem, thus improving a bound of [4].

Theorem 4.5. Let G be a graph with maximum degree ∆ ≥ 2. Then there exists
an L(2, 1)-labeling of G using numbers 0, . . . ,∆2 +∆− 1.

Proof. Assume that G is connected and let w be the weight function for G2

introduced in the beginning of this subsection. We want to prove that χw(G
2) ≤

∆2+∆. It is easy to see that the maximum weighted degree ∆w of the corresponding
channel assignment problem is at most ∆2 + ∆. If χw(G

2) ≥ ∆2 + ∆ + 1, then
∆w = ∆2 +∆, and G2 with w is of the form described in Theorem 4.3. Since G2 is
2-connected (a second power of a connected graph with maximum degree at least 2 is
always 2-connected), it cannot be a Gallai tree with 2 or more blocks. So G2 is either
a cycle or a complete graph. Except for P3 and K3, there is no graph G whose second
power is a cycle. Both P3 and K3 have an L(2, 1)-labeling using integers 0, . . . , 5.

The remaining case is that G2 is a complete graph. By Theorem 4.3, if χw(G
2) =

∆w + 1, all the weights of the edges are the same, and hence they all are equal to
two. Therefore, G is a complete graph. Let n be the number of vertices of G. Then
χw(G

2) = 2n − 1, ∆ = n − 1, and ∆2 + ∆ = n2 − n. The fact ∆ ≥ 2 yields n ≥ 3.
Since 2n− 1 ≤ n2 − n for n ≥ 3, we have proved χw(G

2) ≤ ∆2 +∆.
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Abstract. A natural generalization of the notion of domino introduced and investigated in [T.
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is proved. An explicit finite characterization is given for M3. An r-mino is called linear if each of
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1. Introduction. This paper is inspired by the work of Kloks, Kratsch, and
Müller [6], in which a class of graphs called dominoes is introduced and investigated.
A graph is called a domino if each of its vertices belongs to at most two maximal
cliques. Taking r instead of 2, one can introduce the notion of an r-mino. Obviously,
each graph is an r-mino for appropriate r. Therefore the set of graphs is the union of
the strictly increasing sequence

M1 ⊂M2 ⊂ · · · ⊂ Mn ⊂ · · · ,

whereMr is the class of r-minoes. These classes are investigated in the paper.
Two characterizations of the classMr are given in sections 3 and 4. The first one

states thatMr is the class of line graphs of Helly hypergraphs with rank at most r. In
particular,Mr is a hereditary class; i.e., an induced subgraph of a graph inMr is also
inMr. It is well known that every hereditary class of graphs P can be characterized
by means of a list of forbidden induced subgraphs. If F is such a list, then we write
P = Forb(F). If, in addition, F is finite, then we call it a finite characterization of
P. In this paper we recursively define a finite characterization Fr of the classMr (for
every r ≥ 1). It follows from the existence of a finite characterization that for every
fixed r there is a polynomial time algorithm for determining if a graph is inMr.

The following circumstances increase our interest in the classMr.
For a fixed constant r, let Lr be the class of line graphs of hypergraphs with

rank at most r. A nontrivial characterization of the class is known only for r ≤ 2
(see Bermond and Meyer [4]). Poljak, Rödl, and Turzik [9] proved that the problem
of determining if a graph belongs to Lr is NP-complete for an arbitrary r ≥ 3.
Moreover, they proved that the similar problem remains NP-complete for every fixed
r ≥ 4. Lovász [7] posed the problem of characterizing the class L3. The question of
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whether or not the class L3 can be recognized in polynomial time is still open, but
recognizing line graphs of simple hypergraphs with rank at most 3 is NP-complete as
well [9].

Consider the following two graph-theoretic invariants:

• the rank-dimension rd(G) = min{r : G ∈ Lr},
• the Helly rank-dimension hd(G) = min{r : G ∈Mr}.
Our characterization of the classMr below implies the strict inclusionMr ⊂ Lr,

so rd(G) ≤ hd(G). However, the difference hd(G) − rd(G) can be arbitrarily large.
The complexity of determining hd(G) is still unknown.

Associate with an arbitrary graph G the independence system SG on the vertex
set V (G) whose independent sets are exactly the stable sets of G. Like any indepen-
dence system, SG can be represented as the intersection of matroids. Tyshkevich and
Urbanovich [10] proved that the minimal number of matroids in such a representation
is precisely the equivalence covering number eq(G). The class of monominoes M1

consists of graphs with eq(G) = 1 (see Benzaken and Hammer [1]). Section 4 also
contains a finite characterization of the class M2 already obtained both in [10] in a
different context (when investigating the class of graphs with eq(G) ≤ 2, which is the
class of line graphs of bipartite multigraphs and is contained inM2) and in [6].

An r-mino is called linear if each of its edges belongs to exactly one maximal
clique. For a linear r-mino G, the list of maximal cliques and hd(G) (= rd(G) in
this situation) can be found in polynomial time. A finite characterization of linear r-
minoes is given in section 5. Here we also prove that the GRAPH 3-COLORABILITY
problem remains NP-complete when restricted to linear dominoes with vertex degrees
at most 4. Thus we answer the question posed in [6].

Section 6 contains a finite characterization of the classM3.

2. Background. The vertex set of a graph G is denoted V (G). If N(v) = NG(v)
is the neighborhood of a vertex v in G, then N [v] = N(v) ∪ {v}. Let G(X) denote
the subgraph of G induced by a set X ⊆ V (G); to simplify the notation we write
G(x1, x2, . . . , xk) instead of G({x1, x2, . . . , xk}).

We consider only finite hypergraphs in which every vertex is contained in some
edge. For a hypergraph H with the incidence matrix M , the dual hypergraph H∗ is
the hypergraph with the transposed incidence matrix M t. The line graph L(H) is
defined as follows: the vertices of L(H) are in a bijective correspondence with the
edges of H, and two vertices are adjacent in L(H) if and only if the corresponding
edges intersect in H. If L(H) ∼= G, then H is a root of G.

Berge [2] described all roots for an arbitrary graph in terms of clique coverings.
A set C of pairwise adjacent vertices of a graph is called a clique. A maximal clique
is maximal with respect to inclusion. A finite family Q = {Ci : i ∈ I} of cliques
of a graph G is called a clique covering if every vertex as well as every edge of G is
contained in some Ci. The cliques Ci are the clusters of Q. For an arbitrary clique
covering Q = {Ci : i ∈ I} of G, define the hypergraph H(Q) as follows: the vertices of
H(Q) are just the vertices of G, and the edges are the clusters of Q. The edges Ci and
Cj are different for i �= j even if the sets Ci and Cj coincide. The dual hypergraph
H(Q)∗ = C(Q) is called the canonical hypergraph.

Theorem 2.1 (see [2]). The roots of a graph G are exactly the canonical hyper-
graphs C(Q), where Q runs over all clique coverings of G.

Let P be a hypergraph-theoretic property, i.e., a class of hypergraphs distinguished
up to isomorphism. We say that a clique covering Q of a graph G has the property P
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if H(Q) ∈ P. Put

L(P) = {L(H) : H ∈ P}, P∗ = {H∗ : H ∈ P}.

Theorem 2.1 immediately implies the following corollary.
Corollary 2.2. Let P be an arbitrary hypergraph-theoretic property, and let G

be a graph. Then G ∈ L(P) if and only if G has a clique covering with the property
P∗.

A hypergraph is called linear if every pair of edges has at most one common vertex.
A clique covering Q of a graph is called linear if H(Q) is linear. A clique covering is
called an r-covering if each vertex of the graph belongs to at most r clusters.

The rank of a hypergraph is the maximum size of its edges.
Let Pr be the class of hypergraphs of rank at most r, and let P lr be the class of

linear hypergraphs in Pr. Putting

Lr = L(Pr), Llr = L(P lr),

we immediately obtain Corollaries 2.3 and 2.4.
Corollary 2.3 (see [2]). G ∈ Lr if and only if G has an r-covering.
Corollary 2.4 (Berge [3]). G ∈ Llr if and only if G has a linear r-covering.
A hypergraph whose edge sizes are all equal to r is called r-uniform.
Note. Obviously, the class Lr is exactly the set of line graphs of r-uniform hyper-

graphs.
A hypergraph H is a Helly hypergraph if the family E of its edges satisfies the

following Helly condition: for each subfamily E ′ ⊆ E of pairwise intersecting edges,
there is a vertex which belongs to all edges in E ′.

The 2-section graph (H)2 of a hypergraph H is the graph whose vertices are the
vertices of H, and two vertices are adjacent if and only if they belong to the same
edge of H. A hypergraph H is called conformal if each clique of (H)2 is contained in
some edge of H.

Lemma 2.5 (see [2]). A hypergraph H is a Helly hypergraph if and only if H∗ is
conformal.

A clique covering Q of a graph G is called conformal if the hypergraph H(Q) is
conformal.

Lemma 2.6. For any graph G, the set of maximal cliques is the unique minimal
(with respect to inclusion) conformal covering of G.

Proof. Let Q be a clique covering of G and H = H(Q). Obviously, (H)2 = G.
Therefore H is conformal if and only if each maximal clique of G is an edge of H, i.e.,
a cluster of Q.

Corollary 2.7 (McKee and McMorris [8]). Each graph is the line graph of a
Helly hypergraph.

3. r-minoes. We say that a graph G is an r-mino if each vertex of G belongs
to at most r maximal cliques. If, in addition, every edge of G belongs to exactly
one maximal clique, then we have a linear r-mino. Denote Mr and Ml

r the sets of
r-minoes and of linear r-minoes, respectively.

Theorem 3.1. The following statements hold:
(i) Mr coincides with the set of line graphs of Helly hypergraphs with rank at

most r.
(ii) Ml

r coincides with the set of line graphs of linear Helly hypergraphs with
rank at most r.



LINE GRAPHS OF HELLY HYPERGRAPHS 441

Proof. If G ∈ Mr, then the set Q of maximal cliques is an r-covering of G.
By Lemma 2.6, Q is conformal. Then the canonical hypergraph C(Q) is a Helly
hypergraph by Lemma 2.5, and rankC(Q) ≤ r. By Theorem 2.1, L(C(Q)) ∼= G.

Conversely, letH be a Helly hypergraph, where rankH ≤ r and L(H) ∼= G. Then,
by Corollary 2.2 and Lemma 2.5, there is a conformal r-covering of G. By Lemma
2.6, this covering contains all maximal cliques of G. Therefore the set of maximal
cliques is also an r-covering of G. Thus, G ∈Mr and (i) is proved.

Obviously, the linearity condition is self-dual, so (ii) holds.
Corollary 3.2 (see [6]). The following statements hold:
(i) M2 coincides with the set of line graphs of multigraphs without triangles.
(ii) Ml

2 coincides with the set of line graphs of simple graphs without triangles.
Corollary 3.3. Mr andMl

r are hereditary graph classes.
Proof. The property “to be a Helly hypergraph with rank at most r” is hereditary

with respect to deleting edges.
Corollary 3.4.
(i) For a constant r ≥ 2, the following inclusion holds:

Mr ⊂ Lr.(3.1)

(ii) For a graph G,

rd(G) ≤ hd(G).(3.2)

Equality in (3.2) is possible, but the difference

hd(G)− rd(G)(3.3)

can be arbitrarily large.
Proof. The inclusion (3.1) follows immediately from Theorem 3.1. For the (r+1)-

vertex wheel Wr, where r > 3 (see the graph W4 in Figure 4.1), we have

hd(Wr) = r, rd(Wr) = �r/2� .
Hence, the inclusion (3.1) is strict and the difference (3.3) can be arbitrarily large.
The inclusion (3.1) implies (3.2) immediately. Finally, for the star K1,r,

rd(K1,r) = r = hd(K1,r).

4. Forbidden induced subgraph characterizations. We write a ∼ b (a �∼ b)
if the vertices a and b are adjacent (respectively, nonadjacent) in a graph G. If
A,B ⊆ V (G), then A ∼ B (A �∼ B) means that a ∼ b (a �∼ b) for all a ∈ A, b ∈ B.
Denote s(G) the number of maximal cliques of G.

Theorem 4.1. For any constant r, there exists a finite characterization of the
classMr.

Proof. The proof is by induction on r. It is obvious thatM1 = Forb({P3}); i.e.,
one can assume that F1 = {P3}.

Now let r ≥ 2. By hypothesis,Mr−1 = Forb(Fr−1) and Fr−1 is finite. Without
loss of generality, suppose that the characterization Fr−1 is minimal. Evidently, if
G ∈ Fr−1, then G has a unique dominating vertex v(G) and is the union of s(G)
maximal complete subgraphs, s(G) ≥ r.

We shall construct the list Fr, which is a finite characterization of the classMr.
Any graph G satisfying the conditions

G ∈ Fr−1, s(G) ≥ r + 1,
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is included in the list Fr. Next, let
G ∈ Fr−1, s(G) = r, v(G) = v,(4.1)

and let

C1, C2, . . . , Cr(4.2)

be the list of maximal cliques of G.
Define two supergraphs F and H for the graph G as follows:
(1) G = F −A, where A is a clique in F , 1 ≤ |A| ≤ r, A ∼ v, s(F ) ≥ r + 1.
(2) G = H − a− b, a �∼ b, a ∼ Ci, b ∼ Ci for some index i.

The remaining adjacencies in the graphs F and H can be arbitrary. Thus, conditions
(1) and (2) define the sets of graphs of two types, F and H. For every graph G
satisfying the conditions in (4.1) we now include all graphs of type F and H into Fr.
The list Fr is constructed.

If mi is the maximal order of the graphs in Fi, then mr ≤ mr−1 + r. Hence, the
set Fr is finite.

We shall prove that

Mr = Forb(Fr).(4.3)

Obviously, Fr ∩Mr = ∅ since the vertex v(G) of any graph G in Fr belongs to
at least r + 1 maximal cliques. The induced subgraphs of the graphs in Mr do not
belong to the list Fr since they belong toMr. Hence

Mr ⊆ Forb(Fr).
Now let B ∈ Forb(Fr). Consider the subgraph C = B(N [u]) for a vertex u ∈

V (B). Each clique of B containing u is a clique of C. If C ∈ Forb(Fr−1), then u
belongs to at most r−1 maximal cliques of C. If some graph G in Fr−1 is an induced
subgraph of C, then G satisfies the conditions in (4.1). Without loss of generality,
suppose that u = v(G) = v. Let (4.2) be the list of maximal cliques of G. Every
clique Ci is contained in one maximal clique Di of C, i = 1, . . . , r, since B has no
induced subgraphs of type H.

It remains to prove that

D1, D2, . . . , Dr(4.4)

is the complete list of maximal cliques of C. Let D be an arbitrary clique of C, v ∈ D,
|D\v| = k. Then

D ⊆ Di(4.5)

for some index i. In fact, (4.5) holds for k ≤ r since C contains no induced subgraphs
of type F . Let k ≥ r + 1, and let (4.5) hold if |D\v| < k. Consider (k − 1)-subsets of
the clique D\v. The number of these subsets is equal to k, and each one is contained
in a corresponding clique Di. Since k > r, then there exist two such subsets, for
instance X1 and X2, both contained in the same clique Di. But D\v = X1 ∪ X2.
Therefore D ⊆ Di. So (4.4) is the complete list of maximal cliques of the graph B
that contain the vertex u. Hence B ∈Mr, and equality (4.3) is proved.

Applying the recursive procedure from Theorem 4.1 to the list F1 = {P3}, one
can easily obtain the following theorem.
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Fig. 4.1. A finite characterization of the class M2.

Theorem 4.2 (see [10], [6]). M2 = Forb(K1,3,W4,W
′
4) (Figure 4.1).

Note. In this paper a finite characterization of the classM3 is also presented. In
this case applying the recursive procedure from Theorem 4.1 to the list of Theorem
4.2 is rather tedious. In section 6 this characterization is obtained in a different way.

Adding all odd simple cycles of length at least 5 to the list in Figure 4.1, we obtain
the following characterization of the class L(2) of line graphs of bipartite multigraphs.

Corollary 4.3 (see [10]). L(2) = Forb(K1,3,W4,W
′
4, C2n+1 : n ≥ 2).

It is proved in [10] that L(2) is exactly the class of graphs with condition eq(G) ≤
2.

Adding all simple cycles of length at least 4 to the list in Figure 4.1, we obtain
the following characterization of the class Ch2 of chordal dominoes.

Corollary 4.4 (see [6]). The following statements hold:
(i) Ch2 coincides with the class of line graphs of acyclic multigraphs.
(ii) Ch2 = Forb(K1,3,W4,W

′
4, Cn : n ≥ 4).

5. Linear r-minoes.
Theorem 5.1. The list of maximal cliques and the Helly rank-dimension of a

graph can be found in polynomial time for the class of linear r-minoes.
Proof. Let G be a linear r-mino, v ∈ V (G), and let A be a connected component

of the subgraph G(N(v)). Then A∪ {v} is a maximal clique of G, and each maximal
clique can be obtained analogously.

Furthermore, hd(G) is the maximal number of connected components of the
graphs G(N(v)) for all v ∈ V (G).

Theorem 5.2. Ml
r = Forb(K1,r+1,K4 − e).

Proof. Obviously, every edge of a graph belongs to exactly one maximal clique if
and only if this graph is (K4 − e)-free.

Now let G be a (K4 − e)-free graph, and let its vertex v belong to exactly p
maximal cliques

C1, C2, . . . , Cp.

Taking an arbitrary vertex vi �= v in Ci, i = 1, . . . , p, we obtain the induced star

G(v, v1, . . . , vp) = K1,p.

Corollary 5.3. For a linear r-mino G,

hd(G) = rd(G) = max{p : G contains an induced K1,p}.
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Fig. 5.1. Graphs F and F̃ .

Now consider linear dominoes. Denote χ(G) and χ′(G) the chromatic number
and the chromatic index (the edge chromatic number) of a graph G, respectively.

Theorem 5.4. The decision problem “χ(G) ≤ 3” is NP-complete for linear
dominoes G with ∆(G) ≤ 4.

Proof. First we consider the following two decision problems:

χ′(G) ≤ 3 for a graph G with ∆(G) ≤ 3.(5.1)

χ′(G) ≤ 3 for a triangle-free graph G with ∆(G) ≤ 3.(5.2)

Holyer [5] proved that the problem (5.1) is NP-complete. We shall show that
the problem (5.1) can be reduced to the problem (5.2) in polynomial time; i.e., the
problem (5.2) is NP-complete.

Let F be a graph with ∆(F ) ≤ 3. Consider a triangle with the vertex set {a, b, c}
in F . Replace this triangle in F by the 7-vertex graph shown in Figure 5.1. Denote
the resulting graph F̃ .

The graph F̃ has fewer triangles than F . Obviously, the implication

χ′(F ) ≤ 3 ⇒ χ′(F̃ ) ≤ 3
is true (see Figure 5.2).

Conversely, let χ′(F̃ ) ≤ 3. Fix a proper 3-coloring ϕ of the edges of F̃ . Associate
with the vertex a the 2-element set {a1, a2} of colors of the edges aa′, ac′. Define the
sets {b1, b2} and {c1, c2} for the vertices b and c analogously. The correspondence

x �→ {x1, x2}, x = a, b, c,

is injective. Indeed, suppose {a1, a2} = {b1, b2} and, without loss of generality,
ϕ(aa′) = ϕ(bb′) = 1, ϕ(ac′) = ϕ(a′b) = 2.

Then ϕ(a′d) = 3, ϕ(b′d) = 2, ϕ(c′d) = 1. We have ϕ(cc′) = ϕ(b′c) = 3, a contradic-
tion.

Without loss of generality, let

{a1, a2} = {1, 2}, {b1, b2} = {1, 3}, {c1, c2} = {2, 3}.
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Fig. 5.2. The proof of an implication in Theorem 5.4.

Put

ϕ(ab) = 1, ϕ(bc) = 3, ϕ(ac) = 2.

The colors of all the other edges in F are the same as in F̃ . Thus the implication

χ′(F̃ ) ≤ 3 ⇒ χ′(F ) ≤ 3

is true as well.
Applying the transformation above, we eliminate all triangles in F one after

another. Denote the resulting graph H. If the graph F has no triangles, then put
H = F .

Obviously, the correspondence F �→ H is a polynomial reduction of the problem
(5.1) to the problem (5.2).

Now we shall give a polynomial reduction of the NP-complete problem (5.2) to
the problem in the assertion of the theorem. Let H be a triangle-free graph with
∆(H) ≤ 3 and G = L(H). We have

χ′(H) = χ(G), ∆(G) ≤ 4.

Moreover, G is a linear domino by Corollary 3.2. Obviously, the correspondence
H �→ G is the required polynomial time reduction.

6. Determining F3.
Theorem 6.1. M3 = Forb({G1, . . . , G8}), where the graphs Gi are shown in

Figure 6.1.
Proof. One can easily see that

M3 ⊆ Forb({G1, . . . , G8}).

Now let G ∈ Forb({G1, . . . , G8}). Take an arbitrary u ∈ V (G) such that H =
G(N(u)) is not a complete graph. Without loss of generality, suppose that

H has no dominating vertices.(6.1)

Put G′i = Gi − v(Gi), where v(Gi) is the unique dominating vertex of Gi.
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Fig. 6.1. A finite characterization of the class M3.

Case 1. Suppose H contains three pairwise nonadjacent vertices x, y, z. Then

V (H) = N [x] ∪N [y] ∪N [z],(6.2)

X = N [x], Y = N [y], Z = N [z] are cliques in H.(6.3)

The equality (6.2) holds since H does not contain an induced G′1. Suppose there
exist x1, x2 ∈ N(x) such that x1 �∼ x2. The graphs H(x, x1, x2, y) and H(x, x1, x2, z)
are not isomorphic to G′2, and H(x1, x2, y, z) is not empty. Therefore H(x, x1, x2, y, z)∼= G′3, G

′
4, or G

′
5, a contradiction.

Thus, (6.2) and (6.3) hold for any pairwise nonadjacent x, y, z ∈ V (H). Let K
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be a maximal clique in H, K �= X,Y, Z. For any a, b ∈ K, we have

a, b ∈ X, a, b ∈ Y, or a, b ∈ Z.(6.4)

In fact, if a ∈ X\Y , b ∈ Y \X, a �∈ Z, then a, y, z are pairwise nonadjacent in H. By
(6.3), N [a] is a clique. But x, b ∈ N [a] and x �∼ b, a contradiction.

By (6.1) and (6.3), each vertex of K belongs to exactly two of the cliques X,Y, Z.
Let a ∈ K and a ∈ (X ∩ Y )\Z. Since K is maximal, there exist b, c ∈ K such that
b ∈ (X ∩ Z)\Y , c ∈ (Y ∩ Z)\X. We have H(a, b, c, x, y, z) ∼= G′7, a contradiction.

Thus, H has no maximal cliques different from X,Y, Z, i.e., s(H) = 3.
Case 2. H does not contain three pairwise nonadjacent vertices. Let x and y be

two nonadjacent vertices of H.
Clearly, N [x] ∪N [y] = V (H). Set

A = N(x)\N(y), B = N(y)\N(x), C = N(x) ∩N(y).

Observe that A,B,C are cliques. In fact, A ∪ {y} and B ∪ {x} do not contain three
pairwise nonadjacent vertices, and H(C ∪ {x, y}) has no induced G′2.

Without loss of generality, assume that no two of the sets A,B,C are empty.
Otherwise s(H) ≤ 2.

Subcase 2a. C = ∅.
Suppose H contains maximal cliques C1, C2 different from A ∪ {x} and B ∪ {y}.

Then C1, C2 ⊆ A ∪ B, and there are a ∈ A, b ∈ B, a �∼ b such that a ∈ C1\C2, b ∈
C2\C1. Obviously,

Ci ∩A �= ∅, Ci ∩B �= ∅, i = 1, 2.

Hence, there exist a1 ∈ A, b1 ∈ B such that a1 ∼ b, b1 ∼ a. Since H(a, a1, b, b1) �∼= G′2,
then a1 ∼ b1. We have H(x, y, a, b, a1, b1) ∼= G′8, a contradiction. Thus s(H) ≤ 3.

Subcase 2b. C �= ∅.
Proposition 6.2. If C has no dominating vertices of the graph FA = H(A∪C ∪

{x}) (the graph FB = H(B ∪ C ∪ {y})), then s(FA) = 2 (s(FB) = 2, respectively).
Let C have no dominating vertices of FA. Then A �= ∅. If A = {a}, then a �∼ C,

and FA contains exactly two maximal cliques: A∪{x} and C ∪{x}. If C = {c}, then
the only such cliques are N [c]\(B ∪ {y}) and A ∪ {x}.

Let |A| ≥ 2, |C| ≥ 2. Divide A into subsets A1 = {a ∈ A : a ∼ C} and
A2 = A\A1. By the assumptions, A2 �= ∅. Suppose FA contains a maximal clique
K different from A ∪ {x} and C ∪ A1 ∪ {x}. Then there exist a ∈ A2 and c ∈ C
such that a, c ∈ K. By the definition of A2, there exists c

′ ∈ C\{c}, c′ �∼ a. By the
assumptions, there exists a′ ∈ A2, c �∼ a′. Since H(a, c, a′, c′) �∼= G′2, one gets a

′ �∼ c′.
We have H(a, c, a′, c′, x, y) ∼= G′8, a contradiction. Thus s(FA) = 2. This finishes the
proof of the proposition.

By (6.1), it follows from Proposition 6.2 that s(H) ≤ 3 if A = ∅ or B = ∅.
Hence we can assume that A �= ∅ and B �= ∅. Next, we prove that

A ∼ C or B ∼ C.(6.5)

Otherwise, if there exist a ∈ A, b ∈ B, and c ∈ C such that c �∼ a, b, thenH(a, b, c, x, y)
∼= G′4 orG

′
6, a contradiction. If there are c1, c2 ∈ C, a ∈ A, b ∈ B such that c1 �∼ a, c2 �∼

b, c1 ∼ b, c2 ∼ a, then a �∼ b since H(a, b, c1, c2) �∼= G′2. Hence H(a, b, c1, c2, x, y) ∼= G′8,
a contradiction.
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Thus, (6.5) holds. Taking (6.1) into account, we conclude that C ∼ A ∪ B is
impossible. Without loss of generality, let A ∼ C. By Proposition 6.2, s(FB) = 2.
The inequality s(H) ≤ 3 will be proved if we show that A �∼ B.

Let b ∈ B, c ∈ C, b �∼ c. If there exists a ∈ A, a ∼ b, then H(a, b, c, y) ∼= G′2.
Otherwise, if a ∈ A, b′ ∈ B\{b}, a ∼ b′, a �∼ b, then b′ ∼ c since H(a, b′, c, y) �∼= G′2.
We have H(a, b, b′, c, x, y) ∼= G′8.

So A �∼ B and s(H) ≤ 3.
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Abstract. List partitions generalize list colorings and list homomorphisms. (We argue that
they may be called list “semihomomorphisms.”) Each symmetric matrix M over 0, 1, ∗ defines a
list partition problem. Different choices of the matrix M lead to many well-known graph theoretic
problems, often related to graph perfection, including the problem of recognizing split graphs, finding
homogeneous sets, clique cutsets, stable cutsets, and so on. The recent proof of the strong perfect
graph theorem employs three kinds of decompositions that can be viewed as list partitions.

We develop tools which allow us to classify the complexity of many list partition problems and, in
particular, yield the complete classification for small matrices M . Along the way, we obtain a variety
of specific results, including generalizations of Lovász’s communication bound on the number of
clique-versus-stable-set separators, polynomial time algorithms to recognize generalized split graphs,
a polynomial algorithm for the list version of the clique cutset problem, and the first subexponential
algorithm for the skew cutset problem of Chvátal. We also show that the dichotomy (NP-complete
versus polynomial time solvable), conjectured for certain graph homomorphism problems, would, if
true, imply a slightly weaker dichotomy (NP-complete versus quasi-polynomial) for our list partition
problems.

Key words. list homomorphisms, H-colorings, graph partitions, perfect graphs, split graphs,
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1. Introduction. Many combinatorial problems seek a partition of the vertices
of a given graph into subsets satisfying certain constraints internally (a set may be
required to be stable or complete) and externally (two sets may be required to be com-
pletely nonadjacent—no vertex of one adjacent to any vertex of the other—or com-
pletely adjacent—each vertex of one adjacent to each vertex of the other). We may
formulate a common generalization of such problems as follows: partition the vertices
of an input graph into k parts A1, A2, . . . , Ak with a fixed “pattern” of requirements
as to which Ai’s are stable or complete, and which pairs Ai, Aj are completely non-
adjacent or completely adjacent. (In some cases, we also deal with a generalization
where we replace “stable” and “complete” with more general notions of “sparse” and
“dense.”) These requirements may be conveniently captured by a symmetric k-by-k
matrix M in which the diagonal entries Mi,i encode the internal restrictions on the
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Fig. 1. A partition, its matrix M , and example block structure of an adjacency matrix A
corresponding to a graph with an M-partition (in the matrix A, each ∗ represents either 0 or 1).

sets Ai and the off-diagonal entries M(i, j), i �= j, encode the restriction on the edges
between Ai and Aj .

Specifically, letM be a fixed symmetric k-by-k matrix over 0, 1, ∗. AnM -partition
of a graph G is a partition of the vertex set V (G) into k parts A1, A2, . . . , Ak such
that Ai is stable (i.e., independent) if Mi,i = 0, or complete (i.e., a clique) if Mi,i = 1
(with no restriction ifMi,i = ∗), and such that Ai and Aj are completely nonadjacent
ifMi,j = 0, or completely adjacent ifMi,j = 1 (with no restriction ifMi,j = ∗). When
k is small, we usually refer to parts A,B,C, . . . instead of A1, A2, A3, . . . and write,
for example, A = 0 to mean MA,A = 0 or AB = 1 instead of MA,B = 1.

A graph G admits an M -partition if and only if its adjacency matrix A = A(G)
can be written, after a suitable simultaneous row and column permutation, in a block
form corresponding to M , where 0 denotes an all-zero matrix, 1 denotes an all-one
matrix (with ∗’s assumed on the main diagonal), and ∗ denotes any matrix. In Figure
1 we give an example matrixM and illustrate what an adjacency matrix A of graph G
with anM -partition might look like. In the same figure, we also introduce a symbolic
figure showing a general M -partition. The empty circle depicts a stable set (0 on the
main diagonal of M), a shaded circle depicts an arbitrary set (a diagonal ∗ in M),
and a doubly shaded circle depicts a clique (a diagonal 1); similarly, two parts are
joined by two lines if they are completely adjacent (an off-diagonal 1), joined by a
single line if there is no restriction on the edges between them (an off-diagonal ∗), and
not joined at all if they are completely nonadjacent (an off-diagonal 0).

Many graph theoretic concepts can be modeled byM -partitions. Indeed, in Figure
2, we illustrate three such concepts—from the well-known notions of a graph coloring
and a split graph [32] to the more recent notion of a clique-cross partition [21].

All three concepts have natural generalizations which may also be modeled as
M -partitions.

A k-coloring of a graph G is anM -partition of G where the matrixM has zeros on
the main diagonal and asterisks everywhere else. In other words, M is obtained from
the adjacency matrix of the complete k-graph by replacing all ones with asterisks.
An M -partition of G, where M is obtained the same way from the adjacency matrix
of an arbitrary graph H, is called an H-coloring or a homomorphism [33, 34]. Thus
an H-coloring of G, or a homomorphism of G to H, is a partition of V (G) into sets
Ah, h ∈ V (H), such that Ah is stable when h is not a loop of H, and Ah, Ah′ are
completely nonadjacent when hh′ is not an edge of H. The k-coloring problem is well
known to be polynomial time solvable when k ≤ 2 and NP-complete otherwise [31].
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Fig. 2. Three typical partition problems.

The H-coloring problem is polynomial time solvable when H is bipartite or when H
contains a loop, and it is NP-complete otherwise [34].

Consider now a matrix M obtained from the adjacency matrix of a graph H by
replacing all zeros with asterisks. Then an M -partition of a graph G is a partition
of V (G) into sets Ah, h ∈ V (H), such that Ah is complete when h is a loop of H,
and Ah, Ah′ are completely adjacent when hh′ is an edge of G. In other words, an
M -partition of G is a homomorphism of the complement of G to the complement of
H. Such a partition has been called a cohomomorphism of G to H. Since the general
case of anM -partition of G mixes the homomorphism and cohomomorphism partition
types of constraints, we propose to call it a semihomomorphism partition.

A split graph is a graph which admits a partition into a stable set and a clique
[32], i.e., an M -partition where M is the matrix given in Figure 2, with asterisks off
the main diagonal, and exactly one 0 and one 1 on the main diagonal. An (a, b)-
graph [5] is a natural generalization—a graph whose vertices can be partitioned into a
stable sets and b cliques; the corresponding M is an (a+ b)-by-(a+ b) matrix having
all off-diagonal entries equal to ∗ and with a zeros and b ones on the main diagonal.
When a, b ≤ 2 (this includes split graphs, which have a = b = 1), the (a, b)-graphs
can be recognized in polynomial time. (Brandstädt claimed such algorithms in [5],
which were in error [6]; more involved polynomial time algorithms were given in [7],
and a new algorithm of complexity O((n + m)2) was given in [8]; polynomial time
algorithms also follow from our more general results in section 3.) On the other hand,
it is easy to see that when a or b is at least 3 it is NP-complete to recognize (a, b)-
graphs [5, 8]. The split graphs (a = b = 1) are a well-known class of perfect graphs
(cf. below), and they admit efficient algorithms for many standard combinatorial
optimization problems [32]. The class of (a, b)-graphs has also been investigated from
the perspective of perfect graphs [36].

A clique-cross partition [21] of a graphG is a partition of the vertices ofG into four
disjoint cliques A,B,C,D such that A,C as well as B,D are completely nonadjacent.
This is an M -partition, where M is given in Figure 2; note that M is obtained from
the adjacency matrix of the four-cycle by replacing all ones with asterisks and setting
all diagonal entries to 1. The more general concept [39] of an H-clique partition is
the M -partition problem where M is the matrix obtained in the same way from the
adjacency matrix of an arbitrary graph H. A clique-cross partition can be found in
linear time [21]. The more general H-clique partition problem is polynomial time
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solvable when H is a triangle-free graph; otherwise it is NP-complete [39].

Several other well-known graph concepts correspond to M -partitions with addi-
tional restrictions. Many of these concepts arise in connection with graph perfection.
Briefly, a graph is perfect if the chromatic number and the maximum clique size are
the same for the graph and all its induced subgraphs. In the 1960s, Berge [3] formu-
lated two perfect graph conjectures: (1) the weak conjecture, asserting that a graph
is perfect if and only if its complement is perfect; and (2) the strong conjecture, as-
serting that odd cycles and their complements are the only minimal imperfect graphs
(that is, imperfect graphs such that every induced subgraph is perfect). The weak
perfect graph conjecture was proved by Lovász in the 1970s [38]; the strong conjecture
has just been verified by Chudnovsky et al. [12]. Their solution consists of a detailed
structural characterization of graphs which do not contain an induced odd cycle or
its complement. These graphs are shown to be constructible from some basic perfect
graphs by three operations which preserve perfection. Each of these three operations
turns out to be anM -partition (with some additional properties); cf. below. We note
that as of this writing there is still no polynomial time algorithm for the recognition
of perfect graphs. (One may try to efficiently find a decomposition of a given graph
into the basic perfect graphs using these operations. However, even though one appli-
cation of each of these operations is now possible in polynomial time, it is not known
how to perform the entire decomposition in polynomial time.)

We first bring up M -partitions with the additional restriction that the parts be
nonempty.

A clique cutset [42, 47] of a connected graph G is a complete subgraph C whose
removal disconnectsG. Clearly, G has a clique cutset if and only if it admits a partition
of the vertices into three nonempty subsets A,B,C such that C is a clique and A,B
are completely nonadjacent (so that the removal of C disconnects A from B), i.e., if
and only if it admits anM -partition, whereM is the matrix given in Figure 3, with the
additional restriction that all parts are nonempty. Finding clique cutsets is possible in
polynomial time [42, 47, 48] (cf. also section 5.2) and is the basis of a decomposition
algorithm [42], which allows efficient solution of many optimization problems for the
class of decomposable graphs [42]. A stable cutset [43] is defined analogously (C
is stable) and also corresponds to an M -partition with all parts nonempty. Stable
cutsets arose because of an early result of Tucker [43] that a minimal imperfect graph
other than an odd cycle cannot contain a stable cutset; finding a stable cutset has
been proved NP-complete in [28]. A two-clique cutset is defined similarly as a union of
two complete subgraphs that disconnects the input graph, and the two-clique cutset
problem corresponds to the matrixM in Figure 3, again with the additional restriction
that all parts be nonempty. In section 5 we give a subexponential algorithm for the
list version of the problem. This has recently been improved to a polynomial time
algorithm [10].

A skew cutset of a connected graph G is a pair of disjoint nonempty sets B,D
in G such that the removal of B ∪D disconnects the graph and such that B,D are
completely adjacent (the “skew property”). Once again, this is clearly a partition
problem—we wish to partition the vertices of G into four nonempty sets A,B,C,D
such that A,C are completely nonadjacent and B,D are completely adjacent. This is
an M -partition, where M is given in Figure 3, with all parts nonempty. Skew cutset
partitions (of a certain kind) are one of the three operations used by Chudnovsky et
al. [12] in the proof of the strong perfect graph conjecture. This was anticipated by
Chvátal [13], who conjectured that a minimal imperfect graph cannot contain a skew
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Fig. 3. Other well-known partition problems.

cutset. He proved this for the special skew cutsets where B consists of a single vertex
(the entire conjecture has now been proved in [12]). For this special case he also gave
a polynomial time recognition algorithm, and he asked for the complexity of finding
a general skew cutset. (When both B and D are required to be stable (B = D = 0),
we are asking for a complete bipartite cutset, and this recognition problem is NP-
complete [28].) In [26], we offered the first subexponential time algorithm, strongly
suggesting that the problem is not NP-complete. Most recently, one of us (Klein),
together with de Figueiredo, Kohayakawa, and Reed, indeed found a polynomial time
algorithm [29].

Winkler formulated a similar problem, seeking a partition into nonempty sets
A,B,C,D where there are no edges between A and C nor between B and D, but
where there is at least one edge between A and B, between B and C, between C
and D, and between D and A. Winkler asked for the complexity of this problem; it
has been shown NP-complete in [45]. This is an M -partition problem (M is given in
Figure 3), where there are not only additional restrictions on the nonemptiness of the
parts but also on the presence of edges between certain pairs of parts.
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A homogeneous set [17] in a graph G is a set C of vertices of G such that each
vertex outside of C is adjacent to either all or to none of the vertices in C. It is again
easy to see that this is a partition problem—we want to partition the vertices into
three subsets A,B,C such that A,C are completely adjacent and B,C are completely
nonadjacent. To avoid the trivial homogeneous sets consisting of a single vertex or the
entire vertex set, we also require that C has at least two vertices and that A ∪ B be
nonempty. Therefore, this is an M -partition (with M given in Figure 3) where there
are more complex restrictions on the sizes of the parts. Homogeneous sets also define
a decomposition (the “modular decomposition”) which facilitates the recognition of
comparability graphs (and other similar classes of graphs) [17, 40]. Homogeneous sets
(and modular decompositions) can be found efficiently [40]. The fact that minimal
imperfect graphs cannot have a homogeneous set was used by Lovász [38] to prove
the weak perfect graph conjecture.
Two generalizations of the homogeneous set partition have been used in the proof

of the strong perfect graph conjecture in [12]. They are the homogeneous pair and
the 2-join partitions. The matrices M corresponding to these two partition problems
are given below. Both problems require certain size restrictions.





∗ ∗ 1 0 1 0
∗ ∗ 1 0 0 1
1 1 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗









∗ ∗ ∗ 1 0 0
∗ ∗ ∗ 0 1 0
∗ ∗ ∗ 0 0 0
1 0 0 ∗ ∗ ∗
0 1 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗





Homogeneous pair 2-join

Chvátal and Sbihi [14] were the first to show that no minimal imperfect graph
contains a homogeneous pair and used this result to prove the perfectness of a class
of graphs. A polynomial time algorithm for the recognition of homogeneous pairs has
been given by Everett, Klein, and Reed [22]. 2-joins were first introduced in [15] and
also used to prove the perfectness of a certain class of graphs.
A number of other generalizations have been studied and used for proving the

perfectness of several graph classes [4, 9, 20, 15, 42, 48]; polynomial time algorithms
for finding these partitions can be found in [18, 19, 9, 15]. The most general of these
appear to be the concepts of universal 2-amalgam and universal 2-join [11]; they
include most of the generalizations, and are M -partitions with a matrix M of size 7,
and some (fairly involved) size constraints.
To capture all these additional requirements (that certain parts be nonempty, or

have at least a certain number of vertices, individually, or in groups, or have at least
some edges joining them, etc.), we shall introduce the concept of lists. In the list
version of a partition problem, each vertex of the input graph has a list of the parts in
which it is allowed to be placed. This gives us a wide variety of options in restricting
the contents of the individual parts or of their connections. For instance, in the case
of homogeneous sets, we may ensure that C has at least two vertices and A ∪ B is
nonempty by choosing three vertices x, y, z of the input graph and specifying that the
lists of x, y consist only of C and the list of z consists of A,B. Thus the problem of
finding a homogeneous set in a graph with n vertices is reduced to n3 list partition
problems. (A homogeneous set exists if and only if at least one of the n3 choices of
x, y, z has a desired list partition.) Analogously, one can ensure that there is at least
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one edge between parts X and Y by restricting (with the choice of lists) two adjacent
vertices x, y to be placed into X,Y , respectively, for all possible choices of an edge xy
in the input graph.

Concretely, let M be a fixed k-by-k matrix. Given a graph G, and for each
vertex v ∈ V (G) a set (“list”) L(v) ⊆ {1, 2, . . . , k}, we define a list M -partition of G,
with respect to the lists L, to be an M -partition A1, A2, . . . , Ak of G in which each
v ∈ V (G) belongs to a part Ai with i ∈ L(v). The list M -partition problem asks
whether or not an input graph G with lists L admits a list M -partition.

Both the basicM -partition problem (“Does the input graph admit anM -partition?”)
and the problem of the existence of an M -partition with all parts nonempty admit
polynomial time reductions to the list M -partition problem, as do all of the above
problems with more complex constraints.

List partitions generalize list colorings, which have proved to be very fruitful in
the study of graph colorings [1, 30]. They also generalize list homomorphisms (or list
H-colorings) which have brought a degree of order to the study of the complexity of
graph homomorphisms; cf. below. One reason why lists are useful is that they allow
us to solve problems by recursing to subproblems with modified lists. (This was also
exploited in the algorithms in [29, 10].)

List homomorphisms (or list H-colorings) [23, 24, 25] are close in spirit to list
partitions. A list H-coloring of a graph G is a list M -partition of G, where M is
obtained from the adjacency matrix of G by replacing all 1’s with ∗’s. A complete
classification of the complexity of list H-colorings, i.e., of the complexity of list M -
partition when M is a (0, ∗)-matrix, is given in the series of papers [23, 24, 25].
When all the diagonal entries ofM are ∗ (i.e., when H has all loops), the problem

is polynomial time solvable if H is an interval graph and is NP-complete otherwise
[23]. When all diagonal entries of M are 0 (i.e., when H has no loops), the problem
is polynomial time solvable if H is bipartite and its complement H is a circular arc
graph, and is NP-complete otherwise [24].

For general (0, ∗)-matrices M a complete classification is given in [25]. It again
relates to a kind of geometric representation of H. The important point for this paper
is that this classification implies that all list M -partition problems for (0, ∗)-matrices
M (i.e., all list H-coloring problems) are polynomial time solvable or NP-complete.
This kind of “dichotomy” is rare in general and is conjectured for the more general
context of constraint satisfaction problems in [27].

Similar comments apply to M -partitions where M is a (∗, 1)-matrix (cf. Proposi-
tion 2.7). This problem corresponds to a homomorphism problem among the comple-
mentary graphs (still a constraint satisfaction problem). The appealing feature of the
general M -partition problem is that it allows these homomorphism-type (constraint–
satisfaction-type) constraints on both edges and nonedges of the graph. In particular,
general list M -partition problems are not constraint satisfaction problems.

As the above examples illustrate, we are often interested in the complexity of
finding the desired partitions. This is the recurring theme of all of the above discus-
sion. In this paper, we shall focus on this aspect, although, of course, list partitions
offer other interesting questions.

The organization of the paper is as follows.

In section 2, we describe some basic techniques.

In section 3, we introduce sparse-dense partitions. Graphs which admit sparse-
dense partitions can be recognized efficiently if sparse and dense graphs can. Many
partition problems can be modeled as sparse-dense partitions, including many of our
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M -partitions, and we obtain polynomial time algorithms for several such problems.
In section 4, we investigate separator theorems. Motivated by a result of Lovász,

we derive several extensions which will be used later. This technique leads to subex-
ponential, but not necessarily polynomial, algorithms for certain M -partitions.
In section 5, we illustrate the use of our tools on some prominent example list

M -partition problems: the (2, 1)- and (2, 2)-graphs of Brandstädt, the clique cutset
problem, the skew cutset problem of Chvátal, and the two-clique cutset problem.
In section 6, we apply the techniques to classify the complexity of listM -partition

problems when the matrixM is small. All these problems are polynomial time solvable
whenM is a 2-by-2 matrix. For 3-by-3 matrices we classify the problems as polynomial
time solvable or NP-complete. When M is a 4-by-4 matrix, we are able to show that
all these problems are NP-complete or “quasi-polynomial.”
In section 7, we prove that if it is true (as conjectured in [27]; cf. also [25]) that all

constraint satisfaction problems are polynomial or NP-complete, then it also follows
that all list M -partition problems are quasi-polynomial or NP-complete.
We use the term quasi-polynomial for a function that is bounded by nc logt n =

2c logt+1 n for some positive constants c, t. While we, of course, prefer to find polyno-
mial time algorithms, we take the existence of a quasi-polynomial (time) algorithm as
evidence that the problem is not likely to be NP-complete. Indeed, no NP-complete
problem is known to be solved by a quasi-polynomial algorithm, and, since all NP-
complete problems are polynomially equivalent, a quasi-polynomial algorithm for any
one NP-complete problem would imply the existence of such algorithms for all NP-
complete problems.
Since the preliminary version of these results has been presented at STOC [26],

new results have appeared or been announced, such as [29, 10], discussed elsewhere in
this paper. In addition, further work has been done on list M -partitions for chordal
graphs [41, 35] and on list M -partitions when the matrix M is not necessarily sym-
metric (these are partitions of directed graphs) [44].

2. Basic tools. We begin by assembling some basic techniques. For some ma-
trices M , these are sufficient to solve the list M -partition problem in polynomial
time. We shall also use them in conjunction with other tools to be described in later
sections.
The most basic technique is the 2-satisfiability algorithm of [2]. Suppose first that

M is a 2-by-2 matrix seeking to partition the input graph into two parts, say A,B.
We can solve the list M -partition problem by introducing a boolean variable xv for
each vertex v of the input graph G; we think of the value of xv as encoding whether or
not the vertex v belongs to the part A of the partition (xv = 1 means v ∈ A; xv = 0
means v �∈ A). It is then easy to see that all the constraints, and lists, of the list
M -partition problem can be stated by polynomially many clauses with at most two
literals each. For instance, if A is to be a stable set (A = 0), we want to express the
constraint that adjacent vertices cannot both be in A; in other words, for any edge uv
we must have u �∈ A or v �∈ A. Therefore, we impose the constraint xu ∨ xv for every
edge uv of G. Similarly, if, say, A,B are to be completely adjacent (AB = 1), we
want to make sure that for any nonedge uv has u �∈ A or v �∈ B. Therefore we impose
the constraint xu ∨ xv for each nonedge uv of G. (Note that if uv is a nonedge, then
so is vu; thus we obtain a pair of clauses.) Finally, it is easy to encode the lists as
clauses of size 1—e.g., if the list of v is, say, B, we impose the constraint xv. Hence
the problem can now be solved by the 2-satisfiability algorithm [2].
The same technique applies any time we have an instance in which every list has
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size at most two. We simply view each list L(v) as an ordered set, and we interpret
xv = 1 to mean v belongs to the first member of its list and xv = 0 to mean it belongs
to the second member of its list.

Proposition 2.1. There is a polynomial time algorithm which solves any list
M -partition problem restricted to instances in which the list of every vertex of the
input graph has size at most two.

One other basic technique occurs in many places—the placing of a vertex. This is
one big advantage of lists—one can recurse to a smaller problem by deleting a vertex
and modifying the remaining lists. Suppose the input consists of the graph G with
lists L, and let v be a vertex of G. We may decide at some point to place a vertex v
into a part X (either because the list of v has only X in it or because we will consider
the other options later). This can be accomplished by removing v from the graph
and updating the lists of all the other vertices to take it into account. Specifically,
for all Y with XY = 0, we remove Y from the lists of all neighbors of v (they can no
longer be placed in Y ), and for all Z with XZ = 1, we remove Z from the lists of all
nonneighbors of v (for a similar reason). Call the resulting lists LvX .

Proposition 2.2. There is a list M -partition of the graph G with respect to the
lists L, with v ∈ X, if and only if there is a list M -partition of the graph G− v with
respect to the lists Lvx.

Suppose a row X ofM contains both a 0 and a 1, say XY = 0 and XZ = 1 (either
of Y and Z could be X; i.e., we could have X = 0, XZ = 1 or XY = 0, X = 1). In
this case we can reduce the list M -partition problem for an n-vertex input graph G
(with respect to lists L) to the following (at most n+ 1) subproblems.

First check whether or not the input graph G has a partition in which no vertex
lies in the partX, and then check for each vertex v of G which hasX in its list whether
or not G has a partition with v in X. The former can clearly be accomplished by
removing X from all lists (call the resulting lists L′), and the latter can be tested by
placing v in X and updating the lists of all other vertices of G as explained above.
Note that since XY = 0, XZ = 1, these updates will result in no list in LvX containing
both Y and Z.

Proposition 2.3. Suppose the matrix M has XY = 0, XZ = 1. Then the input
graph G admits a list M -partition with respect to lists L if and only if G admits a
list M -partition with respect to the lists L′ or if G− v admits a list M -partition with
respect to the lists LvX for some vertex v of G.

Corollary 2.4. Suppose the matrix M has XY = 0, XZ = 1. Then the list
M -partition problem can be reduced to one instance with no list containing X and at
most n instances with no list containing both Y and Z.

This is particularly useful when k = 3, as in this case all lists become size at most
two.

We say that X dominates Y in the matrix M if for each Z (possibly equal to
X and Y ) we have XZ = Y Z or XZ = ∗. If X dominates Y , we can eliminate Y
from any list containing X, since any vertex that goes to part Y can be placed to X
instead. Thus for an input graph G with lists L we may define the modified lists L′

obtained from L by removing Y from any list that contains X. (Note that this also
may, in some cases, result in all lists having size at most two.)

Proposition 2.5. If X dominates Y in the matrix M , then an input graph G
admits a list M -partition with respect to lists L if and only if it admits a list M -
partition with respect to lists L′.
Thus if X dominates Y , we may assume that no list contains both X and Y . In
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particular, when X dominates all other parts, we may assume that each list is either
just {X} or does not contain X. This allows us to drop X by placing all vertices with
lists {X}, as explained above, and reducing the matrix by eliminating the row and
column corresponding to X.
We say that a k-by-k matrix M contains a k′-by-k′ matrix M ′, k′ ≤ k if M ′ is a

principal submatrix of M . In other words, the parts of the M ′-partition problem are
a subset of the parts of the M -partition problem, with the same constraints on the
parts and their connections.

Proposition 2.6. If M contains M ′, and the list M ′-partition problem is NP -
complete, then so is the list M -partition problem.

Proof. We reduce the listM ′-partition problem to the listM -partition problem as
follows: Let G with lists L(v) ⊆ {1, 2, . . . , k′} be any instance of the list M ′-partition
problem. We may view the same graph G, with the same lists L, as an instance of
the list M -partition problem as well, since each L(v) ⊆ {1, 2, . . . , k′} ⊆ {1, 2, . . . , k}.
Clearly, G with lists L admits a list M ′-partition if and only if it admits a list M -
partition.
The complement M of a matrix M is obtained from M by replacing each 0 by 1

and each 1 by 0 (asterisks remain unchanged).
Proposition 2.7. A graph G admits a list M -partition, with respect to the lists

L, if and only if its complement G admits a list M -partition with respect to the same
lists L.
We close this section by formally stating the observations made in the preceding

section, summarizing the relevant results of [23, 24, 25].
Proposition 2.8. If M is a (0, ∗)-matrix or a (1, ∗)-matrix, then the list M -

partition problem is polynomial time solvable or NP -complete.

3. Sparse-dense partitions. We now introduce a class of problems which will
be useful for several M -partition problems and which are interesting in their own
right.
Let S and D be two classes of graphs. We say that S is the class of sparse graphs

and D the class of dense graphs if S and D satisfy the following constraints:
• Both S and D are closed under taking induced subgraphs.
• There exists a constant c such that the intersection S ∩ D has at most c
vertices for any S ∈ S and D ∈ D.

In a given graph G, we say that a set of vertices is sparse (dense) if the subgraph
of G they induce is sparse (respectively dense) with respect to some classes S, D of
sparse and dense graphs.
A sparse-dense partition of a graph G, with respect to the classes S and D of

sparse and dense graphs, is a partition of V (G) into two parts V (G) = S ∪ D such
that S ∈ S (S is sparse) and D ∈ D (D is dense).
Sparse-dense partitions are inspired by split graphs. Indeed, we may take S to

consist of all edgeless graphs (stable sets) and D to consist of all complete graphs
(cliques). It is clear that both D and S are closed under taking induced subgraphs,
and as an S ∈ S and a D ∈ D have at most one vertex in common, we can take c = 1.
A graph has a sparse-dense partition with respect to this choice of S,D if and only
if it can be partitioned into a stable set and a clique, i.e., if and only if it is a split
graph.
There are a number of other situations conveniently modeled by sparse-dense

partitions. Several are described at the end of this section. Let us just mention the
following typical examples:
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(a, b)-graphs. Let S consist of all a-colorable graphs, and let D consist of all
graphs whose complements are b-colorable; we can take c = ab.

Partitions into a graph with clique-size at most a and a graph with stable-set-size
at most b. Let S consist of all graphs without cliques of size a+ 1, and let D consist
of all graphs without stable sets of size b+ 1. The constant c can be taken to be the
Ramsey number R(a+ 1, b+ 1), as is explained in Proposition 3.3 below.

Partitions into a planar graph and a clique. Just to illustrate the range of possi-
bilities, we may define S to consist of all planar graphs and define D to consist of all
complete graphs. Kuratowski’s theorem implies that we can take c = 4.

In [8] the authors consider a number of partition problems with similar flavor, e.g.,
into a stable set and a tree (NP-complete), a stable set and a trivially perfect graph
(NP-complete), or a stable set and a threshold graph (polynomial time solvable). The
latter satisfies the conditions for a sparse-dense partition and can in fact be solved by
our technique; cf. [8].

In most of our examples, the classes S,D are recognizable in polynomial time. (Of
the above examples, only the (a, b)-graphs with a ≥ 3 or b ≥ 3 are an exception.) It
turns out that in such a case the existence of a sparse-dense partition can be decided
in polynomial time. In fact, in such a case all sparse-dense partitions can be found in
polynomial time.

Theorem 3.1. Let S,D be classes of sparse and dense graphs respectively.

A graph on n vertices has at most n2c different sparse-dense partitions.

Furthermore, all these partitions can be found in time proportional to n2c+2T (n),
where T (n) is the time for recognizing sparse and dense graphs.

Proof. Let V (G) = S ∪D be a particular sparse-dense partition. Then any other
sparse-dense partition V (G) = S′ ∪ D′ has |S′ ∩ D| ≤ c and |S ∩ D′| ≤ c, so S′ is
obtained from S by deleting at most c vertices and inserting at most c new vertices.
In fact, if we allow ourselves to insert back a vertex that has just been deleted, we can
say that we make exactly c deletions and exactly c insertions. Each of these at most 2c
operations can be made in at most n ways. This observation proves the first assertion
and allows us to find all sparse-dense partitions if one such partition is known. It
amounts to a 2c-local search (the current S is changed in at most 2c vertices), during
which one set is tested for sparseness and one set is tested for denseness; thus it can
be performed in time n2c times 2T (n).

It remains to explain how to find the first sparse-dense partition. The algorithm
proceeds in two phases. The first phase attempts to find as large a sparse set as
possible. This is based on the observation that if V (G) = S ∪ D is a sparse-dense
partition and S′ a sparse set smaller than S, then S′ ∩D has at most c vertices, and
hence, as above, S′ can be enlarged by removing some c vertices and inserting some
c+ 1 new vertices (recall that subsets of sparse sets are sparse). Thus, starting with
any sparse set (for instance, the empty set), we can increase its size by performing a
(2c+ 1)-local search (making all possible c deletions and c+ 1 insertions and testing
if the result is sparse) in time n2c+1T (n). After performing this operation at most
n times, we reach a situation where the current sparse set can no longer be enlarged
in this way. Clearly, at this point our current sparse set S′ has the same size as the
(unknown) set S.

The second phase of the algorithm attempts to change S′, without changing its
size, until V (G) − S′ is dense. This is accomplished by a 2c-local search, based on
a very similar principle—namely, if V (G) = S ∪ D is a sparse-dense partition and
|S| = |S′|, then S is obtained from S′ by a deletion of c vertices and the insertion of
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c other vertices. Thus we can test all n2c possible new sets S′ for sparseness and the
corresponding V (G) − S′ for denseness, and if no sparse-dense partition is found we
can be sure none exists.
The most time-consuming operation is the first phase of the algorithm, finding

one sparse-dense partition—taking time n2c+2T (n).
In cases where computing T (n) is hard (such as (a, b)-graphs with a or b at least

3), it also turns out to be hard to decide if a sparse-dense partition exists.
Proposition 3.2. Suppose that the disjoint union of sparse graphs is also sparse.

If testing for sparse graphs is NP -complete, then the partition problem into sparse and
dense graphs is also NP -complete.

Proof. Suppose we wish to test whether G is sparse. We can construct G′ by
taking the disjoint union of c+1 copies of G. Then G′ has a sparse-dense partition if
and only if G is sparse. Indeed, if G is sparse, then G′ is sparse by the assumption.
On the other hand, if G′ admits a partition, then our algorithm from the proof of
Theorem 3.1 will find a pair (S,D) where D has at most c vertices. Therefore, one of
the copies of G is contained in S, so G is sparse.
We have defined sparse and dense subgraphs with respect to each other, since the

definition depends on the existence of a constant c bounding their intersections. The
next result shows that we can define sparse and dense graphs independently, under
the assumption that stable sets are always sparse and cliques are always dense.

Proposition 3.3. Suppose S is a class of graphs sparse with respect to the cliques
(with a constant a), and suppose D is a class of graphs dense with respect to the stable
sets (with a constant b). Then S,D are sparse and dense with respect to each other,
with some associated constant c.

Proof. The intersection of S ∈ S and D ∈ D is sparse, and hence cannot contain
an (a+1)-clique, and is also dense and thus cannot contain a (b+1)-stable set. Such
a graph has its number of vertices bounded by the Ramsey number c = R(a+1, b+1)
(cf. [46]).
This result makes it easy to find additional examples of sparse and dense classes.

Examples of sparse classes (with respect to cliques) are stable sets, bipartite graphs,
(c+1)-clique-free graphs, planar graphs, and c-colorable graphs. (The last one is NP-
complete for c ≥ 3, and the remaining are polynomial time solvable.) Examples of
dense classes (with respect to stable sets) can be obtained by taking complements, e.g.,
cliques, cobipartite graphs, graphs without (c+1)-stable sets, complements of planar
graphs, and complements of c-colorable graphs. Combining any one of the former
with any one of the latter produces a sparse-dense pair of families. In particular, this
shows that the earlier example where sparse sets have clique-size at most a and dense
sets have stable-set-size at most b satisfies the requirements.

4. Separators. Some partition problems on G can be solved by considering all
maximal cliques of G: for example, to decide if a graph is a split graph we can test the
complements of all maximal cliques to see if any are stable. Indeed, if C is a clique and
S a stable set, some maximal clique (or maximal clique with one vertex deleted) of G
always “separates” C from S in the sense that it contains C and is disjoint from S.
Unfortunately, in general the number of maximal cliques is exponential. (The graph
K2n−nK2 has 2

n maximal cliques.) The following result of Lovász asserts that there
always exists a subexponential family of sets that separate cliques and stable sets.
Such separators turn out to be surprisingly useful for list M -partitions.
Let G be a graph. A family E of subsets of V (G) is said to separate cliques and

stable sets if for any pair of disjoint sets C, S, such that C is a clique and S is a stable
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set in G, some E ∈ E contains C and is disjoint from S.
Lovász’s subexponential bound turns out to be quasi-polynomial, as do our gen-

eralizations of it. It is not known whether or not the bound can be improved to a
polynomial.

Theorem 4.1 (see [37]). Every graph with n vertices has a family of n
1
2 log n sets

that separate cliques and stable sets.
Moreover, such a family can be found in time n

1
2 logn times a polynomial in n.

Proof. The bound actually given in [37] is 2(
1+log(n+1)

2 ) ≤ n
1
2 logn. It is couched in

terms of communication complexity (as a communication game); cf. also [26]. Here
we describe a more combinatorial view of the proof. For simplicity we will prove only
a weaker bound of nlogn sets (found in time nlogn times a polynomial in n). The
bound as given in [37], and as claimed in the theorem, is a direct corollary of our
Theorem 4.7, obtained by setting t = 2. We choose to give the proof (of the weaker
bound) in detail because it will allow us to explain how the proof needs to be modified
to obtain our generalizations.
The idea of the proof is to obtain a family of sets E which are sufficient to separate

cliques and stable sets, and which can be described “concisely”—and hence are not
too numerous.
Suppose C is a clique and S is a disjoint stable set in G. A valid encoding of the

pair C, S will be a sequence v1, v2, . . . , vk of vertices of G obtained as follows.
Let G0 = G. At any stage, ni will denote the number of vertices of the graph Gi.
Suppose Gi−1 has already been defined. Then we define vi and Gi by either of

the following two pairs of rules:
• vi is a vertex of S whose degree in Gi−1 is greater than ni−1/2,
• and Gi is the graph obtained from Gi−1 by deleting vi and all its neighbors;
or
• vi is a vertex of C whose degree in Gi−1 is smaller than or equal to ni−1/2,
• and Gi is the graph obtained from Gi−1 by deleting vi and all vertices which
are not neighbors of vi.

Since at each step we remove more than half of the vertices, Gi becomes empty
for i > log n, and we may assume that k ≤ log n. (All logarithms in this paper are
base two.) At the end of the process all degrees in C are too high and all degrees in
S too low.
We now claim that any valid encoding of a pair C, S determines a set E which

contains C and is disjoint from S. Equivalently, we will find two complementary sets
E = C+ and E = S+ such that C+ contains C and S+ contains S. To obtain C+, S+

we decode the sequence v1, v2, . . . , vk as follows.
Let C+

0 = S+
0 = ∅. At any stage, C+

i , S
+
i will be disjoint, Gi will be the graph

obtained from G by deleting C+
i and S

+
i , and ni will denote the number of vertices

of Gi.
If C+

i−1, S
+
i−1 have already been defined, we consider the degree d of vi in Gi.

• If d > ni/2, then we add vi to S
+
i−1 and all its neighbors to C

+
i−1, thus forming

new C+
i , S

+
i ;

• otherwise (d ≤ ni/2), we add vi to C
+
i−1 and all the vertices that are not its

neighbors to S+
i−1, creating in this way new C

+
i , S

+
i .

Once all vi have been processed, we form C+ by adding to C+
k all the remaining

vertices of Gk of high degree in Gk, that is, of degree in Gk greater than nk/2, and
form S+ by adding to S+

k all the other vertices (of degree at most nk/2 in Gk). Note
that S+ is the complement of C+.
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Since the decoding process reverses the steps of the encoding, the resulting set
C+ contains C, and the resulting set S+ contains S. Indeed, if v = vi ∈ C for some i,
it was chosen as vi since its degree in Gi−1 was high, and hence is placed in C

+ in the
decoding process. A similar argument applies if v = vi ∈ S. Otherwise the degree of
v ∈ C in Gk is low, and the degree of w ∈ S is high, so once again they are correctly
placed in C+, S+, respectively.

Let E denote the set of all sets C+ produced by this decoding process from all
possible sequences v1, v2, . . . , vk, k = �log n�. Then E separates cliques and stable
sets, since for each clique C and stable set S some sequence is the encoding of C, S.
Moreover, E has at most nk = nlogn elements.

We remark that to obtain the better bound (2(
1+log(n+1)

2 ) ≤ n
1
2 logn) we would

describe the separators by binary sequences, as is explained in the proof of Theorem
4.7. (Recall that the better bound actually follows from Theorem 4.7 by letting t = 2.)

We have several generalizations of the theorem, which we will use to solve certain
M -partition problems.

Let G be a graph. A clique-pair (or a skew set) in G is a pair of disjoint sets A,B
of vertices of G such that each a ∈ A is adjacent in G to each b ∈ B. A stable-pair (or
a disconnected set) in G is a pair of disjoint sets A,B such that no a ∈ A is adjacent
in G to any b ∈ B. Note that when A = Ai, B = Aj are parts of an M -partition,
then a clique-pair Ai, Aj corresponds to mi,j = 1 and a stable pair Ai, Aj to mi,j = 0.
Thus cliques and stable sets are 1’s and 0’s (respectively) on the diagonal of M , and
clique-pairs and stable-pairs are 1’s and 0’s (respectively) off the diagonal of M .

Let G be a graph. We say that a family E of subsets of V (G) separates cliques and
stable-pairs if for any pair C, (A,B), where C is a clique and (A,B) is a stable-pair,
such that C and A∪B are disjoint, some E ∈ E contains C and is disjoint from A or
disjoint from B. Similarly, we say that E separates clique-pairs and stable-pairs if, for
any pair (A,B), (C,D), where (A,B) is a stable-pair and (C,D) is a clique-pair, such
that A,C are disjoint and B,D are disjoint, some E ∈ E contains C and is disjoint
from A, or it contains D and is disjoint from B.

Theorem 4.2. Every graph with n vertices has a family of nlogn sets that separate
clique-pairs and stable-pairs.

Moreover, such a family can be found in time nlogn times a polynomial in n.

Proof. Suppose that A,B is a stable pair, and C,D is a clique pair, in a graph
G, and that A ∩ C = B ∩ D = ∅. We again define a valid encoding. Having seen
the complete details above, we make the description here more concise. Thus a valid
encoding of the pair (A,B), (C,D) will be a sequence v1, v2, . . . , vk of vertices of G
obtained as follows: There will be two auxiliary sets U,W of vertices, initially both
equal to V (G). At each stage i, we define the vertex vi ∈ U to be either

• a vertex of A of high degree in W , i.e., adjacent to more than one half of the
vertices in W ,
• and remove from U the vertex vi, and remove from W all the neighbors of vi;

or

• a vertex of C of low degree in W, i.e., adjacent to at most one half of the
vertices in W ,
• and remove from U the vertex vi, and remove from W all its nonneighbors.

Since the size of the set W is halved at each stage, we may again assume that
k < log n. At the end of the process we again have all vertices of U in A have their
degree in W too low and all vertices of U in C have their degree in W too high.

The decoding process is a little different. We shall be building two complementary
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pairs of sets, A+, B+ = A+ and C+, D+ = C+, such that A ⊆ A+, C ⊆ C+ or
B ⊆ B+, D ⊆ D+. Initially all four sets A+, B+, C+, D+ are empty. We also have
auxiliary sets U,W , both initially equal to V (G), similar to the ones from the encoding
procedure. We process the vertices v1, v2, . . . , vk in this order. Once vi−1 has been
processed, we consider the degree of vi with respect to W .

• If vi has high degree in W , we place it in A+ and put all its neighbors in D+,
removing vi from U and its neighbors from W .

• If vi is of low degree, we place it in C+ and put all its nonneighbors in B+,
removing vi from U and its nonneighbors from W .

Note that A+, C+ are disjoint, and so are B+, D+ (but A+ could have common
elements with either B+ or D+).

Once all vi have been processed, one of two things can happen: Either W has
become empty, which means that every vertex is either in B+ or in D+, and so we
have a pair of complementary sets B+, D+ with B ⊆ B+, D ⊆ D+, or W is still
nonempty. In the latter case we know that we can place all vertices of high degree in
W into the set C+ and all vertices of low degree in W into the set A+; thus every
vertex belongs to either C+ or A+, and so we have a pair of complementary sets
A+, C+ with A ⊆ A+, C ⊆ C+, as claimed.

Let E be the family of all sets C+ andD+ obtained from all sequences v1, v2, . . . , vk.
It follows that E separates clique-pairs and stable-pairs.
An argument similar to that given for Theorem 4.2 will show the following.

Theorem 4.3. Every graph with n vertices has a family of nlogn sets that separate
cliques and stable-pairs.

Moreover, such a family can be found in time nlogn times a polynomial in
n.

There is an important special case of this last theorem. For cliques and stable-
pairs that partition the vertices of G, there is a polynomial separating family.

Theorem 4.4. For every graph G with n vertices there exists a family of n sets,
which separates all cliques C and all stable-pairs (A,B) with the property that A,B,C
partition V (G).

Moreover, such a family of separators can be found in polynomial time.

Proof. Let G′ be a minimal chordal extension of G, and let v1, v2, . . . , vn be a
perfect elimination ordering of G′. A minimal chordal extension of an arbitrary graph,
and a perfect elimination ordering of a chordal graph, can be found in polynomial
time [32]. It follows from the definition of a perfect elimination ordering that, for
each i = 1, 2, . . . , n, the set Ei consisting of vi and all vj , j ≥ i, adjacent to vi induces
a clique in G′. Moreover, each clique of G′ is contained in one of the cliques Ei,
namely one with i being the first subscript such that vi is present in the clique. We
claim that the family E = {E1, E2, . . . , En} satisfies the statement of the theorem.
Thus suppose C is a clique in G and (A,B) is a stable-pair in G such that A,B,C

partition V (G). Since G′ is a minimal chordal extension of G, it cannot have an edge
joining a vertex of A to a vertex of B [42]. (Indeed, G′ with all such edges deleted will
still be a chordal extension of G, since any cycle in it that contains both a vertex of
A and a vertex of B goes twice through the clique C, and hence has a chord.) Thus
(A,B) is also a stable pair in G′, and, of course, C is also a clique in G′. Thus some
Ei contains C and is disjoint from A or from B.

This result illustrates that it is sometimes possible to find polynomial separating
families. It is not known whether the quasi-polynomial bounds in Theorems 4.1, 4.2,
and 4.3 can be improved to polynomial bounds.
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Here is how we can use these results to reduce certain complex list partition
problems to simpler ones.

Corollary 4.5. Suppose M has XZ = 0 and YW = 1. Then the list M -
partition problem reduces to nlogn instances, each of which has no list containing
{X,Y } or no list containing {Z,W}.

In the special case Z = X,W = Y , i.e., X = 0 and Y = 1, the number of
instances can be reduced to n

1
2 logn (Theorem 4.1).

In the special case X = Y , i.e., XZ = 0 and XW = 1, the number of instances
can be reduced to just n + 1, with one instance having no list containing X and n
instances having no list containing both Y and Z (Corollary 2.4).

Proof. Suppose first that X,Z, Y,W are all different. Then any M -partition of
an input graph G contains the clique-pair (Y,W ) and the disjoint stable-pair (X,Z).
According to Theorem 4.2 there is a family of nlogn sets E that separate all clique-
pairs from all stable-pairs. For each set E we obtain two instances—in one we remove
X from all vertices in E and Y from all vertices not in E, and in the other we remove
Z from all vertices in E andW from all vertices not in E. The other cases are treated
similarly.

We may define separators also in the sparse-dense model: A family E separates
dense sets and sparse sets if for any pair of disjoint sets D (dense) and S (sparse)
there is a set E ∈ E which contains D and is disjoint from S.

The next result concerns the case when sparse subgraphs are the a-colorable
subgraphs and dense subgraphs are the complements of b-colorable subgraphs.

Theorem 4.6. Every graph with n vertices has a family of n
1
2ab logn sets that

separate the a-colorable subgraphs and the complements of b-colorable subgraphs.

Moreover, such a family can be found in time n
1
2ab logn times a polynomial in n.

Proof. We have already observed that a sparse graph can meet a dense graph in
at most c = ab vertices.

We know that n
1
2 logn separators E are sufficient to separate each stable set from

each clique. If we separate each of the a stable sets from a sparse subgraph and each
of the b cliques from a dense subgraph, we obtain c = ab such sets E. We can then
construct a separator E′ for the sparse and dense subgraphs by taking, for each of
the b cliques, the intersection of the a separators E corresponding to the a stable sets
and then letting E′ be the union of the b intersections corresponding to the b cliques.
Since there are at most n

1
2 logn separators E, and the separator E′ is constructed from

c = ab such separators, the n
1
2 c logn bound follows.

Our last generalization concerns the case when sparse subgraphs are the (a+ 1)-
clique-free subgraphs, and dense subgraphs are the (b+ 1)-stable-set-free subgraphs.
Note that if we know that all stable sets are sparse and all cliques are dense, then
sparse graphs are (c+1)-clique-free, and dense graphs are (c+1)-stable-set-free. Thus
the following result can be used in all such situations; in particular, it can be used
when a = b = 1, i.e., for separating cliques and stable sets. We take this opportunity
also to refine the arguments to obtain the better bounds.

Instead of using sequences of vertices to describe the separators, we shall be using
binary sequences—we simply represent each vertex by a binary sequence. The number
of such sequences is then 2 power the length of the sequence.

The bound in the theorem is less than 2[log
(a+b) n]/[(a+b)!], which for the case

a = b = 1 equals 2[log
2 n]/2 = n

1
2 logn.

Theorem 4.7. Every graph with n vertices has a family of 2C(a+b,n) sets that
separate the (a + 1)-clique-free subgraphs and the (b + 1)-stable-set-free subgraphs,
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where

C(t, n) ≤
(
t+ log(n+ 1)

t

)
− 1− log(n+ 1)

is the solution of the recurrence

C(t, 0) = 0,

C(1, n) = 0,

C(t, n) = log(n+ 1) + max
n/2<d<n

C(t− 1, d) + C(t, n− d− 1).

Moreover, such a family can be found in time 2C(a+b,n) times a polynomial in n.

Proof. We shall encode the sparse-dense pairs by binary sequences. Equivalently,
we may talk of sequences of vertices as before, but we count each vertex as having
a certain length. In fact, for this proof the sequences will use one additional special
symbol, %. Thus, together with the n vertices of the input graph, we will have n+ 1
different symbols, and we will encode these by giving each symbol a different binary
sequence of length log(n + 1). With this measure of length, we shall show how to
represent separators by sequences of length C(a+ b, n).

The description is as follows. Suppose G is a given graph, and S,D is a disjoint
pair of sets, where S is (a+ 1)-clique-free and D (b+ 1)-stable-set-free.

Suppose first that there is a vertex v ∈ S of degree d > n/2. We shall describe the
separator by first giving the binary sequence for v, followed by two binary sequences,
one describing the pair S′ = S ∩N,D′ = D∩N , where N is the set of neighbors of v,
and the other describing the pair S′′ = S−S′, D′′ = D−D′. In the decoding process,
we will be able to tell that v ∈ S and recursively decode the two subsequences to
produce a correct separator for S,D in G. Note that the first sequence has length at
most C(a− 1 + b, d) ≤ C(a− 1 + b, n), since S′ must be a-clique-free (being a subset
of S and completely adjacent to v ∈ S). On the other hand, the second sequence has
length at most C(a+ b, n− d− 1) ≤ C(a+ b, �n/2�).
Similarly, if there is a vertex w ∈ D of degree d ≤ n/2, then the description will

start with the binary sequence for w, followed by two sequences, one for the n− d− 1
nonneighbors of w and the other one for the d neighbors of w. The lengths of these
sequences are again C(a + b − 1, n − d − 1) ≤ C(a + b − 1, n) and C(a + b, d) ≤
C(a + b, �n/2�). Here we have used the fact that if w is not adjacent to any of the
vertices in D, then removing it decreases the size of the largest stable set by one.

If neither v or w can be found, then we can define the separator to consist of all
the vertices of degree greater than n/2. It is easy to see that this set contains D and
is disjoint from S. We shall use the special symbol % to indicate in the sequence that
this is the case. (We need such an indication when recursively decoding the sequence.)

If a + b = 1, then a = 0 and the sparse graph is empty, or b = 0 and the dense
graph is empty.

Thus, we have the recurrence stated in the theorem, which can be bounded by

C(t, n) ≤ log(n+ 1) + C(t− 1, n) + C(t, �n/2�).
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The bound on C(t, n) follows by induction, with base cases

(
t+ log 1

t

)
− 1− log 1 = 0,

(
1 + log(n+ 1)

1

)
− 1− log(n+ 1) = 0

and inductive case

(
t+ log(n+ 1)

t

)
=

(
t− 1 + log(n+ 1)

t− 1
)
+

(
t+ log(n+1

2 )

t

)

and log(n+ 1) = 1 + log(n+1
2 ).

5. Example applications. In this section we shall illustrate the general tech-
niques of the preceding sections on some important examples. In the following section
we treat all the remaining partition problems with at most four parts. We give the
proofs in this section in full detail, allowing us to abbreviate the similar proofs given
in the next section.

5.1. The list version of generalized split graphs. We first return to the
case of generalized split graphs. Recall that G is an (a, b)-graph if its vertices can
be partitioned into a stable sets A1, A2, . . . , Aa and b cliques Aa+1, Aa+2, . . . , Aa+b,
i.e., if and only if G has an M -partition where M is an (a + b) by (a + b) matrix
with all off-diagonal entries equal to ∗ and with the first a diagonal entries equal to 0
and the last b diagonal entries equal to 1. We shall show how Theorem 3.1 implies a
polynomial time algorithm to recognize (a, b)-graphs when a, b ≤ 2. In fact, we shall
solve the list version of these problems.

Corollary 5.1. If both a ≤ 2 and b ≤ 2, then the list M -partition problem is
polynomial time solvable. Otherwise it is NP -complete.

Proof. First we note that if a ≥ 3, then the list M -partition problem is NP-
complete, since we can decide whether or not an input graph G is 3-colorable by
endowing all its vertices with the list {1, 2, 3} and asking whether or not it has a list
M -partition. (If b ≥ 3, the proof is similar.)
Thus assume that both a ≤ 2 and b ≤ 2. Let S be the class of all a-colorable

graphs, and let D be the class of all graphs with b-colorable complements. Note that
both classes can be recognized in polynomial time. According to Theorem 3.1 we can
generate, in polynomial time, all sparse-dense partitions of any input graph G.
Suppose G with lists L is an instance of the list M -partition problem. For each

sparse-dense partition of G, we update the lists of the vertices as follows: If v belongs
to the sparse part (A1∪A2∪· · ·∪Aa) we remove all elements of {a+1, a+2, . . . , a+b}
from L(v) (if present). If v belongs to the dense part (Aa+1 ∪ · · · ∪Aa+b) we remove
all elements of {1, 2, . . . , a} from L(v) (if present). The resulting instance has all
lists of size at most two, and hence can be solved by 2-satisfiability (see Proposition
2.1). (Note that it is possible that some lists have become empty.) It is clear that G
has a list M -partition with respect to the original lists L if and only if it has a list
M -partition with respect to at least one of the modified lists.
The corollary yields algorithms for all the polynomial generalized split graph

recognition problems [5, 8]. Specifically, it gives polynomial time algorithms for the
recognition of split graphs, (2, 1)-graphs, (1, 2)-graphs, and (2, 2)-graphs. All other
(a, b)-graph recognition problems are NP-complete [5, 8].
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5.2. The list clique cutset problem. The best known polynomial time solv-
able three-part partition problem is the clique cutset problem, i.e., C = 1, AB = 0, all
others ∗. In [26] we have shown that the list version of this problem can be reduced, in
polynomial time, to the list-free version solved by polynomial time algorithms of Tar-
jan [42] and Whitesides [47, 48]. Here we give a direct polynomial time algorithm for
the list clique cutset problem. It is motivated by the original algorithms [42, 47, 48],
and it follows from one of our separator theorems—Theorem 4.4.

Corollary 5.2. There is a polynomial time algorithm for the list clique cutset
problem.

Proof. The theorem yields a polynomial size family E such that whenever an
input graph G has a partition A,B,C with C = 1, AB = 0, some E ∈ E contains C
and is disjoint from A or from B. Thus for each E from the family we will do two
tests: In both tests, we remove C from all the lists of the vertices that do not belong
to E. For the vertices that belong to E, we remove A in the first test and B in the
second test. This ensures that if a partition exists, one of the tests will succeed. Each
test can be performed in polynomial time by Proposition 2.1.

5.3. The list skew cutset problem. The best known four-part partition prob-
lem is the skew cutset problem, i.e., AC = 0, BD = 1, and all others ∗. The complex-
ity of this problem was a well-known open problem in the theory of perfect graphs
[13]. In [26] we presented the first subexponential algorithm for the problem, strongly
suggesting that it was not NP-complete. Since then, a polynomial algorithm has been
found by one of us (Klein), with de Figueiredo, Kohayakawa, and Reed [29]. It is
worth noting that although the algorithm uses a different technique from the ones
given here, it still very much uses the flexibility of recursively reducing the problem
by modifying the lists. Our algorithm, presented below, is a simple application of The-
orem 4.2. Conceivably, this simplicity could be exploited for a possible subexponential
algorithm for perfect graph recognition based on [12].

Corollary 5.3. The list skew cutset problem can be solved in time nlogn times
a polynomial in n.

Proof. Since (B,D) is a clique-pair, and (A,C) is a disjoint stable-pair, we can
apply Theorem 4.2. For each E from the family E generated by the theorem we
perform two tests: The first test checks whether E contains B and is disjoint from
A, thus deleting A from all the lists of the vertices that belong to E and deleting B
from the vertices that do not belong to E. The second test assumes that E contains
D and is disjoint from C, also updating the lists accordingly. During the first test, no
list has both A and B. If at any point a vertex has a list of size one, we eliminate it
and restrict its neighbors and nonneighbors accordingly. If no list becomes empty, we
arrive at a situation where every vertex has a list of size at least two but never contains
both A and B. This means that every list contains C or D. But C = D = CD = ∗,
so we can freely choose to put all vertices to either C or D, according to their lists.
The second test is done similarly. If both tests fail for all E from the family E , then
there is no solution by Theorem 4.2. The tests treats 2nlogn cases with restricted lists
(no lists containing {A,B} or no lists containing {C,D}), each case being polynomial
time solvable.

5.4. The list two-clique cutset problem. As an application of Theorem 4.3
we give a quasi-polynomial bound for the two-clique cutset problem, that is, AC =
0, B = D = 1, all others equal to ∗. This example is also interesting because it
illustrates how we can use a separator theorems twice. (This is a recurring theme in
the general classification of matrices with k = 4.)
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Corollary 5.4. The list two-clique cutset problem can be solved in time n2 log n

times a polynomial in n.
Proof. Let E be a family of nlogn sets that separates cliques and stable pairs,

as guaranteed by Theorem 4.3. If the input graph G admits a partition as specified
above, then some E1 will contain B and be disjoint from A or C, and some E2 will
contain D and be disjoint from A or C. For any two elements E1, E2 of E , we shall
make four tests: In the first test we assume that E1 contains B and is disjoint from
A, while E2 contains D and is also disjoint from A; in the second test we assume E1

contains B and is disjoint from A, while E2 contains D and is disjoint from C. The
third and fourth tests are defined similarly (assuming that E1 is disjoint from C). As
before, the tests are performed by correspondingly modifying the lists of the elements
inside or outside of E1, E2, respectively. The second test results in all lists of size
two, as does one of the last two tests; these can be solved again by Proposition 2.1.
Consider the first test (the remaining test is done similarly). No list has both A,B
and no list has both A,D. If there are any lists of size three, they must be {B,C,D}.
We can again assume that there are no lists of size one. We are now in the following
situation: If a list has no C, then it must be {B,D}. Since C = BC = BD = CD = ∗,
we can complete the test by placing all vertices that have C in their list to C and
checking that those vertices with lists {B,D} can be partitioned into two cliques, i.e.,
that the graph they induce has a bipartite complement.
We have been informed [10] that a polynomial algorithm for this problem has

been constructed along the lines of [29].

6. Classifications for small matrices M . Recall that most of our motivating
examples ofM -partitions dealt with small values of k. Split graphs have k = 2; stable
set partition, clique partition, and homogeneous set have k = 3; skew partition and
the problem of Winkler have k = 4; and so on (cf. Figures 2 and 3). This suggests
a systematic investigation of M -partition problems with small k. Here, we focus on
the case k ≤ 4.
When k = 2, all listM -partition problems are polynomial time solvable by Propo-

sition 2.1.
Theorem 6.1. Suppose the size of M is k = 3. Then the list M -partition problem

is NP -complete when M or its complement is the matrix of 3-coloring or the stable
cutset problems (Figure 3), and it is polynomial time solvable otherwise.

Proof. The NP-complete cases are standard results [31, 28].
Consider a matrix M with rows A, B, and C and connections AB, AC, and BC,

which is different from the four exceptional matrices described in the theorem. We
may assume that M is connected; thus at most one of the connections is 0, and, by
complementation, at most one of the connections is 1. We may also assume that no
row has both a 0 and a 1; cf. Corollary 2.4 and Proposition 2.1. In particular, we do
not have both a connection of type 0 and a connection of type 1. Thus without loss of
generality we may assume that AC = BC = ∗. In that case we may also assume that
C �= ∗; otherwise C dominates all other rows, and we can eliminate it as explained
after Proposition 2.5.
If each part A, B, and C is of type either 0 or 1, and not all are the same type,

then the problem is polynomial time solvable by Theorem 3.1, since after we have
decided which vertices go to parts of type 0 and which to parts of type 1, we are left
with each list of size one or two.
If AB = ∗ as well, then we also have A,B �= ∗, and so we may assume that all

three values A, B, and C are the same, either 0 or 1. This is impossible, as M is
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matrix different from the matrix of 3-coloring and its complement.

Up to complementation we may assume that AB = 0. We may also assume that
A,B �= 1; otherwise we have a row with both a 0 and a 1. If one of A and B domi-
nates the other, we reduce all lists to size at most two. The only other possibility is
that A = B = ∗. Since M is not the matrix of the stable cutset problem we conclude
that C = 1; i.e., it is the matrix of the clique-cutset problem solved in the previous
section.

We now proceed to discuss matrices of size k = 4. It will be easier to deal first
with matrices M which have no ∗’s on the main diagonal.

Theorem 6.2. Suppose M is of size k = 4, and assume it does not contain any
∗’s on the main diagonal.

• If M contains the matrix corresponding to 3-coloring or its complement, then
the list M -partition problem is NP -complete.

• Otherwise the list M -partition problem is polynomial time solvable.

Proof. The first statement follows from Propositions 2.6 and 2.7. Thus assume
that M does not contain the matrix corresponding to 3-coloring or its complement.

If there are two parts of type 0 and two of type 1, we proceed as in the case of k =
3, solving, for each sparse-dense partition, the remaining problem by 2-satisfiability.
If there are three parts of type 0 and one part of type 1 (a similar argument applies
when there are three 1’s and one 0), then we proceed the same way, since the three
0 parts do not yield 3-coloring and all other three-part problems without a diagonal
1 are polynomial time solvable. Once the vertices that go to the part of type 1 are
known, we can remove them, modifying the remaining lists, and solve the three-part
subproblem.

By complementation, we may now assume that all four parts are of type 0.

Suppose there are two disjoint connections of type 1, say AB = CD = 1. Then
we may try to place two vertices—v into A and w into C: for vertices adjacent to
both v and w we can remove A and C from the lists, for those nonadjacent to both
we can remove B and D, for those adjacent to v but not to w we can remove A and
D, and for those adjacent to w but not to v we can remove B and C. Thus we can
reduce the problem to the following polynomial time solvable instances: One instance
with lists without A, one instance with lists without C, and at most n2 instances with
lists of size at most two (corresponding to all possible choices of v, w).

Suppose next that three connections of type 1 are incident on the same part,
say AB = AC = AD = 1. Then we can reduce the problem (by trying to place a
vertex into A) to one instance with lists without A (polynomial time solvable since
M does not contain 3-coloring), and at most n instances with all vertices having list
{A} or subset of {B,C,D}, which can be solved in polynomial time as a three-part
subproblem.

On the other hand, if there are three connection of type 1 which form a triangle,
say AB = BC = AC = 1, then we can reduce the problem to at most n2 + 2
polynomial time solvable cases by trying to place one vertex in A and one in B.

Thus it remains to consider the case of at most two connections of type 1. If there
are two such connections, then we may assume that they both touch on A, thus, say,
AB = AC = 1. If AD = 0, then trying to place a vertex in A leads to n+1 polynomial
time solvable instances. Thus we may assume that AB = AC = 1, AD = ∗. In this
case D dominates B or C unless BD = CD = 1 or BC = 1, BD = CD. Thus we may
assume that no list contains both B and D or no list contains both C and D. Now we
can reduce each of these problems to n+ 1 polynomial time solvable cases by trying
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to place a vertex in A. The same technique (trying to place a vertex to A) also works
when BD = CD = 1, BC = 0, since then C dominates B. Note that we cannot have
BD = CD = BC = 1, since M does not contain 3-coloring. Thus we are left with
the case BC = 1, BD = CD = 0 (and AB = AC = 1, AD = ∗). In this case we can
reduce the problem to one instance of lists without A, one instance of lists without
B, and n2 instances of a vertex v placed into A and a vertex w into B. The former
two problems are polynomial time solvable; the latter problem can also be solved in
polynomial time, since vertices adjacent to w and nonadjacent to v must map to A,
while no other vertex can map to A—hence we can remove the vertices that map to
A and solve the three-part subproblem.
Suppose there is only one connection of type 1, namely AB = 1. If AX = BY = 0

for some (possibly equal) X,Y , then we can again reduce the problem to n2 + 2
polynomial time solvable instances by trying to place a vertex in A and a vertex in B.
Thus we may assume that, say, AB = 1, AC = AD = ∗. Since M does not contain
3-coloring, we must have CD = 0, and it is easy to see that in the remaining cases
one of C,D dominates the other; if no list contains both C and D, then the problem
can be reduced to n+ 1 instances of polynomial time solvable instances by trying to
place a vertex in A or B. We note that a linear time algorithm for (the complement
of) the problem AB = 1, AC = AD = 1, BC = BD = 1, CD = 0 (which is one of the
problems considered in this paragraph) was given by Everett, Klein, and Reed [21].
If there are no connections of type 1, then we have a list homomorphism problem,

solvable in polynomial time (see Proposition 2.8).
Note that the M -partition problem (without lists) is trivial if there is a part

of type ∗ (all vertices can be placed in it). Thus the theorem allows a complete
classification of the M -partition problem without lists.

Corollary 6.3. If the size of M is k = 4, then the M -partition problem (without
lists) is

• NP -complete when M contains the matrix of 3-coloring or its complement,
and no diagonal entry is ∗,

• and it is polynomial time solvable otherwise.
Proof. The polynomial algorithms follow from the theorem and the above remark.
Suppose M contains the matrix of 3-coloring; say M is the matrix





0 ∗ ∗ x1

∗ 0 ∗ x2

∗ ∗ 0 x3

x1 x2 x3 y





(When M contains the complement of the matrix of 3-coloring, the argument is sim-
ilar.) By assumption, y �= ∗.
Suppose first that y = 1. We prove the NP-completeness of M -partition by

reducing to it the problem of 3-colorability. Thus suppose that G is a graph we would
like to 3-color, and let G′ consist of two disjoint copies of G. We claim that G is
3-colorable if and only if G′ admits an M -partition. Indeed, if G is 3-colorable, then
G′ is also 3-colorable, and hence admits an M -partition (with all vertices in the first
three parts). On the other hand, anM -partition of G′ cannot place two vertices from
different copies of G in the fourth part, since the fourth part is a clique. Thus all
vertices of one copy of G are placed in the first three parts; i.e., G is 3-colorable.
Now suppose that y = 0. If any other xi = 0, then the union of the ith part and

the fourth part is a stable set, and a graph admits an M -partition if and only if it is
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3-colorable. If any xi = 1, then it is again the case that G is 3-colorable if and only if
G′ (from above) admits an M -partition. Indeed, an M -partition of G′ cannot place
both a vertex from the first copy of G to the ith part and a vertex from the second
copy in the fourth part, since those parts are completely adjacent. Therefore at least
one copy of G is 3-colored.

We now turn to the general list M -partition problem, where M may have parts
of type ∗. We are no longer able to classify the problems as NP-complete or polyno-
mial, but we do prove that they all are NP-complete or quasi-polynomial. (Since the
preliminary version of this paper [26], most of the quasi-polynomial cases have been
proved to be polynomial [10].)

Theorem 6.4. Suppose the size of M is k = 4. Then the list M -partition problem
is quasi-polynomial (possibly polynomial) or NP -complete.

Proof. By Proposition 2.8, we can assume that M has at least one 0 and at least
one 1. It turns out then that the only NP-complete problems are those mentioned
earlier, namely those arising from matrices containing the matrix of 3-coloring or of
stable cutset, or their complements. Recall that we use the shorthand XY to refer
to the entry of M in row X and column Y (and write X for XX). The proofs below
are written in an abbreviated style; the details can be filled out in a manner similar
to the proof of Corollary 5.3.

The next two lemmas cover the cases where M has an off-diagonal 0 and an
off-diagonal 1.

Lemma 6.4.1. Suppose AC = 0, BD = 1. Then list M -partition is quasi-
polynomial or NP -complete.

Proof. Note that this case includes the list skew cutset problem solved in quasi-
polynomial time in Corollary 5.3, and the stable cutset problem proved NP-complete
in [28]. The proof below is written in an abbreviated style; the full details could be
written out in a manner similar to the proof of Corollary 5.3.

Since AC = 0 and BD = 1, we can assume that no list contains {A,B} or no list
contains {C,D} (nlogn cases); also, we can assume no list contains {A,D} or no list
contains {B,C} (nlogn cases). (These are obtained by applying Theorem 4.2 in two
ways.) The four possibilities are similar, so say there is no {A,B} and no {A,D}.
(For instance the possibility that there is no {A,B} and no {B,C} corresponds to
exactly the same situation for the complementary matrixM .) In other words, all lists
are contained in {A,C} or in {B,C,D}. We then have the following:

C �= 1, else place vertex in C, no {A,C} (Corollary 2.4 applies, since C = 1
and AC = 0); hence drop A and solve the polynomial problem with the three parts
B,C,D.

C �= 0, else no {B,C} or no {C,D} (nlogn cases from Theorem 4.3, which applies
as C = 0 and BD = 1), and we can solve these problems by 2-satisfiability; cf.
Proposition 2.1.

Therefore we must have C = ∗. We also have the following:
A �= 1, else place vertex in A, no {A,C} (as A = 1 and AC = 0), drop A

and consider the {B,C,D} problem. If that problem is solvable in polynomial time,
we have a quasi-polynomial algorithm; otherwise the restriction to {B,C,D} is NP-
complete, and we have an NP-complete problem.

B �= 0, else place vertex in B, no {B,D} (as B = 0 and BD = 1), solve the
2-satisfiability problem.

D �= 0, else place vertex in D, no {B,D} (as D = 0 and BD = 1), solve the
2-satisfiability problem.
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AB �= 1, else place vertex in A, no {B,C} (as AB = 1 and AC = 0), solve the
2-satisfiability problem.

AD �= 1, else place vertex in A, no {C,D} (as AC = 0 and AD = 1), solve the
2-satisfiability problem.

BC �= 0, else place vertex in B, no {C,D} (as BC = 0 and BD = 1), solve the
2-satisfiability problem.

CD �= 0, else place vertex in D, no {B,C} (as BD = 1 and CD = 0), solve the
2-satisfiability problem.
So far, we have AC = 0, BD = 1, C = ∗, A �= 1, B �= 0, D �= 0, AB �= 1, AD �= 1,

BC �= 0, CD �= 0.
In addition we do not have both BC = CD = ∗; otherwise C dominates A, no

{A,C}, drop A and consider the {B,C,D} problem.
We may assume BC = 1 (by symmetry between B and D).
Now, we have no {A,C} or no {B,C} (nlogn cases as AC = 0 and BC = 1), so

either drop A to get a {B,C,D} problem or get a 2-satisfiability problem.
Lemma 6.4.2. Suppose AB = 0, AD = 1. Then list M -partition is quasi-

polynomial or NP -complete.
Proof. Place vertex in A, no {B,D}. Then we have the following:
BC �= 0 and CD �= 1, as the case of disjoint connections with value 0 and 1 was

covered by the previous lemma.
BC �= 1, else place vertex in B, no {A,C} (as AB = 0 and BC = 1), solve the

2-satisfiability problem. So BC = ∗.
CD �= 0, else place vertex in D, no {A,C} (as AD = ∗ and CD = 0), solve the

2-satisfiability problem. So CD = ∗.
So far, we have AB = 0, AD = 1, BC = ∗, CD = ∗.
Suppose C = ∗. Then AC �= ∗, else C dominates all and could be dropped. By

symmetry under complementation, we can assume AC = 0. Also C dominates B, so
no {B,C}. Place vertex in A, no {C,D} (as AC = 0 and AD = 1). So a list can
contain only one of {B,C,D}, solve the 2-satisfiability problem.
For the other case, C �= ∗; by symmetry under complementation, we can assume

C = 0. We also have the following:
No {A,C} or no {C,D} (nlogn cases as C = 0 and AD = 1). If no {A,C}, since

no {B,D}, solve the 2-satisfiability problem. So no {C,D}. As a result, all lists are
contained in {A,D} or in {A,B,C}.
Now, no {A,D} or no {A,B} (nlogn cases as AB = 0, AD = 1), so either drop

D to get a {A,B,C} problem or get a 2-satisfiability problem.
By these two lemmas, we can assume that 1 (or equivalently 0, by complementa-

tion) occurs only on the diagonal so that all off-diagonal entries are 0, ∗.
We first consider the case where there are at least two 1s (on the main diagonal).

For this case, we can assume that there is at least one 0 not on the main diagonal.
Otherwise, if all off-diagonal entries are ∗, then if, say, A = ∗, then A dominates all
other parts, and we obtain a size three problem on {B,C,D}; if none of A,B,C,D is
∗, then either they are two 0’s and two 1’s (polynomial by the sparse-dense technique)
or we get an NP-complete problem by 3-colorability.
The next three lemmas consider the possible placements of the 0 connection with

respect to the (at least two) 1 parts. Either the 0 connection is not incident on any
of the two 1’s or it is incident on one of them, or it is incident on both of them.

Lemma 6.4.3. Suppose all off-diagonal entries are 0, ∗, and B = D = 1, AC = 0.
Then list M -partition is quasi-polynomial or NP -complete.
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Proof. There is no {A,B} or no {B,C} (nlogn cases as B = 1, AC = 0).

There is no {A,D} or no {C,D} (nlogn cases as D = 1, AC = 0).

If there is no list of size three, solve 2-satisfiability. A list of size three can be
only {A,B,D} or {B,C,D}. By symmetry, assume it is {B,C,D}. So all lists are
contained in {A,C} or in {B,C,D}.
We have the following:

C �= 1, else place vertex in C, no {A,C} (as C = 1 and AC = 0), drop A and get
a three-part problem on {B,C,D}.

C �= 0, else no {B,C} (n 1
2 logn cases as C = 0 and B = 1), solve 2-satisfiability.

So C = ∗.
BC �= 0, else place vertex in B, no {B,C} (as B = 1 and BC = 0), solve

2-satisfiability. So BC = ∗.
CD �= 0, else place vertex in D, no {C,D} (as D = 1 and CD = 0), solve

2-satisfiability. So CD = ∗.
Now all {A,C} vertices can be put in C without loss of generality, so drop A and

get a three-part problem on {B,C,D}.
Lemma 6.4.4. Suppose all off-diagonal entries are 0, ∗, and A = B = 1, AC = 0.

Then list M -partition is quasi-polynomial or NP -complete.

Proof. We can assume D �= 1 and CD �= 0 by the previous lemma, so CD = ∗.
Place a vertex in A, no {A,C} (as A = 1 and AC = 0).
Also no {A,B} or no {B,C} (nlogn cases as B = 1, AC = 0).

Suppose first no {A,B}. All lists are contained in {A,D} or in {B,C,D}.
We have the following:

D �= 0, else no {A,D} (n 1
2 logn cases as D = 0, A = 1), so drop A and get a

three-part {B,C,D} problem. So D = ∗.
AD �= 0, else place vertex in A, no {A,D} (as A = 1 and AD = 0), so drop A

and get a three-part {B,C,D} problem. So AD = ∗.
BD �= 0, else place vertex in B, no {B,D} (as B = 1 and BD = 0), solve the

2-satisfiability problem. So BD = ∗.
But now, D dominates all vertices, so drop D and get a three-part {A,B,C}

problem.

Suppose instead no {B,C}. All lists are contained in {C,D} or in {A,B,D}.
We have the following:

D �= 0, else no {A,D} (n 1
2 logn cases as D = 0, A = 1), solve 2-satisfiability. So

D = ∗.
AD �= 0, else place vertex in A, no {A,D} (as A = 1 and AD = 0), solve

2-satisfiability. So AD = ∗.
BD �= 0, else place vertex in B, no {B,D} (as B = 1 and BD = 0), solve

2-satisfiability. So BD = ∗.
But now, D dominates all vertices, so drop D and get a three-part {A,B,C}

problem.

Lemma 6.4.5. Suppose all off-diagonal entries are 0, ∗, and A = C = 1, AC = 0.
Then list M -partition is quasi-polynomial or NP -complete.

Proof. By the last two lemmas, we can assume AB = BC = AD = BD = CD =
∗, and also B �= 1, D �= 1. If B = ∗, then B dominates all vertices, so drop B and
solve {A,C,D} problem. Similarly, if D = ∗, then D dominates all vertices, so drop
D and solve {A,B,C} problem. So B = D = 0. The problem is then the problem of
recognizing (2, 2)-graphs, which is solved in polynomial time by Corollary 5.1.
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We are now left with the case whereM has a single 1, and this 1 is on the diagonal,
say D = 1.
For convenience, we define the separating statement for x = A,B,C to be xD = 0

or x = 0. If this statement holds for x, then there is no {x,D}, either by placing a
vertex in D (as D = 1 and xD = 0) or n

1
2 log n cases for D = 1 and x = 0.

If all three separating statements hold, then there is no {x,D} for x = A,B,C,
so drop D and solve the three-part {A,B,C} problem.
Suppose next exactly two separating statements hold, say, for A,B. So all lists

are contained in {C,D} or in {A,B,C}, and C = CD = ∗. The three possible cases
are covered by the next three lemmas.

Lemma 6.4.6. Suppose there is a single 1 at D = 1, and AD = BD = 0,
C = CD = ∗. Then list M -partition is quasi-polynomial or NP -complete.

Proof. We may assume that not both AC = BC = ∗, else C dominates all
vertices, so we can drop C and get a three-part {A,B,D} problem.
Say AC = 0. Then BC �= 0, else we have two components {A,B} and {C,D}.

So BC = ∗.
We have the following:
A �= 0, else C dominates A, no {A,C}, solve 2-satisfiability problem. (So A = ∗.)
AB �= 0, else C dominates B, no {B,C}, solve the 2-satisfiability problem. (So

AB = ∗.)
B �= ∗, else B dominates A, no {A,B}, solve 2-satisfiability problem. (So B = 0.)
The remaining problem on {A,B,C} is the stable cutset problem, which is NP-

complete.
Lemma 6.4.7. Suppose there is a single 1 at D = 1, and A = B = 0, C = CD =

∗. Then list M -partition is quasi-polynomial or NP -complete.
Proof. We may asume that not both AC = BC = ∗, else C dominates all vertices,

drop C and get a three-part {A,B,D} problem.
Say AC = 0. Then AB = ∗ and BC = 0, else C dominates A, no {A,C}, solve

the 2-satisfiability problem.
Each connected component of the subgraph induced by the vertices with lists

included in {A,B,C} can go to {A,B} or to {C}, but it can always be put in {C} if
C is in the lists. Solve the 2-satisfiability problem.

Lemma 6.4.8. Suppose there is a single 1 at D = 1, and AD = B = 0, A =
BD = ∗, C = CD = ∗. Then list M -partition is quasi-polynomial or NP -complete.

Proof. AC = 0 and AB = ∗, else C dominates B, no {B,C}, solve 2-satisfiability
problem.
If BC = ∗, the problem on {A,B,C} is the stable cutset problem, which is

NP-complete.
If BC = 0, then each connected component of the subgraph induced by the

vertices with lists included in {A,B,C} can go to {A,B} or to {C}, but it can always
be put in {C} if C is in the lists. Solve the 2-satisfiability problem.
The remaining case with a single 1 at D = 1 has at most one separating statement

holding, say, for A.
Lemma 6.4.9. Suppose there is a single 1 at D = 1, B = BD = C = CD = ∗.

Then list M -partition is quasi-polynomial or NP -complete.
Proof. If BC = ∗, then one of B,C dominates all vertices and can be dropped,

to obtain a three-part problem, unless AB = AC = 0 (and A = ∗), in which case the
rows of B and C are identical, so B and C can be collapsed to a single part.
So BC = 0. We consider various cases of the values of (A,AB,AC):
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(0, ∗, ∗) is the stable cutset problem, which is NP-complete.
(∗, ∗, ∗): if also AD = ∗, A dominates all vertices and can be dropped to obtain a

three-part problem on {B,C,D}. If AD = 0, then place a vertex in D, no {A,D} (as
D = 1 and AD = 0). Also, we have no {B,D} or no {C,D} (nlogn cases, as D = 1
and BC = 0). Say there is no {B,D}. Then all lists are contained in {C,D} or in
{A,B,C}, and they can be assumed to be of size at last two. Now place all vertices
with the list {C,D} in C, and place all vertices with lists contained in {A,B,C} in
either A or C. Since A = C = AC = ∗, this is a solution.
(∗, 0, ∗) with AD = 0, (0, 0, 0), and (0, 0, ∗): all three have no {A,D} (place a

vertex in D in the first case as AD = 0 and D = 1; in the other two cases we get
n

1
2 logn cases as A = 0 and D = 1). Also no {B,D} or no {C,D} (nlogn cases as

D = 1 and BC = 0). So {A,B,C} is the only 3-element list, but C dominates A in
all three cases, no {A,C}, and we can solve the 2-satisfiability problem.
(∗, 0, ∗) with AD = ∗ has the rows of A and C identical, so A and C can be

collapsed to a single part.
(∗, 0, 0) has nlogn cases each of no {A,D} or no {B,D} (as D = 1 and AB = 0),

no {A,D} or no {C,D} (as D = 1 and AC = 0), no {B,D} or no {C,D} (as D = 1
and BC = 0). So there is at most one of {A,D}, {B,D}, {C,D}, and all other lists
contained in {A,B,C}. For lists contained in {A,B,C}, the connected components
go to a single one of A, B, or C, and C can always be preferred if possible. Solve the
resulting 2-satisfiability problem.
This completes the proof of the theorem.

7. Matrices of arbitrary size. Some results apply to arbitrarily sized matrices;
e.g., Proposition 2.8 completely classifies listM -partition problems for matrices which
do not contain any 0’s or do not contain any 1’s. We first observe that we can also
deal with matrices which do not contain any ∗’s.

Corollary 7.1. If M is a (0, 1)-matrix, then the list M -partition problem is
polynomial time solvable.

Proof. Once we know from Theorem 3.1 which vertices are placed in parts of
type 0 (stable sets) and which are placed in parts of type 1 (cliques), we can find the
classes of the equivalence in which two vertices that are both in parts of type 0 are
equivalent if they have the same open neighborhood, and two vertices that are both
in parts of type 1 are equivalent if they have the same closed neighborhood. Having
these equivalence classes in hand, we can easily check if a list partition exists. (Recall
that M , and hence its size, is fixed.)
Next, we shall discuss the possibility that Theorem 6.4 might extend to all ma-

trices M .
In fact, based on the evidence of this paper, we make the following “quasi-

dichotomy” conjecture:
Conjecture 7.1.1. All list M -partition problems are quasi-polynomial or NP -

complete.
We have additional evidence supporting the conjecture. A listH-coloring problem

can be thought of as a special case of a constraint satisfaction problem: Consider
the fixed graph H as having one symmetric binary relation (the adjacency in H),
and 2|V (H)| unary relations, each corresponding to a subset of V (H), and containing
precisely the vertices in that subset. Then an instance G,L of the list H-coloring
problem can be thought also as having one binary relation (the adjacency in G),
and 2|V (H)| unary relations, indexed by the subsets of V (H), each containing all
the vertices of G whose list is that subset. It is easy to see that a mapping of
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V (G) to V (H) is a list H-coloring if and only if it preserves the binary relation
as well as all the unary relations. Let F be a set of subsets of V (H). The F-
restricted list H-coloring problem is the restriction of the standard list H-coloring
problem in which the instances are restricted to G,L with L(g) �∈ F for all g ∈ V (G).
(Some lists are forbidden.) The above translation still applies: The F-restricted
list H-coloring problem is polynomially equivalent to the corresponding constraint
satisfaction problem with one binary and 2|V (H)|−|F| unary constraints. Indeed, any
instance G of the F-restricted list H-coloring problem gives rise, in the way described
above, to an instance of the corresponding constraint satisfaction problem. For the
converse, there is a slight technical complication not present in the unrestricted case:
When an instance of the constraint satisfaction problem contains a vertex not included
in any of the unary constraints, we would like to (but cannot) assign to it the list
V (H). This is easily resolved by modifying the corresponding constraint satisfaction
problem to include an additional artificial vertex ∞ which does not belong to any of
the unary constraints and is adjacent in the binary constraint to all other vertices,
including itself.

Theorem 7.2. Each list M -partition problem can be reduced to at most nc logn

instances of restricted list H-coloring problems.

Proof. Suppose AC = 0, BD = 1 in M . According to Corollary 4.5, we can
reduce the list M -partition problem for an input graph with arbitrary lists L to nlogn

(or fewer) instances, each of which contains no list containing both A and B or no
list containing both C and D. Each of these can in turn be reduced to further nlog n

(or fewer) instances in which there is no list containing both A′ and B′ or no list
containing both C ′ and D′ for some other pair A′C ′ = 0, B′D′ = 1 in M . Since M is
fixed, we obtain at most (nlogn)c = nc logn instances in which no pair of vertices v, v′

has lists L(v) ⊇ {X,Y } and L(v′) ⊇ {Z,W}, where X,Y, Z,W are any parts such
that XZ = 0, Y W = 1 in M . Thus each of these instances has some set of forbidden
lists.

Let M ′ be obtained from the matrix M by replacing all 1’s by 0’s. Now M ′ is
a (0, ∗)-matrix, and hence corresponds to the adjacency matrix of a graph H (when
∗’s are replaced by 1’s); the list M ′-partition problem is precisely the list H-coloring
problem.

Consider one such instance, a graph G with lists L. For any pair of vertices v, v′

of G the pairs X ∈ L(v), Y ∈ L(v′) all have XY = 0, ∗, or they all have XY = ∗, 1.
For vertices v, v′ for which they are 0, ∗, leave the edge or nonedge between v and
v′ unchanged. For those v, v′ for which they are ∗, 1, revert an edge between v and
v′ to a nonedge, and a nonedge to an edge. It is easy to see that the original graph
G has a list M -partition if and only if the modified graph has a list M ′-partition,
i.e., a list H-homomorphism. Note that the homomorphism problems inherit the list
restrictions from the list M -partitions.

Feder and Vardi [27] proposed a dichotomy conjecture for all constraint satisfac-
tion problems. In the context of restricted list H-coloring problems it can be stated
as follows.

Conjecture 7.2.1. All restricted list H-coloring problems are polynomial time
solvable or NP -complete.

Note that without the list restrictions, the conjecture is true by Proposition 2.8.

Corollary 7.3. If Conjecture 7.2.1 is true, then Conjecture 7.1.1 is also true.

Proof. If the above instances of restricted list H-coloring problems can be solved
in polynomial time, we obtain a quasi-polynomial algorithm for list M -partition. If a
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restricted list H-coloring problem is NP-complete, then the original problem is also
NP-complete.

Acknowledgments. We are grateful to Donald Knuth, Jan Kratochv́ıl, and
Romeo Rizzi for their interest and helpful suggestions.

Note added in proof. Using a recent result of A. Bulatov, the first two authors
have now succeeded in proving Conjecture 7.2.1, and hence Conjecture 7.1.1 also fol-
lows (by Corollary 7.3). The authors of [10] have now verified that all quasi-polynomial
list partition problems with k = 4 are in fact polynomial, with the sole exception of
one “stubborn” problem for which no polynomial time algorithm is known. Finally, a
polynomial time recognition algorithm for perfect graphs has now been obtained by
M. Chudnovsky and P. Seymour, as well as by G. Cornuéjols, X. Liu, and K. Vuškovic.
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Abstract. We start with a large matrix A whose structure is simple, say, with unit entries on
the first subdiagonal and superdiagonal. Its eigenvalues and eigenvectors are known. We modify
A in M widely spaced rows and columns. Then the “new eigenvectors” are nearly a sum of spikes
xj = t|j−r| centered at the positions r of the modified rows. The new eigenvalues are given almost

exactly by ±
√
4 + µ2, where µ is an eigenvalue of the M by M modification.

We extend this analysis to a larger class of structured matrices. For a banded Toeplitz matrix,
our experiments show similar spikes centered around modified rows, and we have a conjecture on the
structure of the new eigenvectors. For a single diagonal modification of the adjacency matrix of an
infinite two-dimensional grid, we find the new eigenvalue from an elliptic integral (and we don’t yet
recognize the eigenvector).

Key words. localized eigenvectors, Toeplitz matrix, adjacency matrix

AMS subject classification. 15A12

PII. S0895480102409048

1. Introduction. This paper is about the eigenvalues and eigenvectors of famil-
iar structured matrices after changes in a small number of entries. The actual changes
need not be small, so we refer to them as modifications rather than perturbations. The
number of changes is small relative to the size of the matrix, because the modifications
are required to be “widely spaced.” They occur in entries that are far apart. They
produce new eigenvectors that are localized near the components that correspond to
the modified rows. By knowing the approximate form of those eigenvectors, we also
determine a very close (and simple) approximation to the eigenvalues.

Imagine a large number of nodes around a circle. Edges go only to the two
neighbors of every node. Each row of the adjacency matrix A of this cyclic graph has
two 1’s. The matrix is a circulant with 1’s on the first subdiagonal and superdiagonal,
coming from the neighbors to the left and right. Now add a few edges going “across”
the circle so that the nodes involved are widely spaced. The modified graph has
an adjacency matrix (symmetric if the added edges are undirected, but this is not
required) with 1 in the i, j entry when an edge connects node i to node j. A typical
example of our work is to find the “new” eigenvalues and eigenvectors of this modified
matrix.

The second author mentioned in SIAM News (April 2000) the simplest case of
this example. Only one undirected edge crosses the circle, from node i to a distant
node j. This added edge modifies A by aij = aji = 1, in other words by a widely
spaced submatrix with entries from

B =

[
0 1
1 0

]
.
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Fig. 1. The eigenvectors for the maximal and minimal eigenvalues of the adjacency matrix of
a 200-node cycle with an edge added between nodes i = 45 and j = 120.

The two new 1’s in the modified matrix are far from the main diagonal. The two new
eigenvalues are almost exactly

√
5 and −√5. The corresponding eigenvectors show

a sum or difference of two spikes, as in Figure 1, centered at the positions i and j
connected by the “shortcut edge.” The remaining eigenvalues stay in the interval
[−2, 2] that contains all eigenvalues of the original A. Their eigenvectors still oscillate
like the original eigenvectors, but orthogonality to the new ones produces the pinching
that is illustrated by Figure 2.

This brief report in SIAM News brought suggested proofs from three friends:
Beresford Parlett, Bill Trench, and Jackie Shen. All four approaches, including ours,
are different. Shen connected the problem to the theory of perturbed Schrödinger
operators, and our work can be seen as a small contribution (possibly not new) to
that established theory. The first section studies the effect of such a modification on
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Fig. 2. A typical eigenvector (not the “new” one) corresponding to an eigenvalue in the range
of [−2, 2] for the perturbed adjacency matrix.
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a string of nodes, and we find the following formula linking the (nearly exact) new
eigenvalues λ to the eigenvalues µ of B:

λ = sign(µ)
√
4 + µ2.

The result is equally true for a line or a circle of nodes.
In our first example, the rank two perturbation from B above has eigenvalues

µ = 1 and −1, confirming that λ = √5 and −√5. In the two localized eigenvectors,
the heights of the “spikes” are given by the eigenvectors (c, c) and (−c, c) of B. We
also determine the ratio t between neighboring entries near the spikes (a smaller t
means a sharper spike and a more localized eigenvector). This pattern extends to any
widely spaced modification by a nonsingular B.

Sections 4 and 5 of this paper extend the theory beyond the line or circle of nodes
and their particular adjacency matrix A. Similar isolated eigenvalues and “spiked”
eigenvectors can also be found when the underlying matrix is a general Toeplitz ma-
trix, or the adjacency matrix of a two-dimensional grid, provided that the modifica-
tions are widely separated in an appropriate way.

Related questions of perturbed Toeplitz eigenvalues have been investigated by
Boettcher, Embree, and Sokolov [1], [2], who study the spectrum of A + B when B
has only one nonzero entry. Their work focuses on nonsymmetric finite and infinite-
dimensional matrices. The variety of phenomena they have discovered is amazing.
Unlike our present work, they do not consider the effect of the perturbation on eigen-
vectors.

2. The model problem. We start with an infinite line of nodes (the graph has
a node at every integer). Its adjacency matrix A has 1’s on the first subdiagonal and
first superdiagonal: ai,i−1 = ai,i+1 = 1 for −∞ < i <∞. The modification of A will
be governed by an M by M matrix B, which need not be symmetric. We choose M
widely spaced indices r1 < · · · < rM ; the differences between these indices all exceed
a number L � 1. Then the i, j entry of B is added to the ri, rj entry of A. By a
terrible abuse of notation, we call the modified matrix A + B. Our problem is to
estimate the “new” eigenvalues and eigenvectors after the modification:

(A+B)x = λx.(1)

First, suppose that B is just a 1 by 1 matrix. The single real number b appears
in the rth diagonal entry of the modified A+B. When A is finite, we always assume
that modifications are far from the boundary (r1 ≥ L and rm ≤ n− L).

Figure 3 shows the spectrum and the localized eigenvector corresponding to the
isolated eigenvalue. This eigenvector decays very quickly and centers at the position
r = 50 of the modification. From the logplot in Figure 4, we can see that the eigen-
vector is exponentially decaying with a constant exponent. Thus, we assume that the
eigenvector is a spike centered at r = r1 with xr = 1. The “spike ratio” between
neighboring entries is denoted t, with |t| < 1. Then the jth component of this eigen-
vector is t|j−r|. Substitute this form of x into (1), and let R = (A+B)x− λx be the
residual. There are three cases for the entries of R.

1. For nodes other than j = 1, r, and n, there is no contribution from B or from
the boundary:

Rj = xj−1 + xj+1 − λxj = t|j−r|
(
t+

1

t
− λ

)
.



482 XIANGWEI LIU, GILBERT STRANG, AND SUSAN OTT

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

3

4
The 100 eigenvalues of A+B

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1
The localized eigenvector for the new eigenvalue

Fig. 3. The spectrum of A+B (notice λ100) and the eigenvector corresponding to that isolated
eigenvalue λ ≈ √

4 + 9 for n = 100, r1 = 50, and b = 3.

2. For node r, the entry has an extra term from B:

Rr = xr−1 + bxr + xr+1 − λxr = 2t+ b− λ.

3. Boundary nodes j = 1 and n have only one neighbor, and the residuals are
R1 = tr−2 − λtr−1 and Rn = tn−r−1 − λtn−r.

Since |t| < 1 and 1 	 r 	 n, the two boundary residuals will be of order tL,
L = min{r − 1, n − r}. For L � 1, we focus on the typical case Rj and the special
case Rr. These residuals are zero if

λ = t+
1

t
and λ = 2t+ b(2)
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Fig. 4. Logplot of the localized eigenvector.
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with the constraint |t| < 1. Equation (2) has the unique solution

{
t = 1

2 (−b+ sign(b)
√
4 + b2),

λ = sign(b)
√
4 + b2.

(3)

The spike vector x is only an approximation to a real eigenvector, since the
residual terms R1 and Rn are not zero at boundary nodes. But when L is large,
those terms will be very small. We will prove that there is indeed an eigenvalue and
eigenvector very close to our λ and x. Going back to the numerical experiment with
b = 3 in Figure 3, the eigenvalue predicted by our construction is

√
13. The actual

eigenvalue calculated using MATLAB agrees to 15 digits.
If we consider an infinite linear string with nodes numbered from −∞ to ∞ and

a single modification at entry (0, 0), then the same construction will produce an exact
eigenvalue and eigenvector. This is the only L2-finite eigenvector for the system (the
following approach was suggested by David Ingerman, beginning with the Fourier
transform of any such eigenvector):

f(y) =
∞∑

n=−∞
xne
−iny.

The eigenvector equation (A+B)x = λx can be rewritten as

xn−1 + xn+1 + bδ(n)xn = λxn,(4)

where δ(n) is the discrete Dirac delta function. Fourier transform of (4) yields

f(y) =
bx0

λ− e−iy − eiy
, x0 = 0.(5)

The inverse transform recovers the eigenvector components

xn =
1

2π

∫ 2π

0

f(y)einy dy.(6)

At n = 0, (5) and (6) give the central component

x0 =
1

2π

∫ 2π

0

bx0 dy

λ− e−iy − eiy
.(7)

By normalizing x0 = 1 and substituting z = eiy, (7) becomes an integral around the
unit circle:

1

2πi

∫

S1

b dz

λz − z2 − 1 = 1.(8)

Solving (8), we get

λ = sign(b)
√
4 + b2.(9)

Then (6) yields xn = x0t
|n| with t defined as in (3), which is our spike. This shows

that the eigenvector we constructed is the unique localized eigenvector of A+B.
For a modification of M rows and columns, it is natural to expect that there

will again be spiked eigenvectors. But now, instead of one spike, we expect M spikes
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Fig. 5. The localized eigenvector with three spikes and its logplot.

of different heights. A typical localized eigenvector with three spikes is shown in
Figure 5. The logplot shows the absolute values of the components.

To find the new eigenvalues and eigenvectors, we construct an approximate vector
x that is now a sum of M spikes. Suppose the spike centered at the rkth entry of x
has height hk, and the common spike ratio is t. Then the jth component of x has the
form

xj =

M∑

k=1

t|j−rk|hk.(10)

Substitute (10) into (1). We want the residual R = (A+B)x− λx to be small. As in
section 2, we can divide the entries of R into three categories.

1. For nodes j other than r1, r2, . . . , rM and the boundary nodes,

Rj =

(
t+

1

t

)
xj − λxj .(11)

2. The spike centered at a modified row rk contributes 2thk+(Bh)k−λhk to the
rk component of the residual. All other spikes contribute O(t

L) since they
are separated by a distance at least L. Thus, we have

Rrk = 2thk + (Bh)k − λhk +O(t
L).(12)

3. For boundary nodes j = 1 or n, every spike contributes O(tL) to the residual
and

Rj = O(t
L), j = 1, n.(13)

Since |t| < 1, we ignore all errors of order tL and set the Rj ’s to zero. Then (12)
says that the vector h of spike heights is an eigenvector of B. If that eigenvector has
an eigenvalue µ, (11) and (12) become

2t+ µ = λ = t+
1

t
.(14)



LOCALIZED EIGENVECTORS 485

Equation (14) is exactly the same system of equations we have in (2) with b
replaced by µ. The unique solution is

{
t = 1

2 (−µ+ sign(µ)
√
4 + µ2),

λ = sign(µ)
√
4 + µ2.

(15)

Equation (15) is the (approximate) relation between the new eigenvalue λ of A+B
and the eigenvalue µ of B. Our next goal is to prove that the error in (15) is of the
same order tL as the terms that were dropped. In the remaining sections of this paper,
unless specified otherwise, we will use L2-norm for vector norms, and spectral norm
for matrix norms.

When B is a symmetric matrix, the modified matrix A+B will also be symmetric,
and we can bound the eigenvalue using the following easy estimate.

Theorem 2.1. Suppose A is symmetric, x0 is a unit vector, and R = Ax0−λ0x0.
Then there is an eigenvalue λ of A satisfying |λ− λ0| ≤ ‖R‖.

Proof. Assume λ0 is not an eigenvalue of A. Let σ = ‖(A− λ0I)
−1‖. Since A is

symmetric, σ−1 is the smallest distance between λ0 and eigenvalues of A. We have

1 = ‖x0‖ = ‖(A− λ0I)
−1R‖ ≤ σ‖R‖.

Thus, σ−1 ≤ ‖R‖.
For λ in (15) and x in (10), the norm of the residual ‖R‖ = ‖(A+ B)x− λx‖ is

of order tL. So an actual eigenvalue of A+B is within O(tL) of λ.
Now we can state the result for the nonsymmetric (and nondegenerate) case.
Theorem 2.2. If µ is a simple nonzero real eigenvalue of the M by M matrix

B, with eigenvector h of norm one, then λ in (15) and x in (10) are within O(tL) of
an exact eigenvalue-eigenvector pair for the modified matrix A+B, where t is defined
in (15).

For the proof, we want some bound on the determinant of the modification.
Lemma 2.3. If an n by n matrix A is modified by any matrix B, then

|det(A+B)− det(A)| ≤ n!2n|A|n−1|B|,(16)

where |A| and |B| are the largest absolute values of the entries, and we assume |A| ≥
|B|.

Proof. The determinant of A+ B is a sum of n! terms. Each of these terms is a
product of n entries of A + B. Expand that product into 2n monomials, each one a
product of a’s from A and b’s from B.

Cancel the monomial that uses only a’s and contributes to det(A). The remaining
monomials, with at least one factor from B, are bounded by |A|n−1|B|. Then det(A+
B)− det(A) is bounded by (16).

Proof of Theorem 2.2. Since we applied a modification matrix B to A at M
widely spaced indices 1 	 r1 	 r2 	 · · · 	 rM 	 n, the eigenvector equation
(A+B)x = λx can be divided naturally into M + 2 parts. The first M + 1 parts do
not involve B. Each of those parts, between the modified rows ri and ri+1, has the
form





1 −λ 1
1 −λ 1

. . .
. . .

. . .

1 −λ 1








xri
...

xri+1



 = 0, i = 0, . . . ,M.(17)
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To simplify our discussion, we added two indices r0 = 0 and rM+1 = n + 1 with
components x0 = xn+1 = 0.

The only part that involves B is in the M modified rows:

(B − λIM )





xr1
xr2
...

xrM



+





xr1−1 + xr1+1

xr2−1 + xr2+1

...
xrM−1 + xrM+1



 = 0.(18)

The key to our method is to express xri−1 and xri+1 in terms of xr1 , . . . , xrM .
This effectively converts the n by n eigenvalue problem to a root-finding problem
based on anM byM matrix. SinceM is fixed and is far smaller than n, we can (with
patience) bound the actual eigenvalue.

To accomplish that, let Ai be the (ri+1− ri− 1) by (ri+1− ri+1) matrix in (17).
This Ai can be decomposed into two factors:





1 −λ 1
1 −λ 1

. . .
. . .

. . .

1 −λ 1



 =





1 −t
1 −t

. . .
. . .

1 −t









1 −t−1

1 −t−1

. . .
. . .

1 −t−1



 ,

(19)

where t satisfies the quadratic equation

t2 − λt+ 1 = 0.(20)

The first factor on the right side of (19) is (ri+1 − ri − 1) by (ri+1 − ri). The second
factor is (ri+1 − ri) by (ri+1 − ri + 1).

Substituting this decomposition into (17), we have





1 −t
1 −t

. . .
. . .

1 −t









xri − t−1xri+1

xri+1 − t−1xri+2

...
xri+1−1 − t−1xri+1



 = 0.(21)

Solving (21), and regretting that the expressions appear awkward, we get

xri+1 =
tri+1−ri−1 − t−(ri+1−ri−1)

tri+1−ri − t−(ri+1−ri) xri +
t− t−1

tri+1−ri − t−(ri+1−ri)xri+1 ,

xri+1−1 =
t− t−1

tri+1−ri − t−(ri+1−ri)xri +
tri+1−ri−1 − t−(ri+1−ri−1)

tri+1−ri − t−(ri+1−ri) xri+1 .

(22)

To simplify our notation, let ψ(t, n) = t−n − tn. Then (22) can be written as

xri+1 =
ψ(t, ri+1 − ri − 1)
ψ(t, ri+1 − ri)

xri +
ψ(t, 1)

ψ(t, ri+1 − ri)
xri+1 ,

xri+1−1 =
ψ(t, 1)

ψ(t, ri+1 − ri)
xri +

ψ(t, ri+1 − ri − 1)
ψ(t, ri+1 − ri)

xri+1 .

(23)
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Before proceeding to study (18), we observe that (20) has reciprocal roots. Since
ψ(t, n) = −ψ(t−1, n) and all the terms in (23) involve pairs of ψ’s, it makes no
difference which root we choose. Without loss of generality, we choose

t =
1

2
(λ− sign(λ)

√
λ2 − 4).(24)

When λ is real with |λ| > 2, which is the case here based on our assumptions on µ,
t will be a real number that lies in (−1, 1). As n increases, ψ(1, n) = t−n(1 − t2n)
approaches t−n. Using this approximation,

ψ(t, n− 1)
ψ(t, n)

=
t−(n−1)(1− t2(n−1))

t−n(1− t2n)

= t(1− t2(n−1))(1 + t2n + t4n + · · · )
= t− (1− t2)t2n−1 +O(t4n)

(25)

and

ψ(t, 1)

ψ(t, n)
=

t−1 − t

t−n(1− t2n)

= tn(t−1 − t)(1 + t2n + t4n + · · · )
= tn(t−1 − t) + O(t3n).

(26)

So when |t| < 1 and n� 1, the ratio ψ(t, n− 1)/ψ(t, n) is approximately t with error
O(t2n) and ψ(t, 1)/ψ(t, n) is approximately zero with error O(tn).

Substituting (23) into (18), we get

(B − λI +∆(λ))xM = 0,(27)

where xM = (xr1 , . . . , xrM )
T is a subvector of x and ∆(λ) is a symmetric tridiagonal

M by M matrix:

∆(λ) =





ψ(t,r1−1)
ψ(t,r1)

+ ψ(t,r2−r1−1)
ψ(t,r2−r1)

ψ(t,1)
ψ(t,r2−r1) 0

ψ(t,1)
ψ(t,r2−r1)

ψ(t,r2−r1−1)
ψ(t,r2−r1) + ψ(t,r3−r2−1)

ψ(t,r3−r2)
ψ(t,1)

ψ(t,r3−r2)
. . .

. . .
. . .



 .(28)

∆ is a function of λ because t is a function of λ in (24). When |λ| > 2, we have
|t(λ)| < 1. Using the approximations (25) and (26),

∆(λ) =





2t
2t

. . .

2t



+





O(t2L) O(tL)
O(tL) O(t2L) O(tL)

. . .
. . .

. . .

O(tL) O(t2L)



 .(29)

So when |λ| > 2, the difference between ∆(λ) and 2tI is an M by M symmetric
tridiagonal matrix Ω(λ) = ∆(λ)− 2tI whose nonzero entries are at most of order tL.
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3. The eigenvalues and eigenvectors of A + B. Let us consider the M by
M matrix B − λI + ∆(λ) in (27). The roots of its determinant ρ(λ) correspond to
eigenvalues of the matrix A + B. Let λ0 and t0 be defined by (15). To prove that
there is an eigenvalue of A + B within O(tL0 ) of λ0 is equivalent to proving that one
root of ρ(λ) is within O(tL0 ) of λ0 for sufficiently large L. To simplify our discussion,
we will assume that µ is a positive simple eigenvalue of B. The case when µ is a
negative simple eigenvalue of B is exactly the same.

From (14) we know that λ0−2t0 = µ. Since µ is separated from other eigenvalues
of B, we can always choose δ1 such that for λ ∈ (λ0−δ1, λ0+δ1), the distance between√
λ2 − 4 and any other eigenvalue of B is at least δ1/2, and |t(λ)| ≤ 1− δ1/2.
Recall that all the entries of Ω(λ) are of order t(λ)L or lower. Using Lemma 2.3,

withM !2M |B|M−1 a fixed constant once B is chosen, there exist two constants C and
L1 such that for any λ ∈ (λ0 − δ1, λ0 + δ1) and for all L > L1,

|ρ(λ)− det(B −
√
λ2 − 4I)| < Ct(λ)L.(30)

Since λ0 =
√

µ2 + 4, and µ is an eigenvalue of B, we have det(B −
√

λ2
0 − 4I) = 0.

Substituting this into (30) yields |ρ(λ0)| < CtL0 . Rewrite (30) as

det(B −
√
λ2 − 4I)− Ct(λ)L < ρ(λ) < det(B −

√
λ2 − 4I) + Ct(λ)L.(31)

Consider the function ρ1(λ) = det(B−
√
λ2 − 4I). Let µ1, . . . , µM be the eigenvalues

of B (with µ1 = µ):

ρ1(λ) =

M∏

i=1

(µi −
√
λ2 − 4).

If ν =
√
λ2 − 4, then ν(λ0) = µ. Since µ is a simple eigenvalue of B,

∂ρ1

∂ν
and also

∂ν

∂λ
=

λ√
λ2 − 4

are nonzero at λ0. Thus ρ
′
1(λ) is nonzero at λ0. Without loss of generality, assume

ρ′1(λ0) > 0. Then t(λ) defined in (24) has

t′(λ) =
1

2
− λ√

λ2 − 4 ≤ −
1

2
.

Since ρ1(λ) and t′(λ) are smooth functions, there exists a δ2 < δ1 such that for λ in
(λ0 − δ2, λ0 + δ2), ρ

′
1(λ) is bounded from below by a positive constant θ, and |t′(λ)|

is bounded from above by a positive constant ξ.
Let γ = sup{ t(λ) | λ ∈ (λ0 − δ2, λ0 + δ2)} < 1. Both LγL−1 and tL0 approach

zero as L goes to infinity. Thus, there exists a constant L2 > L1 such that for any
L > L2,

|LγL−1| < θ

2ξC
and tL0 <

θδ2
2C

.

If f1(λ) = ρ1(λ) + Ct(λ)L, then f1(λ0) = CtL0 > 0. For λ ∈ (λ0 − δ2, λ0 + δ2) and
L > L2 and ε = 2CtL0 /θ < δ2,

f ′1(λ) = ρ′1(λ)− CLt(λ)L−1t′(λ)

> θ − ξCLγL−1

> θ − θ

2
=

θ

2
.

(32)



LOCALIZED EIGENVECTORS 489

So

f1(λ0 − ε) = f1(λ0)−
∫ λ0

λ0−ε
f ′1(λ) dλ < CtL0 −

θ

2
ε = 0.

Since f1(λ0) > 0 and f1(λ0 − ε) < 0, there exists a λ1 ∈ (λ0 − ε, λ0) such that
f1(λ1) = 0. A similar argument shows that for f2(λ) = ρ1(λ)−Ct(λ)L, there exists a
λ2 ∈ (λ0, λ0 + ε) such that f2(λ2) = 0. From (31), we know ρ(λ1) < 0 and ρ(λ2) > 0,
so there exists a Λ in (λ1, λ2) ⊂ (λ0 − ε, λ0 + ε) such that ρ(Λ) = 0. This is the
eigenvalue we are looking for. Since |Λ − λ0| < ε, which is of order tL0 , we conclude
that the distance of λ0 from a real eigenvalue of A+B is of order tL0 .

The other part of the theorem is to prove that there is an eigenvector X corre-
sponding to the actual eigenvalue Λ such that X is within O(tL0 ) of x defined by (10).
Let V be the one-dimensional eigenspace of B corresponding to eigenvalue µ. Since µ
is a simple eigenvalue of B, any nonzero vector β in the orthogonal complement V ⊥

has (B − µ)β = 0. Set
δ3 = min{‖(B − µ)β‖ | β ∈ V ⊥, ‖β‖ = 1} > 0.(33)

Let X be an eigenvector of A + B corresponding to the eigenvalue Λ, and let
H be the subvector {Xr1 , . . . , XrM }T of X. We normalize X by ‖H‖ = 1. Set
η =
√
Λ2 − 4 and T = t(Λ). Since the difference between λ0 and Λ is of order t

L
0 and

the derivatives of t(λ) and
√
λ2 − 4 do not vanish at λ0, it is clear that η and T are

within O(tL0 ) of µ and t0. Recall that all the nonzero entries of the tridiagonal matrix
Ω(λ) = ∆(λ)− 2t(λ)I are of order t(λ)L or lower, so ‖Ω(λ)‖ is of order t(λ)L. Thus
there exist two constants C1 and L3 > L2 such that for any L > L3, |η − µ| < C1t

L
0 ,

|T − t0| < C1t
L
0 , Lγ

L < 1, and ‖Ω(Λ)‖ < C1T
L.

For any L > L3,

|TL − tL0 | = |T − t0|
L−1∑

i=0

T itL−i−1
0 ≤ |T − t0|LγL

< |T − t0| ≤ C1t
L
0 .

(34)

This implies that TL < (C1 + 1)t
L
0 for L > L3. With C2 = C1(C1 + 1) and L > L3,

we have ‖Ω(Λ)‖ < C1T
L < C2t

L
0 .

There exist two unique vectors α ∈ V and β ∈ V ⊥ such that H = α+ β. For any
L > L3, from (27) we have

0 = ‖(B − Λ +∆(Λ))H‖ = ‖(B − η)H +Ω(Λ)H‖
= ‖(B − µ)α+ (B − µ)β + (µ− η)H − Ω(Λ)H‖
≥ δ3‖β‖ − |µ− η| − ‖Ω(Λ)‖
> δ3‖β‖ − (C1 + C2)t

L
0 .

(35)

From (35) we know

‖β‖ < (C1 + C2)t
L
0

δ3
.(36)

Recall that the construction of X in (10) is based on a norm 1 eigenvector of B
corresponding to eigenvalue µ. Since the eigenspace V is of dimension 1, we can



490 XIANGWEI LIU, GILBERT STRANG, AND SUSAN OTT

assume α/‖α‖ = h (otherwise multiply X by −1). Thus,
‖h−H‖ ≤ ‖h− α‖+ ‖β‖

= (1− ‖α‖) + ‖β‖ ≤ 2‖β‖

<
2(C1 + C2)t

L
0

δ3
= C3t

L
0 .

(37)

In (23) we solved for Xri+1 and Xri+1−1 in terms of Xri and Xri+1 . In the same
way, we can solve for other terms between indices ri and ri+1, and the result is

Xri+k =
ψ(t, ri+1 − ri − k)

ψ(t, ri+1 − ri)
Xri +

ψ(t, k)

ψ(t, ri+1 − ri)
Xri+1

.(38)

The eigenvector we constructed in (10) is a combination of M spikes,

x =

M∑

i=1

ui,(39)

where the jth entry of spike ui is

ui,j = hit
|j−ri|
0 .(40)

From (38), we know that the actual eigenvectorX can also be written as a combination
of M spikes:

X =
M∑

i=1

Ui,(41)

where the jth entry of Ui has the following form:

Ui,j =






ψ(T,ri−ri−1−|j−ri|)
ψ(T,ri−ri−1)

Hi ri−1 ≤ j ≤ ri,

ψ(T,ri+1−ri−|j−ri|)
ψ(T,ri+1−ri) Hi ri ≤ j ≤ ri+1,

0 otherwise.

(42)

Since

‖x−X‖ =
∥∥∥∥∥

M∑

i=1

ui −
M∑

i=1

Ui

∥∥∥∥∥ ≤
M∑

i=1

‖ui − Ui‖,(43)

we have ‖x − X‖ = O(tL0 ) if each ‖ui − Ui‖ is of order tL0 . We look at ‖u1 − U1‖2.
Substituting (40) and (42), this is

r1∑

i=1

(tr1−i0 h1 − ψ(T, i)

ψ(T, r1)
H1)

2 +

r2∑

i=r1+1

(
ti−r10 h1 − ψ(T, r2 − i)

ψ(T, r2 − r1)
H1

)2

+

n∑

i=r2+1

(ti−r10 h1)
2.

(44)

From (37), we know that

|h1 −H1| ≤ ‖h−H‖ < C3t
L
0 for L > L3.(45)
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Also notice that for sufficiently large n and for any 0 ≤ k ≤ n,

∣∣∣∣T
n−k − ψ(T, k)

ψ(T, n)

∣∣∣∣ =
Tn+k − T 3n−k

1− T 2n
≤ Tn+k

1− T 2n
≤ 2Tn+k.(46)

Using (34), (45), and (46), the first term of (44) can be bounded by a constant C4 for
L > L3:

r1∑

i=1

(
tr1−i0 h1 − ψ(T, i)

ψ(T, r1)
H1

)2

≤ 2
r1∑

i=1

[
(tr1−i0 h1 − T r1−ih1)

2 + (T r1−ih1 − T r1−iH1)
2 +

(
T r1−iH1 − ψ(T, i)

ψ(T, r1)
H1

)2
]

< 2C2
1 t

2L
0

r1−1∑

i=0

(iγi)2 + 2C2
3 t

2L
0

r1−1∑

i=0

T 2i + 8T 2r1

r1∑

i=1

T 2i

< 2C2
1 t

2L
0

∞∑

i=0

(iγi)2 + 2C2
3 t

2L
0

∞∑

i=0

γ2i + 8(C2 + 1)
2t2L0

∞∑

i=0

γ2i

= C4t
2L
0 .

(47)

The second term of (44) can be bounded in exactly the same way, and we have

r2∑

i=r1+1

(
ti−r10 h1 − ψ(T, r2 − i)

ψ(T, r2 − r1)
H1

)2

< C5t
2L
0 .(48)

For the third term of (44), we get

n∑

i=r2+1

(ti−r10 h1)
2 < t2L0

∞∑

i=0

t2i0 = C6t
2L
0 .(49)

Combining (47), (48), and (49) yields

‖u1 − U1‖2 < (C4 + C5 + C6)t
2L
0 .(50)

The same is true for each ‖ui − Ui‖, i ≤ M . We conclude that ‖X − x‖ is of order
tL0 .

Remark 1. When B is a diagonal matrix, simple arguments show that the bound
in (30) can be improved to O(t(λ)2L). This in turn will translate to a O(t2L0 ) bound
for the eigenvalue. The eigenvector bound from (44) will remain O(tL0 ).

Remark 2. The condition that µ is a real number is not necessary. Our construc-
tion and bound remain valid as long as the spike ratio t has magnitude less than one.
This is true for any µ outside the [−2i, 2i] line segment in the complex plane. The
formulas for t and λ still apply. Take B =

[
0 3−3 0

]
as an example, with eigenvalues ±3i.

If we apply a widely spaced modification governed by B to A, experiments show that
A + B will have two isolated eigenvalues that are approximately ±√4− 9 = ±√5i.
One of the localized eigenvectors is very close to our construction with h = [1, i] and
t = (

√
5− 3)i/2. The other localized eigenvector is the complex conjugate.

In Theorem 2.2, the underlying matrix is the adjacency matrix of an n-node linear
chain. Similar conclusions can be drawn when the underlying matrix is the adjacency
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Fig. 6. The special eigenvalue of the perturbed matrix as the added 1 moves from (1, 1) to
(50, 50) in a matrix of order 100.

matrix of an n-node circle. The difference is that in the n-node circle case, ∆(λ) in
(27) has ψ(t, 1)/ψ(t, n + r1 − rM + 1) in the (1, n) and (n, 1) entries. Repeat the
arguments in the proof of Theorem 2.2 with this new ∆(λ). In the same way, λ and
x in (15) and (10) are within O(tL) of an eigenvalue and eigenvector of the modified
matrix.

Example 1 (now confirmed). Suppose we change only a single entry on the main
diagonal from 0 to 1. The modifying matrix is just B = [1]. For the (infinite) modified
matrix, the localized eigenvector is exact. The eigenvalue is

√
5 and the spike ratio

t = (−1 + √5)/2 is the reciprocal of the golden mean. If the single 1 is the (0, 0)
entry, the jth component of the eigenvector is t|j|.

For a finite matrix, this eigenvalue-eigenvector pair is only approximate. The
approximation is good when the modified entry is near the center of the finite matrix
and poor (see Figure 6) as it approaches the ends of the diagonal (where the limiting
eigenvalue is 2).

Example 2. Connect three widely spaced nodes i,j,k by three undirected edges.
In this case the modifying matrix is

B =




0 1 1
1 0 1
1 1 0



 .

Its eigenvalues are µ = 2,−1,−1. The eigenvalues of the large matrix A + B are
approximately λ =

√
4 + 22 =

√
8 and λ = −√4 + (−1)2 = −√5 (twice).

The eigenvector h = (1, 1, 1) of the small matrix is correctly reflected in the
eigenvector of A+B for λ =

√
8. It is very nearly a sum of three equal spikes.

The other eigenvalue µ = −1 is repeated. The eigenvalue λ = −√5 is nearly
but not exactly repeated. Theorem 2.2 cannot apply as it stands to the eigenvectors,
because the small matrix has a plane of eigenvectors for µ = −1. Since λ = −√5 is
not exactly repeated, there is no corresponding plane for A + B. Experiment shows
that its eigenvectors are sums of spikes at i, j, k with weights h = (−1, 0, 1) and
h = (−1, 2,−1).
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To extend this example, suppose the modification adds a complete graph on M
nodes to the starting graph (which is still an infinite line of nodes connected only to
their neighbors). The M by M matrix B has 0’s on the diagonal and 1’s everywhere
else, as above. Its largest eigenvalue µ = M − 1 has eigenvector h = (1, 1, . . . , 1).
Then the modified matrix A+B has largest eigenvalue λ =

√
4 + (M − 1)2 with x =

sum of equal spikes.
The M − 1 remaining eigenvalues of the small matrix B all equal −1. Again this

produces M − 1 eigenvalues of the modified matrix, all close to λ = −√5 but not
repeated. Each of them has a corresponding eigenvector that is a sum of M spikes,
with the weights adding to zero.

4. Beyond tridiagonal matrices. We turn to cases in which the original ma-
trix A is no longer tridiagonal.

Suppose A is an n by n symmetric Toeplitz matrix, with (0, a1, . . . , aq, 0, . . . , 0)
as its first row. Apply a rank one modification by choosing an index 1 	 r 	 n
and changing the (r, r) entry of A from 0 to b. Numerical experiments tell us that
one isolated eigenvalue will appear for A + B, together with a localized eigenvec-
tor. Figure 7 is typical, with n = 200 and modified row r = 100, the matrix
A = Toeplitz{0, 1, 1, 0, . . . , 0}, and b = 1. MATLAB computed the new isolated
eigenvalue

λ = 4.05956284882943.(51)

In Figure 7, the plot on the left shows the localized eigenvector. On the right is its
logplot. Comparing to Figure 4, there is no longer a single spike ratio near the position
r = 100 of the modification. For q > 1, the localized eigenvector is approximately the
sum of q spikes with different weights and different spike ratios t1, . . . , tq.
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Fig. 7. Localized eigenvector of a modified Toeplitz matrix
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Take q = 2 as an example. To simplify the discussion, assume that A is an infinite
matrix indexed from −∞ to ∞. (If the matrix is finite, the boundary terms will be
of order tL or lower.) Suppose A has all ones on the first and second subdiagonal
and superdiagonal, and zeros on the main diagonal (as in Figure 7). Apply a unit
modification (b = 1) to the (0, 0) entry, and look for a new eigenvector x that is the
sum of two spikes centered at 0:

xk = c1t
|k|
1 + c2t

|k|
2 .(52)

We normalize x by x0 = 1, which means

c1 + c2 = 1.(53)

Now consider the eigenvector equation (A+B)x = λx a row at a time:

(Ax)k + (Bx)k = λxk.(54)

Substituting (52) into (54), we have the cases k ≥ 2, k = 1, k = 0 (symmetry accounts
for k < 0).

1. For k ≥ 2, we have
c1t

k−2
1 (1 + t1 + t31 + t41 − λt21) + c2t

k−2
2 (1 + t2 + t32 + t42 − λt22) = 0.(55)

It is clear that (55) will be satisfied if

1 + t1 + t31 + t41 − λt21 = 0 and 1 + t2 + t32 + t42 − λt22 = 0.(56)

2. For k = 1, we have

c1t1 + c2t2 + 1 + c1t
2
1 + c2t

2
2 + c1t

3
1 + c2t

3
2 = λ(c1t1 + c2t2).(57)

3. For k = 0, we have

2(c1t1 + c2t2 + c1t
2
1 + c2t

2
2) + 1 = λ.(58)

The four equations in (56), (57), and (58) with the normality constraint (53) yield
five equations for the unknowns λ, t1, t2, c1, and c2. Using MATLAB, we compute

λ = 4.05956284889808, t1 = −0.37994846989306, t2 = 0.89676509565825,

c1 = 0.088390260956474, c2 = 0.91160973904353.
(59)

This λ agrees with (51) to 10 digits. That confirms our conjecture (52) about the
structure of the localized eigenvector. Since c2t

k
2 will dominate c1t

k
1 for large k, this

explains the nearly single spike appearance of Figure 7.
Now we consider the general band Toeplitz case, with the simplest modification

by b = 1. The underlying matrix A is a doubly infinite symmetric Toeplitz matrix
(Laurent matrix) with a1, a2, . . . , aq on the first q upper and lower diagonals, and zero
elsewhere. We conjecture that the localized eigenvector x of A + B is the sum of q
spikes centered at k = 0, with different weights cj and spike ratios tj :

xk =

q∑

j=1

cjt
|k|
j .(60)
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For k ≥ q, substituting (60) into (54) yields

q∑

i=1

q∑

j=1

aicj(t
k−i
j + tk+ij ) = λ

q∑

j=1

cjt
k
j .(61)

This equation will be satisfied if
∑

cj = 1 (normalization) and

q∑

i=1

ai(t
i
j + t−ij )− λ = 0 for j = 1, . . . , q.(62)

We get q more equations by substituting (60) into (54) for k = 0, 1, . . . , q− 1. The 2q
equations and the normalization match the number of unknowns t1, . . . , tq, c1, . . . , cq, λ.
The eigenvector is exact when A is an infinite matrix and B is 1 by 1.

For completeness we generalize to an arbitrary widely spaced modification. De-
note the localized eigenvector after a single point modification of magnitude b at index
r by xr,b. We know that xr,b is the sum of q spikes centered at r, with eigenvalue
λb and largest spike ratio tb. Pick M indices ri separated by L or more. Modify A
at these indices by an M by M matrix B. Let µ be a simple eigenvalue of B with
eigenvector h. Then

x =
M∑

i=1

hixri,µ yields ‖(A+B)x− λµx‖ = O(tLµ).

Briefly, a modified row leads to

hi(Axri,µ)ri + (Bh)i = λµhi +O(t
L
µ).(63)

The O(tLµ) term comes from the other M − 1 vectors xrj ,µ with j = i. From (Bh)i =
µhi, we get

(Axri,µ)ri + µ = λµ +O(t
L
µ).(64)

By the definition of xri,b we know that (Axri,µ)ri + µ = λµ. So (64) is satisfied up to
O(tLµ).

Figure 8 shows a localized eigenvector of a modified 400 by 400 Toeplitz matrix
A = Toeplitz{0, 1, 1, 1, 0, . . . , 0}. B is a 3 by 3 random matrix, and the plot shows
three “triple spikes” centered at different positions. Each triple spike is a combination
of three spikes with different weights and spike ratios.

For a single point modification, say b = 1, another way to calculate the new
isolated eigenvalue is by Fourier transform. Let x be an L2-finite eigenvector of the
modified A+B, corresponding to a new λ. The eigenvector equation becomes

λxn =

q∑

k=1

ak(xn−k + xn+k) + δ(n)xn.(65)

Its Fourier transform is

λf(y) =

q∑

k=1

akf(y)(e
−iky + eiky) + x0,(66)
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Fig. 8. Localized eigenvector of a modified Toeplitz matrix with three spikes.

which is equivalent to

f(y) =
x0

λ−∑q
k=1 ak(e

−iky + eiky)
.(67)

The inverse Fourier transform gives

x0 =
1

2π

∫ 2π

0

x0 dy

λ−∑q
k=1 ak(e

−iky + eiky)
.(68)

Normalizing x0 = 1 and substituting z = eiy, we get

1

2πi

∫

S1

zq−1 dz

λzq −∑q
k=1 ak(z

q+k + zq−k)
= 1.(69)

The solutions of (69) correspond to the eigenvalues of A+B with localized eigenvec-
tors.

5. Two-dimensional grids and localized eigenvectors. Suppose G is a
regular M by N grid, with edges connecting to the (usually four) nearest neigh-
bors. The MN by MN symmetric adjacency matrix A represents node (i, j) by the
((i − 1)N + j)th row and column. Numerical experiment tells us that a single point
modification, when applied to a node (i, j) with 1	 i	M and 1	 j 	 N , produces
a localized eigenvector. Figure 9 shows one example from a 30 by 30 grid, modified
at node (16, 15). The three-dimensional plot uses MATLAB’s “surf” function. The
eigenvector in Figure 9 corresponds to the largest eigenvalue λ = 3.9881 of A + B.
The logplot on the right shows that the spike ratio is no longer a constant.

For this case, we do not have an explicit formula for the localized eigenvector (is it
a known special function?). We can still estimate the eigenvalue by Fourier transform
on an infinite grid. Define VG to be the space of all mappings from nodes of G to
R, and let ui,j be the value of node (i, j) under mapping (vector) u. The adjacency
matrix of a graph is seen in [3] as an operator that maps VG to VG, Au = v, such that
vi,j is the weighted sum of all uk,l. In our case, the weight is one or zero depending
on whether the two nodes are connected. Apply a unit modification on G by adding
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Fig. 9. Localized eigenvector of the modified adjacency matrix of a two-dimensional grid.

an edge from node (0, 0) to itself. Let x be a localized eigenvector of the modified
adjacency matrix A+B:

xi−1,j + xi+1,j + xi,j−1 + xi,j+1 + δ(i, j)xi,j = λxi,j ,(70)

where δ(i, j) is a two-variable delta function. Let f(y, z) be the Fourier transform

f(y, z) =

∞∑

k=−∞

∞∑

l=−∞
xk,le

−i(ky+lz) .(71)

Transforming both sides of (70), we get

f(y, z) =
x0,0

λ− e−iy − eiy − e−iz − eiz
.(72)

Using the inverse two-dimensional transform and cancelling x0,0, the integral equation
for λ is

1

(2π)2

∫ 2π

0

∫ 2π

0

1

λ− e−iy − eiy − e−iz − eiz
dy dz = 1.(73)

By the result in (8), this simplifies to

E(λ) =

∫ 2π

0

1√
(λ− e−iy − eiy)2 − 4 dy = 2π.(74)

Equation (74) involves an elliptic integral. The software package PARI/GP [4] pro-
duced the graph of E(λ) in Figure 10. The dashed horizontal line y = 2π intersects
at the solution λ = 4.000111576954677619. This is a much smaller shift of λmax than
in the one-dimensional case of nodes along a line.
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Fig. 10. Plot of the elliptic integral E(λ) in (74).
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Abstract. Frameproof codes were first introduced by Boneh and Shaw in the context of digital
fingerprinting. Variants of these codes have been studied by several authors, and several similar
definitions of frameproof codes exist in the literature. The paper considers frameproof codes from a
combinatorial point of view, where we define frameproof codes as follows.

Let F be a (finite) set, and let P ⊆ F � be a set of words of length � over the alphabet F . The
set of descendants of P , desc(P ), is the set of all words x ∈ F � such that for all i ∈ {1, 2, . . . , �}, the
ith component of x agrees with the ith component of some member of P . Let c be an integer such
that c ≥ 2. A c-frameproof code is a subset C ⊆ F � such that for all P ⊆ C with |P | ≤ c, we have
that desc(P ) ∩ C = P .

The paper considers the following question: What is the largest cardinality n of a c-frameproof
code of length �, over an alphabet of size q? The paper concentrates on the case when q is large. The
paper shows that n = �(q − 1) in the case when 2 ≤ � ≤ c and shows that if c = 2, then n is approx-
imately tq��/2�, where t = 1 when � is odd and t = 2 if � is even. The paper establishes improved
upper bounds on n by applying techniques from extremal set theory (namely, a generalization of the
Erdős–Ko–Rado theorem).
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1. Introduction. Frameproof codes were first introduced by Boneh and Shaw [3]
in the context of digital fingerprinting. There is more than one definition of frameproof
codes in the literature; we use the following version.

Let F be a (finite) set of cardinality q and let � be a positive integer. For a q-ary
codeword x ∈ F � and an integer i ∈ {1, 2, . . . , �} we write xi for the ith component
of x. Let P ⊆ F � be a set of codewords of length �. The set of descendants of P ,
desc(P ), is the set of all words x ∈ F � such that for all i ∈ {1, 2, . . . , �}, there exists
y ∈ P such that xi = yi. Let c be an integer such that c ≥ 2. A c-frameproof code is a
subset C ⊆ F � such that for all P ⊆ C with |P | ≤ c, we have that desc(P ) ∩ C = P .

Boneh and Shaw use a different definition of descendant. The definition for frame-
proof codes we use is explicitly given by Fiat and Tassa [9], who credit Chor, Fiat,
and Naor [4] with its first use. See Stinson and Wei [13] and Staddon, Stinson, and
Wei [12] for constructions of binary frameproof codes and for a discussion of the rela-
tionship between frameproof codes and such concepts as traceability codes and codes
with the identifiable parent property.

Inspired by an open question of Staddon, Stinson, and Wei [12, Section 5], we ask
the following: What is the largest cardinality M�,c(q) of a q-ary c-frameproof code of
length �? Let � and c be fixed. We are interested in how Mc,�(q) behaves as a function
of q.

When � ≤ c, we give a simple argument (Corollary 3) to show that Mc,�(q) =
�(q − 1) for q ≥ 2. The more interesting and difficult case is when � > c. As a first
approximation, previous results (see Theorem 1 and Construction 2 below) imply that
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Mc,�(q) = Θ(q��/c�), where the constants hidden by the notation may depend on �
and c. This suggests that we examine the behavior of the ratio Rc,�(q) defined by
Rc,�(q) = Mc�(q)/q

��/c�. Define t to be the unique integer such that 1 ≤ t ≤ c and
t = � mod c. Again, it follows from known results that limq→∞Rc,�(q) ≤ max{1, t}
and that limq→∞ ≥ 1. When � = 1 mod c, these results imply (Corollary 5) that
limq→∞Rc,�(q) exists and is equal to 1.

One case not covered by the above is the case c = 2 and � even, where the above
results show that 1 + o(1) ≤ Rc,�(q) ≤ 2 + o(1). In section 4, we give a construction
that matches the upper bound, thus establishing that limq→∞Rc,�(q) = 2 in this case.

In sections 5 and 6, we turn to improving the upper bound. Defining t as above,
we show that Rc,�(q) ≤ �/(� − (t − 1)
�/c�) by relating the problem of providing an
upper bound to a problem in extremal set theory. In the two cases when t = 1 and
t = c, this bound is essentially the same as the upper bound of t + o(1) given by
Theorem 1, but for any other values of t and c it gives an improvement. Indeed, when
c is fixed and � is large, then our new upper bound is approximately c/(c − t + 1)
which is generally much less than t.

In general there is still a gap between the upper bounds we have given for Rc,�(q)
and the lower bounds that follow from known large q-ary c-frameproof codes of length
�. In section 7 we close this gap in one case: when � = 5 and c = 3. By constructing
a code of size (5/3)q2 +O(q), we show that our upper bound on Rc,�(q) of 5/3+ o(1)
is tight when q →∞ by establishing that Rc,�(q) = 5/3 + o(1).

Note that any set of length 1 vectors is a c-frameproof code for any c; thus the
length 1 case is trivial. For the remainder of the paper we consider codes of length �,
where � ≥ 2.

The paper is organized as follows. Section 2 proves an upper bound on the size
of a c-frameproof code. This bound is a slight modification of the bound given in
Staddon, Stinson, and Wei [12, Theorem 3.7]. Section 3 contains two constructions
of q-ary c-frameproof codes of length � (one of these constructions has been given
before, in Cohen and Encheva [5, Proposition 1]). Section 4 contains a third, more
complicated, construction of 2-frameproof codes. The constructions of sections 3 and 4
show that the leading term of the upper bound has the correct order of magnitude;
moreover, the leading coefficient of the upper bound is tight when c = 2, when � ≤ c,
or when � = 1 mod c. Section 5 improves the bound of section 2 by relating the
problem to a question in the theory of intersecting systems of finite sets. This set
theoretic question is investigated further in section 6. Section 7 constructs a family
of 3-frameproof codes of length 5 to show that the improved upper bound given in
sections 5 and 6 is tight in this case. Finally, the paper ends with a brief discussion
of open problems.

2. An upper bound.

Theorem 1. Let �, q, and c be positive integers such that c ≥ 2 and � ≥ 2. Let
C be a q-ary c-frameproof code of length � with cardinality n greater than q. Define
the integer r ∈ {0, 1, . . . , c− 1} to be the remainder of � on division by c. Then

n ≤ max
{
q��/c�, r

(
q��/c� − 1

)
+ (c− r)

(
q��/c� − 1

)}
.(1)

We remark that for almost all parameter sets, the second term on the right-hand
side of (1) is the largest.
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Proof. Let C be a q-ary length � c-frameproof code of cardinality n. We show
that the bound (1) holds. For any subset S ⊆ {1, 2, . . . , �}, define US by

US = {x ∈ C : there exists no y ∈ C \ {x} such that xi = yi for all i ∈ S}.

Note that |US | ≤ q|S|, since every codeword x ∈ US is uniquely identified by the
subword (xi : i ∈ S). Moreover, if n > q|S| then |US | ≤ q|S| − 1, since at least one
choice of the subword (xi : i ∈ S) must correspond to two or more codewords in C.

Let S1, S2, . . . , Sc ⊆ {1, 2, . . . , �} be disjoint subsets, where |Sj | = 
�/c� whenever
1 ≤ j ≤ r and |Sj | = ��/c� whenever r + 1 ≤ j ≤ c. So ∪cj=1Sj = {1, 2, . . . , �}. The
bound of the theorem follows if we can show that C = ∪cj=1USj .

Suppose, for a contradiction, that x ∈ C \∪cj=1USj
. So there exist x1, x2, . . . , xc ∈

C \ {x} such that xj and x agree in their ith components for all i ∈ Sj . But then
x ∈ desc({x1, x2, . . . , xc}), which contradicts the c-frameproof property of C. This
contradiction shows that C = ∪cj=1USj , as required.

Corollary 2. A q-ary c-frameproof code of length � contains at most

tq��/c� +O(q��/c�−1)

codewords, where t is the unique integer such that t ∈ {1, 2, . . . , c} and t = � mod c.

3. Two constructions. This section presents two constructions of frameproof
codes; the second of these constructions is given in Cohen and Encheva [5, Proposi-
tion 1].

Construction 1. Let F = {0, 1, . . . , q − 1}. The set C of all words of length �
and weight exactly 1 (i.e., the elements of F � with exactly one nonzero component)
forms a c-frameproof code of cardinality �(q − 1).

Proof. Let x ∈ C be a weight 1 vector, and suppose its ith component is nonzero.
Now, any set P ⊆ C such that x ∈ desc(P ) must contain a codeword y such that
yi = xi. But since a codeword of weight 1 is uniquely determined by its nonzero
component, we must have that x = y. Hence C is c-frameproof for any c.

Theorem 1 and Construction 1 combine to show the following result.
Corollary 3. Let q, �, and c be positive integers such that q ≥ 2 and 2 ≤ � ≤ c.

Then the largest q-ary length � c-frameproof code has cardinality �(q − 1).
Construction 2. Let integers � and c be such that � ≥ 2 and c ≥ 2. Let q

be a prime power such that q ≥ �. Let F be the finite field of cardinality q and let
α1, α2, . . . , α� ∈ F be distinct. Define a length � code C over F by

C = {(f(α1), f(α2), . . . , f(α�)) : f ∈ F [X] and deg f < 
�/c�}.

Then C is a c-frameproof code of cardinality q��/c�.
We remark that the restriction q ≥ � may be weakened to q + 1 ≥ � by also

allowing a polynomial f to be evaluated at a “point at infinity”: f(∞) is defined to
be the coefficient of X��/c�−1 in f .

Proof. There are q��/c� choices for a polynomial f of degree less than 
�/c� as
there are q choices for each of its coefficients.

If x, y ∈ C agree in 
�/c� positions, then x = y (since we may recover the poly-
nomial associated with a codeword by interpolation by considering just the positions
where x and y agree). In particular, each distinct choice for the polynomial f gives
rise to a distinct codeword, since f is determined by specifying f(α) at 
�/c� points
α. Hence |C| = q��/c�. Now, let x ∈ C ∩ desc(P ), where P ⊆ C has cardinality at
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most c. Each component of x must agree with the corresponding component of one of
the codewords in P , and so there is a codeword y ∈ P that agrees with x in at least

�/c� positions. But then x = y ∈ P , and so the code is c-frameproof.

Corollary 2 and Construction 2 combine to show the following two results.
Corollary 4. Let � and c be fixed integers such that � ≥ 2 and c ≥ 2. Let

Mc,�(q) be the largest cardinality of a q-ary c-frameproof code of length �. Then

lim
q→∞ logqMc,�(q) = 
�/c�.

Proof. We have that logqMc,�(q) ≤ 
�/c�+ o(1) by Corollary 2.
For a given value of q, let q′ be the largest prime power such that q′ ≤ q.

By the prime number theorem, q′/q = 1 − o(1). By Construction 2, we have that
logq′ Mc,�(q

′) ≥ 
�/c� whenever q′ is sufficiently large. Hence

logqMc,�(q) ≥ logqMc,�(q
′) ≥ logq′ Mc,�(q

′)− o(1) ≥ 
�/c� − o(1).

These bounds on logqMc,�(q) imply that limq→∞ logqMc,�(q) exists and is equal to

�/c�, as required.

The proof of the following corollary is similar to the proof of Corollary 4.
Corollary 5. Let � and c be fixed integers such that � ≥ 2, c ≥ 2, and � =

1 mod c. Let Mc,�(q) be defined as in Corollary 4. Then

lim
q→∞Mc,�(q)/q

��/c� = 1.

4. 2-frameproof codes of even length. We aim to construct a family of 2-
frameproof codes of length �, where � is even. This construction, when combined
with Construction 2, will show that the leading term of the upper bound given in
Theorem 1 is tight in the case when c = 2.

We define two subcodes as part of our final construction. Let � be an even
integer such that � ≥ 4. Let m be a prime power such that m ≥ � + 1 and set
q = m2 + 1. Let Fm be the finite field of order m, and define F to be the disjoint
union F = {∞} ∪ (Fm)

2. Let β0, β1, α1, α2, . . . , α�−1 be distinct elements of Fm.
For polynomials f, g ∈ Fm[X], we write (f, g)(αi) for the element (f(αi), g(αi)) ∈ F .
Define C1 ⊆ F � by

C1 = {(∞, (f, g)(α1), (f, g)(α2), . . . , (f, g)(α�−1))},(2)

where f, g ∈ Fm[X] are such that deg f = (�/2) − 1 and deg g ≤ (�/2) − 1. Define
C2 ⊆ F � by

C2 = {((t(β0), t(β1)), (s, t)(α1), (s, t)(α2), . . . , (s, t)(α�−1))},(3)

where s, t ∈ Fm[X] are such that deg s ≤ (�/2)− 2 and deg t ≤ (�/2).
Construction 3. Let � be an even integer such that � ≥ 4. Let m be a prime

power such that m ≥ �+1 and set q = m2 +1. Define C1 and C2 as above. Then the
code C defined by C = C1 ∪ C2 is a 2-frameproof code of cardinality 2(q − 1)�/2(1 −
1/(2
√
q − 1)).

Proof. By considering their first components, it is clear that C1 and C2 are
disjoint. A polynomial of degree at most (�/2)− 1 is determined by its values at �/2
distinct points, and hence the polynomials f and g in (2) are uniquely determined
by a codeword x ∈ C1. There are m�/2 − m(�/2)−1 choices for f and there are
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m�/2 choices for g, and so |C1| = (m2)�/2(1 − 1/m). The polynomial s in (3) is
determined by (�/2) of the final � − 1 components of a codeword x ∈ C2. Similarly,
the polynomial t is determined by (�/2)+ 1 of these components. Hence |C2| is equal
to the number of choices for s and t and so |C2| = m(�/2)−1m(�/2)+1 = (m2)�/2.
Summing our expressions for |C1| and |C2| and using the fact that m =

√
q − 1 shows

that |C| = 2(q − 1)�/2(1− 1/(2
√
q − 1)), as required.

It remains to show that C is a 2-frameproof code. To this end, we claim that
codewords x ∈ C1 and y ∈ C2 can agree in at most (�/2) − 1 components. The first
components of x and y are never equal. If �/2 of the remaining positions agree, then
the definitions of C1 and C2 imply that a polynomial f of degree exactly (�/2) − 1
and a polynomial s of degree at most (�/2)−2 agree at �/2 points. This contradiction
establishes our claim.

Let P ⊆ C be such that |P | = 2. Let x ∈ desc(P )∩C. We must show that x ∈ P .
Suppose that x ∈ C1. Excluding the first coordinate, there are �− 1 coordinates,

and so x must agree with some member y ∈ P in 
�/2� = �/2 positions other than
the first. Since x and y agree in more than (�/2) − 1 positions, we must have that
y ∈ C1. But any �/2 of the last � − 1 components determine a codeword in C1, and
so x = y. Hence x = y ∈ P , as required.

Now suppose that x ∈ C2. Let y ∈ P be such that x1 = y1 (and so y ∈ C2). If x
and y agree on (�/2)− 1 or more of the last �− 1 components, then the components
on which x and y agree include (�/2)− 1 values of s and (�/2) + 1 values of t, and so
x = y. Thus x = y ∈ P in this case. Now suppose that x and y agree on less than
(�/2)− 1 of the last �− 1 components. If we define z to be the element of P not equal
to y, we have that x and z agree in at least (�/2) + 1 components. This implies that
z ∈ C2, and since the components on which x and z agree include at least �/2 values
of s and (�/2) + 1 values of t, we have that x = z. Hence x = z ∈ P in this case also,
and so C is a 2-frameproof code.

Corollary 6. In the notation of Corollary 4,

lim
q→∞M2,�(q)/q

��/2� = 1 when � is odd,

lim
q→∞M2,�(q)/q

��/2� = 2 when � is even.

5. An improved upper bound. Given Corollaries 3 and 6, it might be tempt-
ing to conjecture that the leading term of Theorem 1 is always tight. However, this
is not the case. This section reduces the problem of providing an improved upper
bound to a problem in extremal set theory. This latter problem will be considered in
section 6.

Let � and k be fixed integers, where 1 ≤ k ≤ �. Let D be a set, and let

(VS ⊆ D : S ⊆ {1, 2, . . . , �}, |S| = k)

be a family of subsets of D indexed by the subsets of {1, 2, . . . , �} of cardinality k.
We say that this family is a (k, �; b, t)-frameproof code set system (FPCSS) if |VS | ≤ b
for all subsets S of {1, 2, . . . , �} of cardinality k, and if

VS1 ∪ VS2 ∪ · · · ∪ Vst = D(4)

whenever S1, S2, . . . , St are pairwise disjoint subsets of {1, 2, . . . , �} of cardinality k.
We define the size of a (k, �; b, t)-FPSS to be |D|.
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We aim to show (see Lemma 7) that a frameproof code gives rise to an FPCSS
of comparable size. If we can determine the largest size of an FPCSS, then this will
provide an upper bound on the size of a frameproof code.

Lemma 7. Let q, c, and � be positive integers, and suppose that � > c. Let C be
a q-ary c-frameproof code of length � containing n codewords. Let t ∈ {1, 2, . . . , c} be
such that t = � mod c. Let k = 
�/c�. Then there exists a (k, �; qk, t)-FPCSS of size
at least

n− ( �
k−1

)
qk−1.

Proof. As in section 2, for any S ⊆ {1, 2, . . . , �} we define US to be the set of
codewords x ∈ C which are uniquely determined by the ordered subset (xi : i ∈ S) of
their components. Just as in the proof of Theorem 1, we may show that

C = US1 ∪ US2 ∪ · · · ∪ USc ,

whenever S1, S2, . . . , Sc are subsets of {1, 2, . . . , �} with the property that S1 ∪ S2 ∪
· · · ∪ Sc = {1, 2, . . . , �}.

We define an FPCSS as follows. Let

D = C \
(
⋃

S

US

)
,

where S runs through all subsets of {1, 2, . . . , �} of cardinality k − 1. We observed in
the proof of Theorem 1 that |US | ≤ q|S|, and so

|D| ≥ n− ( �
k−1

)
qk−1.

For any subset S ⊆ {1, 2, . . . , �} such that |S| = k, we define

VS = US ∩D.

Clearly, |VS | ≤ |US | ≤ qk.
It remains to show that the subsets VS do indeed form a (k, �; qk, t)-FPCSS. Let

S1, S2, . . . , St be a set of pairwise disjoint subsets of {1, 2, . . . , �} of cardinality k. We
need to show that VS1

∪ VS2
∪ · · · ∪ VSt = D. The number of elements of {1, 2, . . . , �}

which are not contained in S1 ∪ S2 ∪ · · · ∪ St is � − tk = (c − t)(k − 1). Hence there
exist subsets St+1, St+2, . . . , Sc of cardinality k − 1 such that

S1 ∪ S2 ∪ · · · ∪ Sc = {1, 2, . . . , �}.
By our definition of D, we have that USi ∩D = ∅ whenever i ≥ t+ 1. Hence

VS1
∪ VS2

∪ · · · ∪ VSt
= (US1

∪ US2
∪ · · · ∪ USt

) ∩D

= (US1 ∪ US2 ∪ · · · ∪ USc) ∩D

= C ∩D

= D.

Thus our sets form an FPCSS as claimed, and so the lemma follows.
We now introduce the problem in extremal set theory that we will be concerned

with. We say that a family S of subsets of a set is t-colliding if S does not contain t
pairwise disjoint subsets.
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Let t, k, and � be positive integers such that 1 ≤ k ≤ �. We define m(t, k, �) to be
the maximum number of subsets in a t-colliding family S of subsets of {1, 2, . . . , �},
where |S| = k for all S ∈ S. Note that m(t, k, �) =

(
�
k

)
when tk > �, and m(t, k, �) <(

�
k

)
otherwise.
Theorem 8. Let t, k, �, and b be positive integers such that tk ≤ �. Then a

(k, �; b, t)-FPCSS has size at most

(
1

1−m(t, k, �)/
(
�
k

)
)

b.

We remark that when tk > �, the condition (4) becomes trivial and so there is no
bound on the size of a (k, �; b, t)-FPCSS.

Proof. Let D be a set, and let (VS) be a collection of subsets of D that forms a
(k, �; b, t)-FPCSS. We prove our upper bound on |D| by counting, in two ways, the
elements of the set

K = {(x, S) : x ∈ VS},(5)

where S ⊆ {1, 2, . . . , �} is such that |S| = k, and where x ∈ D.
There are

(
�
k

)
choices for the subset S. Once S is chosen, there are at most b

choices for x since |VS | ≤ b by the definition of an FPCSS. Hence |K| ≤ (�k
)
b.

We claim that an element x ∈ D is contained in VS for at least
(
�
k

) −m(t, k, �)
subsets S of cardinality k. Let S be defined by

S = {S ⊆ {1, 2, . . . , �} : |S| = k and x �∈ VS}.

Now, S is t-colliding, for if there exist pairwise disjoint subsets S1, S2, . . . , St ∈ S,
then x �∈ VS1

∪VS2
∪ · · ·∪VSt , which would contradict the FPCSS property (4). Since

S is t-colliding, |S| ≤ m(t, k, �), and so our claim follows.
There are |D| choices for the element x in (5), and our claim implies that once x

is fixed, there are at least
(
�
k

) −m(t, k, �) choices for S such that (x, S) ∈ K. Hence

|K| ≥ |D|((�k
)−m(t, k, �)). But now

|D|((�k
)−m(t, k, �)) ≤ |K| ≤ (�k

)
b,

and so the theorem follows.
The bound of Theorem 8 is tight, as the following example shows. Let t, k, and �

be positive integers, and suppose that tk ≤ �. Let S be a t-colliding family of subsets
of {1, 2, . . . , �} with the property that |S| = k for all S ∈ S, and suppose that S
consists of m(t, k, �) subsets. Define D = Sym(�), the symmetric group on � letters.
For any subset S ⊆ {1, 2, . . . , �} such that |S| = k, define

VS = {π ∈ D : π(S) �∈ S}.

Let S1, S2, . . . , St be pairwise disjoint subsets of {1, 2, . . . , �} with |Si| = k for
all i ∈ {1, 2, . . . , t}. Let π ∈ D and suppose that π �∈ VS1 ∪ VS2 ∪ · · · ∪ VSt . Then
π(Si) ∈ S for all i ∈ {1, 2, . . . , t} by the definition of VS . But this implies that
π(S1), π(S2), . . . , π(St) form a set of t pairwise disjoint subsets in S, contradicting the
fact that S is t-colliding. Hence π ∈ VS1 ∪VS2 ∪ · · · ∪VSt for all π ∈ D, and condition
(4) follows.
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It is easy to see that |D| = �! and that the sets VS all have cardinality b =
(
(
�
k

) −m(t, k, �))k!(� − k)!. Hence D is a (k, �; b, t)-FPCSS that meets the bound of
Theorem 8, as required.

Corollary 9. Let c and � be integers, and suppose that c ≥ 2 and � ≥ 2. Let
t ∈ {1, 2, . . . , c} be such that t = � mod c. Let C be a q-ary c-frameproof code of length
�. As q →∞ with c and � fixed, we have that

|C| ≤ κq��/c� +O(q��/c�−1),

where κ is the constant defined by

κ =
1

1−m(t, 
�/c�, �)/( �
��/c�

) .

Proof. The corollary follows by Lemma 7 and Theorem 8 after observing that
t
�/c� ≤ �.

6. Intersecting set systems. Recall from the previous section that a family of
subsets is t-colliding if it does not contain a set of t pairwise disjoint subsets. Let t,
k, and � be positive integers such that tk ≤ �. Define, as before, m(t, k, �) to be the
maximum size of a t-colliding family S of subsets of {1, 2, . . . , �} such that |S| = k for
all S ∈ S. This section proves an upper bound on m(t, k, �).

Note that the case when t = 1 is trivial: no nonempty family of subsets can be
1-colliding, and so m(1, k, �) = 0 in this case. We will therefore assume that t ≥ 2.

The familyM defined by

M = {S ⊆ {1, 2, . . . , �} : |S| = k and S ∩ {1, 2, . . . , t− 1} �= ∅}

is clearly t-colliding, and |M| = (�k
)− (�−(t−1)

k

)
. This family provides a lower bound

on m(t, k, �), which we would expect to be realistic. Indeed, much of the literature
on this problem has been concerned with showing that M is optimal (in the sense
that m(t, k, �) = |M|) when certain conditions on t, k, and � are met. The famous
theorem of Erdős, Ko, and Rado [8] (see Anderson [1]) asserts in our notation that
m(2, k, �) =

(
�−1
k−1

)
, and so M is optimal in the case when t = 2. Erdős [7] was the

first to consider the problem when t > 2; he proves that there exists a constant κ
depending only on k such thatM is optimal whenever � > κt. Bollobás, Daykin, and
Erdős [2] show that � > 2k3t will suffice. In Deza and Frankl [6, section 4], a result
of Frankl is mentioned that shows that M is optimal whenever � > κ′kt2 for some
constant κ′. Deza and Frankl conjecture that M is optimal whenever � > κ′′kt for
some constant κ′′.

Rather than proving that m(t, k, �) =
(
�
k

)−(�−(t−1)
k

)
for certain values of t, k, and

�, we would like an upper bound on m(t, k, �) that holds for any values of t, k, and �.
Such a bound is given in Theorem 11 below. This bound is inspired by Katona’s proof
[11] of the Erdős–Ko–Rado theorem and is a special case of a bound of Gronau [10];
we include a proof here for the sake of completeness.

Before proving Gronau’s bound, we will first consider a simpler situation. Let Z�

denote the integers modulo �. For a ∈ Z�, define T�(a) ⊆ Z� by

T�(a) = {a, a+ 1, a+ 2, . . . , a+ (k − 1)}.

Write T = {T�(a) : a ∈ Z�}.
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Lemma 10. Let t, k, and � be positive integers such that � ≥ tk. Define the sets
T�(a) and the family T as above. Suppose that S is contained in T and is t-colliding.
Then |S| ≤ (t− 1)k.

We remark that the family S = {T�(a) : 0 ≤ a ≤ (t − 1)k − 1} is t-colliding and
meets the bound of Lemma 10.

Proof. We prove the lemma by induction on �. Suppose that � = tk. In this case,
we may partition T into parts T1, T2, . . . , Tk, where

Ti = {T�(i), T�(i+ k), T�(i+ 2k), . . . , T�(i+ (t− 1)k)}.
Since Ti consists of t pairwise disjoint sets, Ti is not contained in S and so |Ti ∩ S| ≤
t− 1. Hence

|S| = |(T1 ∪ T2 ∪ · · · ∪ Tk) ∩ S|

=

k∑

i=1

|Ti ∩ S|

≤ (t− 1)k,

and so the lemma follows when � = tk.
Assume, as an inductive hypothesis, that � > tk and the lemma holds for all

smaller values of �. Certainly S �= T , and so there exists c ∈ Z� such that T�(c) �∈ S.
We may define a family S of subsets of Z�−1 by

S = {T�−1(a) : a ∈ {0, 1, . . . , c− 1}, T�(a) ∈ S}
∪ {T�−1(a− 1) : a ∈ {c+ 1, c+ 2, . . . , �− 1}, T�(a) ∈ S}.

Clearly there is a one-to-one correspondence between the subsets in S and the subsets
in S, and so |S| = |S|. Moreover, the cardinality of the intersection of a pair of subsets
in S is at least as great as the cardinality of the intersection of the corresponding pair
of subsets in S. Hence the fact that S is t-colliding implies that S is t-colliding. Our
inductive hypothesis now implies that |S| ≤ (t−1)k, and so |S| ≤ (t−1)k as required.
The lemma now follows by induction on �.

Theorem 11. Let t, k, and � be positive integers, where tk ≤ �. Let S be a
t-colliding family of subsets of {1, 2, . . . , �}, where |S| = k for all S ∈ S. Then

|S| ≤
(
�

k

)
(t− 1)k

�
.

So Theorem 11 states that m(t, k, �) ≤ (�k
) (t−1)k

� . The bound of Theorem 11 is
best possible when t = 1 (as the problem is trivial) and t = 2 (the t-colliding family
M defined near the start of this section provides the appropriate example). In the
case when tk = �, the t-colliding family

N = {S ⊆ {1, 2, . . . , �} : |S| = k and 1 �∈ S}

contains
(
�
k

) (t−1)k
� sets. So Theorem 11 is also best possible in the case when tk = �.

When t and k are fixed with � → ∞, the upper bound on m(t, k, �) provided by
Theorem 11 has the form (t − 1)�k−1/(k − 1)! + O(�k−2). But the lower bound on
m(t, k, �) provided by the t-colliding family M at the start of the section also has

this form, as can be easily seen from the expression |M| = ∑t−1
i=1

(
t−1
i

)(
�−(t−1)
k−i

)
. In
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particular, the ratio between the upper and lower bounds on m(t, k, �) tends to 1 as
� → ∞ with t and k fixed. So the upper bound of Theorem 11 is the right order of
magnitude when � is large.

Proof of Theorem 11. Define T as above, and let Q be the set of pairs (α, S),
where S ∈ S and α : {1, 2, . . . , �} → Z� is a bijection such that α(S) ∈ T . We will
count the elements of Q in two ways.

There are |S| choices for S ∈ S. Once S has been chosen, there are � choices for
α(S) ∈ T and then k!(�− k)! choices for a suitable bijection α. Hence

|Q| = � |S| k!(�− k)!.

We now count the elements of Q in a different way. There are �! choices for α.
Suppose now that α is fixed. The number of choices for S is |X |, where X = {S ∈
S : α(S) ∈ T }. Now, X is t-colliding because it is a subfamily of S. Hence the
corresponding subfamily α(X ) of T (where α(X ) = {α(S) : S ∈ X}) is t-colliding.
Hence |X | = |α(X )| ≤ (t− 1)k by Lemma 10. So

|Q| ≤ �!(t− 1)k,

and therefore

|S| = |Q|/ (k!(�− k)!�)

≤ �!(t− 1)k/ (k!(�− k)!�)

=

(
�

k

)
(t− 1)k

�
,

as required.

Corollary 12. Let c and � be integers, and suppose that c ≥ 2 and � ≥ 2. Let
t ∈ {1, 2, . . . , c} be such that t = � mod c. Let C be a q-ary c-frameproof code of length
�. Then

|C| ≤
(

�

�− (t− 1)
�/c�
)
q��/c� +O(q��/c�−1).

Proof. The corollary follows by combining Corollary 9 with Theorem 11.

7. A 3-frameproof code of length 5. The first case where the upper bound
of section 5 improves on the bound of section 2 is when we are considering q-ary
3-frameproof codes of length 5. The upper bound of section 5 shows that such a q-ary
3-frameproof code has cardinality at most 5

3q
2 + O(q). We will now show that the

leading term of the bound is tight in this case by constructing a 3-frameproof code of
length 5 of sufficiently large cardinality.

We define five sets X1, X2, X3, X4, and X5 of words of length 5 over the alphabet
F3 ∪ {∞} as follows:

X1 = {( ∞, a, a, a, a ) : a ∈ Z3}
X2 = {( a, ∞, a, a+ 1, a+ 2 ) : a ∈ Z3}
X3 = {( a, a, ∞, a+ 2, a+ 1 ) : a ∈ Z3}
X4 = {( a, a+ 1, a+ 2, ∞, a ) : a ∈ Z3}
X5 = {( a, a+ 2, a+ 1, a, ∞ ) : a ∈ Z3}
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The sets Xi are clearly pairwise disjoint and have cardinality 3. Moreover, it is not
difficult to check that a codeword in X1 ∪X2 ∪X3 ∪X4 ∪X5 is uniquely determined
by specifying two of its components.

Let m be a prime power such that m ≥ 4. Let α1, α2, α3, and α4 be distinct
elements in Fm. Define five sets Y1, Y2, Y3, Y4, and Y5 of words of length 5 over the
alphabet Fm ∪ {∞} by

Y1 = {(∞, f(α1), f(α2), f(α3), f(α4)) : f ∈ Fm[X],deg f ≤ 1}
Y2 = {(f(α1),∞, f(α2), f(α3), f(α4)) : f ∈ Fm[X],deg f ≤ 1}
Y3 = {(f(α1), f(α2),∞, f(α3), f(α4)) : f ∈ Fm[X],deg f ≤ 1}
Y4 = {(f(α1), f(α2), f(α3),∞, f(α4)) : f ∈ Fm[X],deg f ≤ 1}
Y5 = {(f(α1), f(α2), f(α3), f(α4),∞) : f ∈ Fm[X],deg f ≤ 1}

Clearly the sets Yi are disjoint and have cardinalitym2. Moreover, if elements x, y ∈ Yi
agree on two components not including the ith, then x = y.

Define sets of words C1, C2, C3, C4, and C5 of length 5 over the alphabet (F3 ×
Fm) ∪ {(∞,∞)} by

Ci = {((x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5)) :

(x1, x2, x3, x4, x5) ∈ Xi and (y1, y2, y3, y4, y5) ∈ Yi}

for all i ∈ {1, 2, 3, 4, 5}. Note that |Ci| = |Xi| × |Yi| = 3m2.
Construction 4. Let q be of the form 3m + 1, where m is a prime power and

m ≥ 4. Define sets C1, C2, C3, C4, and C5 of words of length 5 over the alphabet
F = (F3 × Fm) ∪ {(∞,∞)} as above. Then the code C defined by

C = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5

is a 3-frameproof code of length 5 and cardinality 5
3q

2 − 10
3 q + 5

3 .
Proof. The subsets Ci are pairwise disjoint and |Ci| = 3m2 = 1

3 (q
2−2q+1). Hence

the code C has the claimed cardinality. It remains to show that C is 3-frameproof.
For a codeword x ∈ C, let π1(c) be the word in X1 ∪X2 ∪X3 ∪X4 ∪X5 obtained

by replacing each component (a, b) ∈ F of c by the element a ∈ F3 ∪ {∞}. Note
that π1(c) ∈ Xi if and only if c ∈ Ci. Similarly, define π2(c) to be the word in
Y1 ∪ Y2 ∪ Y3 ∪ Y4 ∪ Y5 obtained by replacing each component (a, b) ∈ F of c by the
element b ∈ Fm ∪ {∞}.

Suppose x ∈ C and let P ⊆ C be such that |P | ≤ 3 and x ∈ desc(P ). We must
show that x ∈ P . Now x ∈ Cj for some j ∈ {1, 2, 3, 4, 5}. So the jth component of x
is (∞,∞) and π1(x) ∈ Xj . Since |P | ≤ 3, there exists y ∈ P that agrees with x in 2
or more components other than the jth. We aim to show that x = y.

Since x and y agree in two or more components, the same is true for π1(x) and
π1(y). Hence π1(y) = π1(x). In particular, we have that π1(y) ∈ Xj and so y ∈ Cj .

Since x, y ∈ Cj , we have that π2(x), π2(y) ∈ Yj . Moreover, since x and y agree
in two components not including the jth, the same is true for π2(x) and π2(y). This
implies that π2(x) = π2(y). Since π1(x) = π1(y) and π2(x) = π2(y) we find that
x = y ∈ P as required.

We remark that the condition m ≥ 4 in the statement of Construction 4 can be
weakened to m ≥ 3 if we set α4 =∞ in the definition of the sets Yi. (See the remark
after the statement of Construction 2.)
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8. Discussion. Two questions suggest themselves for further work. First, can
the upper bound of Corollary 9 be made more explicit by determining the constant
m(t, k, �) exactly in all cases? Erdős [7] warns that this does not seem easy. Second, is
it the case that the upper bound of Corollary 9 is tight? The most tempting cases to
consider are when we know the explicit value of m(t, k, �) used in Corollary 2, namely
when t = 1, t = 2, and � = tk. The case t = 1 occurs when � = 1 mod c and has
already been dealt with by Corollary 5. The case t = 2 occurs when � = 2 mod c. So
is there a c-frameproof code of cardinality approximately (�/(� − 
�/c�))q��/c� when
� = 2 mod c? The case � = tk occurs when � is a multiple of c. So is there a
c-frameproof code of cardinality approximately cq�/c when � is a multiple of c?
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Abstract. We prove that for a graph G = (V,E) without bad K4 subdivision, and for b ∈ ZV ∪E
+ ,

the b-stable set polytope is determined by the system of constraints determined by the vertices, edges,
and odd circuits. We also prove that this system is totally dual integral. This relates to t-perfect
graphs.

Key words. t-perfect, graph, polytope, stable set
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Let G = (V,E) be a graph and let b ∈ ZV ∪E+ . Then a b-stable set in G is a vector
x ∈ ZV+ satisfying xv ≤ bv for every vertex v and xu + xv ≤ buv for every edge uv.
The b-stable set polytope of G is defined as the convex hull of the b-stable sets in G.

We will use the following notation. For sets B ⊆ A and a vector x ∈ RA, let χB

be the characteristic vector of B and let x(B) := xTχB . For an edge {u, v} we will
use the shorthand notation uv.

The vectors in the b-stable set polytope obviously satisfy the following system of
inequalities:

(i) 0 ≤ xv ≤ bv for each v ∈ V ;(1)

(ii) xu + xv ≤ buv for each edge uv ∈ E;

(iii) x(V C) ≤ � 12b(EC)� for each odd circuit C.

We call a graph G t-perfect with respect to b if the b-stable set polytope is deter-
mined by (1). Since each integral vector satisfying (1) is a b-stable set, the polytope
determined by (1) equals the b-stable set polytope if and only if it is integral. We call
a graph G strongly t-perfect with respect to b if system (1) is totally dual integral.

For any weight function w ∈ ZV+ and any b ∈ ZV ∪E+ , denote by α(G, b, w) the
maximum w-weight wTx of a b-stable set x in G. Define a w-cover as a family of
vertices, edges, and odd circuits in G that covers each vertex v at least wv times. The
b-cost of a w-cover is defined as the sum of the costs of its elements, where the cost
of a vertex v equals bv, the cost of an edge e equals be, and the cost of an odd circuit
C equals � 12b(EC)�. Denote by ρ̃(G, b, w) the minimum cost of a w-cover. Strong
t-perfection can now be characterized equivalently as follows: a graph G = (V,E)
is strongly t-perfect with respect to b if and only if α(G, b, w) = ρ̃(G, b, w) for every
weight function w ∈ ZV+.

Call a subdivision of K4 odd if each triangle of K4 has become an odd circuit. An
odd subdivision of K4 is called bad if there are no two disjoint edges e, f of K4 such
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that e and f are not subdivided and the other four edges have become even length
paths. We say that a graph has a bad K4 subdivision if it has a subgraph that is a
bad K4 subdivision.

In [4], it was proved that a graph has no bad K4 subdivision if and only if each
subgraph is t-perfect with respect to the all-one vector. Here the “if” part follows
from the fact that a bad K4 subdivision is not t-perfect with respect to the all-one
vector (see [1]). In [5], it was proved that graphs without bad K4 subdivision are
also strongly t-perfect with respect to the all-one vector. In this paper we prove that
graphs having no bad K4 subdivision are strongly t-perfect with respect to every
b ∈ ZV ∪E+ , which implies our theorem.

Theorem. Let G = (V,E) be a graph. Then the following are equivalent:
(i) G has no bad K4 subdivision.
(ii) G is t-perfect with respect to each b ∈ ZV ∪E+ .
(iii) G is strongly t-perfect with respect to each b ∈ ZV ∪E+ .
Proof. If G satisfies (ii), then also each subgraph of G satisfies (ii). So the

implication (ii) =⇒ (i) follows from the fact that a bad K4 subdivision is not t-perfect
with respect to the all-one vector (see [1]).

The implication (iii) =⇒ (ii) follows from the fact that any totally dual integral
system with integral right-hand side determines an integral polyhedron.

To prove the implication (i) =⇒ (iii), it will be convenient to first prove the
implication (i) =⇒ (ii). Let G = (V,E) be a graph without bad K4 subdivision, and
let b ∈ ZV ∪E+ . We show that the polytope P determined by (1) is integral. Suppose
that x is a nonintegral vertex of P . Let x′ be defined by x′v := xv−�xv� for every vertex
v, and let b′ be defined by b′v := bv−�xv� for every vertex v and b′e := be−�xu�−�xv�
for every edge e = uv. Then x′ is a nonintegral vertex of the polytope determined by
(1) with b replaced by b′. Let G′ := (V, F ), where F := {e ∈ E| b′e = 1}. Since G′

has no bad K4 subdivision and x′ satisfies the constraints (1) for the graph G′ and
the all-one vector χV ∪F instead of b, x′ is a convex combination of incidence vectors
of stable sets in G′ by [5]. Each of these incidence vectors is a b′-stable set. Hence
x′ is a convex combination of b′-stable sets in G, a contradiction. This proves the
implication (i) =⇒ (ii).

The remainder of this proof consists of showing the implication (i) =⇒ (iii). The
idea is to reduce the general statement to the case in which b is the all-one vector.

Suppose the implication (i) =⇒ (iii) is false. Let the graph G = (V,E) and
b ∈ ZV ∪E+ form a counter example with (first) |V | + |E| minimal and (second) b(V )
minimal. Let w ∈ ZV+ be any weight function for which α(G, b, w) < ρ̃(G, b, w). Note
that by the minimality of G, we know that G has no isolated vertices. We observe
the following facts about w and b.

Claim 1.

(i) α(G, b, w) < α(G− e, b|G−e, w) for each edge e ∈ E,(2)

(ii) buv < bu + bv for each edge uv ∈ E,

(iii) 1 ≤ bu ≤ buv for each edge uv ∈ E,

(iv) 1 ≤ wv for each vertex v ∈ V .

Proof. By the minimality of G, we know that

α(G, b, w) < ρ̃(G, b, w) ≤ ρ̃(G− e, b|G−e, w) = α(G− e, b|G−e, w).
This gives (i). If for some edge uv we have buv ≥ bu + bv, then every b|G−uv-stable
set in G − uv is a b-stable set in G, contradicting (i). Hence we have (ii). Suppose
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that bu > buv for some edge uv. Let b′ := b− χu. Now we have

α(G, b′, w) = α(G, b, w) < ρ̃(G, b, w) = ρ̃(G, b′, w),

contradicting the minimality of b. Hence we have 0 ≤ buv − bv < bu ≤ buv, and (iii)
follows. Suppose that wv = 0 for some vertex v. Let b′ := b|G−v and w′ := w|G−v.
Then

α(G− v, b′, w′) = α(G, b, w) < ρ̃(G, b, w) ≤ ρ̃(G− v, b′, w′),

contradicting the minimality of G. Hence we have (iv).
For the b-stable sets of maximum weight we have the following.
Claim 2. Let x be a b-stable set of w-weight wTx = α(G, b, w). Then xv ≤ 1 for

each v ∈ V .
Proof. To see this, suppose that xv > 1 for some vertex v. Let x′ := x− χv and

b′ := b− χ{v}∪δ(v). For any b′-stable set x̃ in G, we have

wT x̃ = wT (x̃+ χv)− wv ≤ α(G, b, w)− wv = wTx′,

and hence x′ is a maximum w-weight b′-stable set in G. By minimality of b, there
exists a w-cover F of b′-cost ρ̃(G, b′, w) = α(G, b′, w).

Since xv > 1, we have x′v > 0, and hence by “complementary slackness” v is
covered exactly wv times by F . This implies that F has b-cost

ρ̃(G, b′, w) + wv = α(G, b′, w) + wv = α(G, b, w),

a contradiction.
Claim 3. For every edge f ∈ E we have bf ≤ 2.
Proof. Suppose that Claim 3 is not true and that we have bf ≥ 3 for some edge

f = uv. Let w′ := w +N · χf , where N := w(V ) + 1. Then

α(G, b, w′) = ρ̃(G, b, w′),

since otherwise by Claim 2 applied to w′ we have for any maximum w′-weight b-stable
set x the inequality

w′Tx = wTx+N(xu + xv) ≤ N − 1 + 2N < 3N,

while x′ := buχ
u + (bf − bu)χ

v is a b-stable set of w′-weight

w′Tx′ ≥ N · bf ≥ 3N,

contradicting the optimality of x.
So we can choose w such that

α(G, b, w) < ρ̃(G, b, w),(3)

α(G, b, w + χf ) = ρ̃(G, b, w + χf ).

Let F := {v1, . . . , vr, e1, . . . , es, C1, . . . , Ct} be a minimum b-cost w + χf -cover,
where the vi are vertices, the ei are edges, and the Ci are odd circuits. Note that
none of the ei is the edge f , since otherwise ρ̃(G, b, w) ≤ ρ̃(G, b, w + χf )− bf , which
would imply that ρ̃(G, b, w) ≤ α(G, b, w+ χf )− bf ≤ α(G, b, w). Let G′ := G− f , let
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b′ := b|G′ , and let x′ be a maximum w-weight b′-stable set in G′. Then α(G′, b′, w) ≥
α(G, b, w) + 1 by Claim 1, and hence

x′(f) > bf .(4)

For any odd circuit C traversing f , we have

x′(V C) ≤ � 12b(EC)�+ 1
2 (x
′(f)− bf + 1),(5)

since 2x′(V C) ≤ x′(f) + b(EC − f) = x′(f) + b(EC)− bf . Now let l be the number
of circuits in F traversing f . We obtain

ρ̃(G, b, w + χf ) = α(G, b, w + χf ) ≤ α(G, b, w) + bf ≤ α(G′, b′, w)− 1 + bf

= wTx′ − 1 + bf = (w + χf )Tx′ − (x′(f)− bf + 1)

≤ −(x′(f)− bf + 1) +

r∑

i=1

x′(vi) +
s∑

i=1

x′(ei) +
t∑

i=1

x′(V Ci)

≤ ( 1
2 l − 1)(x′(f)− bf + 1) +

r∑

i=1

bvi +

s∑

i=1

bei +

t∑

i=1

� 12b(ECi)�

= ( 1
2 l − 1)(x′(f)− bf + 1) + ρ̃(G, b, w + χf ).

(6)

Hence we have (l − 2)(x′(f)− bf + 1) ≥ 0. Since x′(f)− bf + 1 > 0 by (4), we have
l ≥ 2.

We may assume that C1 and C2 traverse f . Decompose the cycle EC1∆EC2 into
circuits C ′1, . . . , C ′q, where C ′1, . . . , C ′p are odd and C ′p+1, . . . , C ′q are even. Choose in
each C ′i with i = p+1, . . . , q a perfect matching Mi with b(Mi) ≤ 1

2b(EC ′i). Now the
circuits C1 and C2 are removed from the cover F , and the circuits C ′1, . . . , C ′p, the
edges in the matchings Mp+1, . . . ,Mq, and the edges in EC1 ∩EC2 are added to the
cover. This gives a w + χf -cover F ′ of b-cost

ρ̃(G, b, w + χf )− � 12b(EC1)� − � 12b(EC2)�(7)

+ b(EC1 ∩ EC2) +

p∑

i=1

� 12b(EC ′i)�+
q∑

i=p+1

b(Mi)

≤ ρ̃(G, b, w + χf )− 1
2 (b(EC1) + b(EC2)− 2) + 1

2 (b(EC1∆EC2)) + b(EC1 ∩ EC2)

= ρ̃(G, b, w + χf ) + 1.

Hence F ′− f is a w-cover of b-cost at most ρ̃(G, b, w+χf )+1− bf . This implies that

(8) α(G, b, w) ≤ ρ̃(G, b, w)− 1 ≤ ρ̃(G, b, w + χf )− bf

= α(G, b, w + χf )− bf ≤ α(G, b, w).

So we have equality throughout and, in particular, we obtain

α(G, b, w + χf ) = α(G, b, w) + bf .

Let x be a maximum w + χf -weight b-stable set in G. Then

α(G, b, w) + bf = (w + χf )Tx = wTx+ x(f) ≤ α(G, b, w) + bf ,
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and hence x(f) = bf and x is a maximum w-weight b-stable set. However, x(f) =
bf ≥ 3 implies that xu > 1 or xv > 1, contradicting Claim 2.

Partition the vertex set V into V1 := {v ∈ V | bv = 1} and V2 := {v ∈ V | bv = 2}.
Thus by Claim 1, we know that the edges e spanned by V1 have be = 1 and the other
edges have be = 2. We now prove the following claim.

Claim 4. Either V1 = ∅ or V2 = ∅.
Proof. To prove the claim, take w with α(G, b, w) < ρ̃(G, b, w) such that w(V ) is

minimal. We first prove the following:

If bv = 1 for some vertex v,

then there exists a maximum w-weight b-stable set x with xv = 0.
(9)

Indeed, let w′ := w − χv. By the minimality of w, we have

α(G, b, w′) + 1 = ρ̃(G, b, w′) + 1 ≥ ρ̃(G, b, w) ≥ α(G, b, w) + 1.

Hence α(G, b, w′) = α(G, b, w), implying that there exists a maximum w-weight b-
stable set x satisfying xv = 0.

Similarly, we have the following:

If be = 1 for some edge e,

then there exists a maximum w-weight b-stable set x with x(e) = 0.
(10)

To see this, let w′ := w − χe. By the minimality of w, we have

α(G, b, w′) + 1 = ρ̃(G, b, w′) + 1 ≥ ρ̃(G, b, w) ≥ α(G, b, w) + 1.

Hence α(G, b, w′) = α(G, b, w), implying that there exists a maximum w-weight b-
stable set x satisfying x(e) = 0.

Consider an edge e = uv with u ∈ V1 and v ∈ V2. By (9), there is a maximum
w-weight b-stable set x with xu = 0. By Claim 2, we know that xv ≤ 1. Hence
x(e) ≤ 1 < 2 = be. So we have that

for each edge e ∈ δ(V1),

there is a maximum w-weight b-stable set x with x(e) < be.
(11)

Next consider an odd circuit traversing an edge in δ(V1). We have that

for each odd circuit C traversing an edge in δ(V1), there is a

maximum w-weight b-stable set x with x(V C) < � 12b(EC)�.(12)

Indeed, let C be an odd circuit traversing an edge in δ(V1) and suppose that C
does not traverse an edge spanned by V1. Let u ∈ V1 be a vertex traversed by C. By
(9), there is a maximum w-weight b-stable set x with xu = 0. By Claim 2 we have
x(V C) ≤ |V C| − 1 < |V C| = � 12b(EC)�.

Thus we may assume that C traverses an edge spanned by U1. Then C has
three consecutive vertices t, u, and v with t, u ∈ V1, and v ∈ V2. By (10) there is
a maximum w-weight b-stable set x with x(tu) = 0 = btu − 1. By Claim 2 we have
xv ≤ 1, and hence x(uv) ≤ 1 ≤ buv − 1. Thus 2x(V C) ≤ b(EC) − 2, and hence
x(V C) < � 12b(EC)�.

Now suppose that V1 and V2 are nonempty. By minimality of G, we know that
there is at least one edge e ∈ δ(V1). Let G′ := G − e, let b′ := b|G′ , and let x′ be
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a maximum w-weight b′-stable set in G′. Let x maximize wTx over the b-stable set
polytope of G such that x is in general position on the face of optimal solutions. Then
by (11) and (12), x(e) < be and x(V C) < � 12b(EC)� for each odd circuit traversing
e. Hence there is a 0 < λ ≤ 1 such that x̃ := (1 − λ)x + λx′ satisfies the system of
constraints (1). By the implication (i) =⇒ (ii), x̃ belongs to the b-stable set polytope
of G. However, wT x̃ > wTx, since wTx′ = α(G′, b′, w) > α(G, b, w) = wTx by Claim
1. This contradicts the optimality of x. So either V1 or V2 is empty.

If b is the all-one vector, the total dual integrality of (1) follows from [5]. So
V1 is empty, and hence be = 2 for every edge e and bv = 2 for every vertex v.
Denote by a 2w-edge cover a vector y ∈ ZE+ with y(δ(v)) ≥ 2wv for every vertex
v ∈ V . It is easy to see that for any 2w-edge cover y and any 2-stable set x, we
have wTx ≤∑e∈E ye

1
2

∑
v∈e x(v) ≤ y(E). By a theorem of Gallai (see [2]), G has a

2-stable set x and a 2w-edge cover such that wTx = y(E). Denote by Uy the set of
vertices v for which y(δ(v)) is odd. Let x be a 2-stable set and let y be a 2w-edge
cover such that wTx = y(E) and |Uy| is minimal.

If Uy �= ∅, then there is a simple path P connecting two vertices in Uy with ye ≥ 1
for each e ∈ EP . LetM be a maximum size matching in P . Then y′ := y+χEP−2χM
is a 2w-edge cover with y′(E) ≤ y(E) and |Uy′ | = |Uy|−2, a contradiction. So y(δ(v))

is even for every vertex v and we can write y = χEC1+· · ·+χECr+χEC
′
1+· · ·+χEC

′
s for

odd circuits C1, . . . , Cr and even circuits C ′1, . . . , C ′s. Let Mi be a perfect matching
in C ′i for i = 1, . . . , s. Then C1, . . . , Cr together with the edges in the matchings
M1, . . . ,Ms give a w-cover of b-cost y(E) = wTx. Since x is a b-stable set, this
implies that ρ̃(G, b, w) ≤ α(G, b, w), contradicting the choice of w. This concludes the
proof of the theorem.

Remark. Let G = (V,E) be a graph with E × V incidence matrix M . In [3] it
was proved that the matrix

(
I
−I
M
−M

)

has Chvátal rank at most 1 if and only if G has no odd K4 subdivision. The equiva-
lence of (i) and (ii) of the theorem above has the following reformulation in terms of
the Chvátal rank: the matrix

(
I
−I
M

)

has Chvátal rank at most 1 if and only if G has no bad K4 subdivision.
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Abstract. Damaschke, Müller, and Kratsch [Inform. Process. Lett., 36 (1990), pp. 231–236]
gave a polynomial-time algorithm to solve the minimum dominating set problem in convex bipartite
graphs B = (X ∪ Y,E), that is, where the nodes in Y can be ordered so that each node of X is
adjacent to a contiguous sequence of nodes. Gamble et al. [Graphs Combin., 11 (1995), pp. 121–129]
gave an extension of their algorithm to weighted dominating sets. We formulate the dominating set
problem as that of finding a minimum weight subset of elements of a graphic matroid, which covers
each fundamental circuit and fundamental cut with respect to some spanning tree T . When T is a
directed path, this simultaneous covering problem coincides with the dominating set problem for the
previously studied class of convex bipartite graphs. We describe a polynomial-time algorithm for the
more general problem of simultaneous covering in the case when T is an arborescence. We also give
NP-completeness results for fairly specialized classes of the simultaneous cover problem. These are
based on connections between the domination and induced matching problems.
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1. The problem and some background. We are interested in minimum cov-
ering problems of the form min{wx : Ax ≥ 1, xi = 0 or 1, i = 1, . . . , n}, where w ∈ Zn
and A is a 0, 1 matrix. For a graph G = (V,E), a dominating set is a set S ⊂ V such
that for each node u ∈ V , u either is in S or is adjacent to a node in S. The dominat-
ing set problem is the covering problem associated with the 0, 1 matrix whose rows
are the incidence vectors of closed neighborhoods (i.e., N [u] = {u} ∪ {v : uv ∈ E}).
Computing the size of a minimum dominating set is NP-hard in general graphs; in
fact, it is hard to approximate to within a log(n) factor [6].

In [2], Damaschke, Müller, and Kratsch outline a polynomial-time algorithm to
solve the minimum dominating set problem in bipartite graphs G = (X ∪ Y,E),
where the nodes of Y can be labeled as 1, 2, . . . so that for each node u ∈ X, N [u] =
{i, i+1, i+2, . . . , j} for some choice of i < j. Such graphs are called convex bipartite
graphs. The algorithm of Damaschke, Müller, and Kratsch was extended to solve
the minimum weight dominating set problem in [5], where convex graphs arose in the
study of finding maximum right-angle-free subsets of points in the plane. Both of these
algorithms are rather complex and do not elucidate the reasons for polynomial-time
solvability in this class. Attempting to rectify this, we give an edge-based formulation
of the problem. This formulation leads naturally to a more general version of the
problem for which a simpler algorithm can be described. This approach originates
from considering the integer and linear programming formulations for domination; we
thus start our exposition this way as well.

Consider the (natural) integer program for domination in a convex bipartite
graph. Let B be the X×Y 0, 1 matrix such that Bij = 1 if the edge ij ∈ E(B). Then
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B has the consecutive ones property (in each row) and hence is totally unimodular.
It follows that the matrix

A =

[
0 B

BT 0

]
(1)

is also totally unimodular. The covering problem associated with A is thus solvable by
linear programming since the region {x ∈ Qn : Ax ≥ 1, x ≥ 0} has integral extreme
points (cf. [7]). The dominating set problem in convex graphs, however, corresponds
to the covering problem for the matrix A + I, and it is not the case that A + I is
totally unimodular whenever A is.

Nevertheless, we briefly explore the nature of covering problems associated with
such matrices as A + I. A matrix [I B] can be signed to be totally unimodular if
and only if its rows are the incidence vectors of fundamental cuts of some regular
matroid M = (E,C), relative to the basis consisting of the first m columns (where
B has m rows). In this case, we also have that [BT I] is the incidence matrix of
the fundamental circuits of M. Thus the covering problem for A + I (where A is
symmetric and totally unimodular) can be viewed as the problem of covering (over Z2)
all fundamental circuits and cuts for a regular matroid. We formulate our dominating
set problem as a special case of this covering problem, which may be of independent
interest.

simultaneous matroid cover problem (smc).
Given: A matroidM = (E,C) and a basis B.
Find: A minimum (weight) subset of E with nonempty intersection with each

fundamental (with respect to B) circuit and each cocircuit ofM.
This problem is NP-hard in general, although we now see that domination in

convex graphs is a special case of the problem for graphic matroids. Recall that a
network matrix (Tutte [8]) is derived from a network pair (D,T ), where D is a digraph
(V,E) and T a spanning subtree. In the network matrix AD,T , there is a row for each
arc in T and a column for each arc not in T . The element in row a, column (u, v)
contains a 0 if a does not appear on the path in T between u and v. Otherwise, if a
appears in the forward direction on the path, then this entry is 1 and, if a appears in
the reverse direction, then the element is −1. The tree T is compatible with D (and
(D,T ) is said to be compatible) if AD,T has only 0, 1 entries.1 We then also call AD,T
a compatible matrix.

The convex dominating set problem arises as the special case of simultaneous
covering, where we restrict our attention to network pairs (D,T ), where T is a directed
path and D is an acyclic digraph; i.e., a matrix B with the consecutive ones property
arises as the network matrix for such a pair. (Note that BT need not be a network
matrix, however.) We extend this class to consider single-source instances of smc,
i.e., those consisting of a compatible pair D,T , where T is an arborescence rooted at
some node r. In section 3 we prove the main algorithmic result.

Theorem 1.1. Single-source smc is solvable by a polynomial-time algorithm.
On the negative side, we show bipartite domination is NP-hard even if restricted

to compatible matrices B in (1). This is a byproduct of the following result proved
in section 2.

1Given an arbitrary oriented matroid, one may ask whether it has a compatible basis. Fonlupt
and Raco [4] give a polynomial-time algorithm to transform any totally unimodular matrix into a
0, 1 matrix by pivoting and multiplying rows or columns by −1 (i.e., by changing the basis and
re-orienting the elements of the matroid).
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Theorem 1.2. smc is NP-hard when restricted to graphic matroid pairs (D,T ),
where D − E(T ) is a planar bipartite graph of maximum degree 4 and T is a star.

We mention that we do not know the complexity of bipartite domination in the
case in which the adjacency matrix (1) has both B and BT compatible. In this case,
a result of Whitney implies that these matrices arise from a graphic matroid in a self-
dual planar digraph D. We remark that the techniques from section 3 likely extend
to the case of a fixed number of sources; the main challenge is to determine whether
there is an algorithm whose running time is independent of the number of sources.
Along the way, we also give a short proof, and strengthening, of an earlier complexity
result due to Cameron [1] on the induced matching problem.

2. The complexity results. A subset of the nodes of a graph G = (V,E) is a
dominating set if each node either is in the set or is adjacent to an element in the set.
We denote by γ(G) the minimum cardinality of a dominating set of G. We denote
by σ(G) the maximum size of an induced matching of G, i.e., a subset of edges whose
endpoints induce a 1-regular graph. The induced matching problem is NP-hard for
planar graphs of maximum degree 4. To see this, suppose first that G is planar,
and consider the graph G′ obtained by hanging a pendant leaf from each node of G.
Clearly G′ is planar. It is also straightforward to reason that σ(G′) is equal to the size
of a maximum stable set of G. Since the maximum stable set problem is NP-hard for
3-regular planar graphs, the induced matching problem is NP-hard for planar graphs
of maximum degree 4 as follows:

The parameter σ is NP-hard to compute(2)

for the class of planar graphs of maximum degree 4.

It is well known that the dominating set problem is NP-hard for bipartite graphs.
A more surprising result states that finding a maximum induced matching is NP-
hard for bipartite graphs (Cameron [1]). The previous trick of reducing the stable set
problem does not work, as the stable set problem is polynomially solvable for bipartite
graphs. In this sense, induced matching is even harder than the stable set problem.
We later give a strengthening of Cameron’s result that relies only on statement (2) and
a formula which we give relating the parameters for the dominating set and induced
matching problems.

For a graph G and integer k > 0, let Gk denote the graph obtained from G by
recursively subdividing each edge k times; i.e., each edge is replaced by a path of 2k

edges. Then we have the following.

Lemma 2.1. For any graph G, γ(G1) + σ(G) = |VG|.
Proof. First suppose that M is a maximum induced matching of G. If we let

D consist of those degree 2 nodes of G1 which lie on the edges of M , together with
the nodes of G which are not incident to any edge of M , then we check that D is a
dominating set of G1. We also have γ(G1) ≤ |D| = (|VG|−2|M |)+ |M | = |VG|−σ(G).
So let D be a minimum dominating set of G1 with a minimum number of degree 2
nodes. Let x1, x2 be two degree 2 nodes in D and let e1, e2 be the edges of G which
correspond to them. If {e1, e2} is not an induced matching of size two in G, then there
is some edge e3 = v1v2 ∈ EG such that vi is incident to ei (or e1 and e2 are incident
edges; we consider this case next). Let x3 be the node of G1 corresponding to e3. Since
x3 must be dominated, we have by minimality of degree 2 nodes that |D∩{v1, v2}| > 0.
Suppose that v1 ∈ D and let v′ be the other endpoint of e1. Then D ∪ {v′} \ {x1}
is also a dominating set of G1, contradicting minimality. If e1 and e2 are incident,
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say e1 = v1v2 and e2 = v2v3, then one can show that v3 �∈ D, and (D \ x3) + v3 is a
minimum dominating set that violates the minimality of X-nodes. Thus if X is the
set of degree 2 nodes of D, then σ(G) ≥ |X| = |VG| − |D| = |VG| − γ(G1), completing
the proof.

We can also interchange the roles of the parameters. We leave the proof for the
reader (a proof for bipartite graphs is given in [5]).

Lemma 2.2. For any graph G, σ(G1) + γ(G) = |VG|.
We denote by γk(G) (respectively, σk(G)) the value γ(Gk) (σ(Gk)). We can now

deduce that all the parameters are determined by the values on the two graphs G and
G1.

Lemma 2.3. For any graph G and k ≥ 0, we have

• γ2k+1 + σ = |V |+ sk|E| = σ2k+1 + γ,
• γ2k + σ1 = |V |+ tk|E| = σ2k + γ1,

where s0 := 0, t0 := 0, tk :=
∑k−1
i=0 22i, and sk := 22k − tk − 1 for k > 0.

This also immediately implies the following.

Corollary 2.4. For any graph G and k ≥ 0,

[1] σ2k − σ = tk|E| = γ2k − γ,
[2] γ2k+1 − γ1 = sk|E| = σ2k+1 − σ1.

The upshot of this is that the parameters {γ, γ2, γ4, . . .} ∪ {σ1, σ3, . . .} all share
the same fate with respect to NP-completeness (and similarly for the class obtained
by swapping parities). We thus obtain the following result.

Theorem 2.5. For each k ≥ 1, both σ (induced matching) and γ (domination)
are NP-hard to compute for the class of planar, bipartite graphs of maximum degree 4
with one side of the bipartition consisting only of degree 2 nodes and with each cycle
having length ∼= 0 mod 2k.

Proof. We have seen trivially that σ is NP-hard to compute for maximum degree
4 planar graphs. Thus γ1 is also NP-hard for this class. However, hanging a path
with three edges from each degree 2 node of G1 results in a graph G′ such that
γ(G′) = γ1(G) + |E|. Thus γ is also NP-hard to compute for planar graphs of
maximum degree 4. By Corollary 2.4, for each j, γj , σj are NP-hard to compute
for this class of graphs, and the result follows.

Corollary 2.6 (see Cameron [1]). It is NP-hard to compute the induced match-
ing number for the class of bipartite graphs.

Results of Corneil and Perl [3] have a flavor similar to Theorem 2.5, but for the
independent domination number. An independent dominating set is a dominating
set of mutually nonadjacent nodes. Denote by ι(G) the cardinality of a smallest
independent dominating set in G. It is an easy exercise to show that for each k > 0,
γ(Gk) = ι(Gk), and so we have the NP-completeness of independent domination for
the class of planar bipartite graphs given in Theorem 2.5. A related result in [3] shows
that it is NP-hard to compute the independent domination number for the class of
bipartite graphs of maximum degree 3 with one side of the bipartition consisting only
of degree 2 nodes.

We close our discussion of induced matchings by mentioning that we know of no
class of graphs for which exactly one of γ, σ is polynomially computable.

We now return to the proof of Theorem 1.2.

Definition 2.7. For an arbitrary planar bipartite graph B = (V1 ∪ V2, EB)
we construct a network pair (DB := (V1 ∪ V2 ∪ {v∗}, E(DB)), TB), where E(TB) :=
{(x, v∗) : x ∈ V1} ∪ {(v∗, x) : x ∈ V2} and E(DB) := E(TB) ∪ {(x, y) ∈ EB : x ∈ V1,
y ∈ V2}. Note that DB − {v∗} is simply the planar graph B with arcs oriented from
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V1 to V2 and that each x �= v∗ is a leaf of TB.
Lemma 2.8. The minimum cardinality of an smc for (DB , TB) is |V (B)|−σ(B).
Proof. Suppose that C is a minimum cardinality smc for (DB , TB) whose subset

C ′ of tree arcs is maximized. Let C ′ = L1 ∪ L2, where L1 = {(x1, v
∗), (x2, v

∗), . . . ,
(xk, v

∗)} and L2 = {(v∗, y1), . . . , (v
∗, yl)}, and set R1 = V1 − {xi}ki=1, R2 = V2 −

{yi}li=1. Note that for each arc (x, y) with x ∈ R1, y ∈ R2, the edges of the (un-
directed) fundamental circuit (x, v∗), (x, y), (v∗, y) are not covered by a tree edge of
C, and hence (x, y) ∈ C. We claim first that C = C ′ ∪ C ′′, where C ′′ = {(x, y) ∈
E(DB) : x ∈ R1, y ∈ R2}. If, say, (xi, y) ∈ C for some y ∈ R2, then this arc is needed
only to cover the fundamental cocircuit associated with y, and so we may replace it
by (v∗, y) to obtain another minimum size smc, contradicting the maximality of C ′.
We next claim that C ′′ is an induced matching. If there exists (x, y), (w, y) ∈ C ′′

say, then we could replace the edge (w, y) by (w, v∗), again contradicting maximality
of C ′. Thus |C| = |V (B)| − |I|, where I is the associated induced matching on B.
Moreover, given any induced matching I of B, there is clearly an smc for (DB , TB)
of size |V (B)| − |I|. The result now follows.

This together with Theorem 2.5 now implies the following strong version of The-
orem 1.2.

Theorem 2.9. For each k ≥ 1, smc is NP-hard even when restricted to network
pairs (D,T ), where T is a star with center node v∗ and D − v∗ is a planar bipartite
graph B = (V1 ∪ V2, EB) of maximum degree 4 such that V2 contains only degree 2
nodes and each cycle of B has length congruent to 0 (mod 2k).

3. A polynomial-time algorithm for single-source compatible network
matrices. In this section we give a proof of Theorem 1.1. The presentation will be
in terms of an algorithm to solve smc for graphic matroids with a basis consisting of
an arborescence, i.e., an oriented tree T with a single source r. This is essentially a
dynamic programming algorithm. We adopt, however, a simple, recursive description
devised by Gerards.

More specifically, we assume that we are given a compatible pair (D,T ), where
D has no loops except possibly a collection λ(r) at the root r of the arborescence
T , along with a weight function w on the edges of D. Let δ(r) denote the nonloop
edges incident with r. For e ∈ T , CT (e) denotes the fundamental cut containing e
with respect to T ; for e �∈ T , CT (e) denotes the fundamental circuit containing e with
respect to T . If e is a loop, then CT (e) := {e}.

We are also given two sets X ⊆ (δ(r) ∪ λ(r)) \ E(T ) and Y ⊆ δ(r) ∪ λ(r). As is
standard, we say a set Z covers a set Y if Z ∩ Y �= ∅. We then solve for

w(D,T,X, Y ) := the minimum weight of a subset of E(D) that covers the set Y

and all the sets CT (e) with e ∈ E(D) \X.

Note that finding w(D,T, ∅, δ(r)) with λ(r) = ∅ solves smc for (D,T ). The
algorithm to solve for w(D,T,X, Y ) has three recursive steps: loop cleaning, root
contraction, and root splitting. These are used to reduce the problem to a single node
r incident to some loop edges λ(r). If (D,T,X, Y ) is such a base instance, then a
minimum cover C is obtained easily. First, set C := λ(r) \X. If C covers Y , then C
is an optimal set. Otherwise, add the minimum weight member of Y to C.

We now define three operations that may be used to reduce any instance to one
of these base cases. We make repeated use of the fact that there is always an edge
e ∈ E(T ) ∩ (δ(r) \X). Thus any feasible solution must cover CT (e), and hence δ(r)
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is always covered by any such solution. In the following, we define w(D,T,X, ∅) =∞
for any D,T,X.

Loop cleaning. This operation reduces the problem to one without loops.
First, suppose that Y ∩ (λ(r) \X) �= ∅. Then w(D,T,X, Y ) = w(D \λ(r), T,X ∩

δ(r), δ(r))+w(λ(r)\X) holds as well. We repeatedly apply the two ideas used in this
case. First, by the definition of w(D,T,X, Y ), λ(r) \X must be in any feasible cover.
Clearly then the ≤-inequality holds. Second, there is an edge e ∈ E(T )∩(δ(r)\X), so
any solution for w(D,T,X, Y ) must cover CT (e) and thus δ(r). Thus the ≥-inequality
holds as well.

Next, suppose that Y ∩ (λ(r) \X) = ∅. Then w(D,T,X, Y ) is the minimum of
the following expressions:

• w(D \ λ(r), T,X ∩ δ(r), δ(r)) + w(λ(r) \X) + wmin(Y ∩ λ(r)),
• w(D \ λ(r), T,X ∩ δ(r), Y ∩ δ(r)) + w(λ(r) \X).

Here we define wmin(A) as the minimum of w() over A, with wmin(∅) :=∞.
The first case corresponds to covering Y by a loop edge, whereas in the second

case it is covered by an edge in Y ∩ δ(r).
Root contracting. If D has no loops and r has exactly one out-neighbor r′

in T , then the following recursive formula transforms the problem into two problems
on the digraph D/rr′, the digraph obtained by contracting rr′ and then deleting the
loop. In this case, w(D,T,X, Y ) is the minimum of

• w(D/rr′, T/rr′, δ(r)∩δD/rr′(r′), Y ′)+wrr′ , where Y
′ := δD/rr′(r

′) if rr′ ∈ Y ,
and Y ′ := Y if rr′ �∈ Y .

• w(D/rr′, T/rr′, X, Y ∩ δD/rr′(r
′)).

The first case corresponds to those covers that include the edge rr′, and hence we no
longer need to cover any of the fundamental circuits for arcs in δ(r). Thus X becomes
δ(r) ∩ δD/rr′(r

′). The second case corresponds to covers that do not include rr′.
Root splitting. If D has no loops and r has two or more out-neighbors r1, . . . , rk

in T , then clearly D has k edge-disjoint components that are connected at r only.
The problem can be essentially restricted to these components separately as long
as we ensure that at least one of the subproblems also covers Y . More rigorously,
w(D,T,X, Y ) is defined as the minimum of the following k values:

w(Di, Ti, X ∩ δDi(r), Y ∩ δDi(r))

+

k∑

j=1,j �=i
w(Dj , Tj , X ∩ δDj (r), δDj (r)) for each i = 1, 2, . . . , k.

Here, Ti consists of rri together with the maximal rooted subtree of T rooted at ri,
and Di is the subgraph of D induced by V (Ti). The interpretation is that the ith of
these values represents the minimum weight of a covering where the ith component
is responsible for covering Y .

Theorem 3.1. There is a polynomial-time algorithm that solves the smc problem
for compatible pairs (D,T ), where T is an arborescence.

Proof. It is routine to check that the recursion defined above yields the minimum
weight cover. To show there is a polynomial-time algorithm, we first show that the
recursion generates a polynomially bounded number of subproblems w(D′, T ′, X ′, Y ′).
Note that for each subproblem, D′ and T ′ are obtained from D and T by contracting
the rs-path P (where s is the root of T ′) in T and then deleting some edges. One
also sees (by checking each reduction) that every such generated Y ′ is the intersection
of some collection of fundamental cuts of the original directed graph D with respect
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to T . In addition, each of these cuts is induced by an arc in the path P associated
with the subproblem. Similarly, each X ′ is also the intersection of such a set with the
nontree edges. Note that the intersection of some fundamental cuts induced by arcs
e1, e2, . . . , el say, on a dipath P in T , is the same as intersecting the fundamental cuts
for e1, el alone (assuming P traverses the ei’s in the order of their subscripts). Thus
the algorithm generates at most a quadratic number of such sets, and hence at most
a polynomial number (O(n4)) of subproblems is generated.

Each of these subproblems could be needed more than once, of course. Still,
dynamic programming can be performed in polynomial time as follows. Note that
there is a natural acyclic digraph H whose nodes are the encountered subproblems
and whose arcs are determined by whether one instance “spawns” another. Each such
arc has an associated weight set by our three operations. The sinks in this digraph
are just the base cases, i.e., single nodes with some loops. The “in-degree” of a node
in this digraph is just the number of other subproblems which spawn it. Once H is
constructed, we can compute the values one by one. Simply choose a sink v in H
and compute its value (since all of its original out-neighbors have had their values
computed). Then delete v from H and repeat.

4. Conclusions. We do not know the complexity status of the dominating set
problem for bipartite graphs whose adjacency matrices (1) are themselves network
matrices. Thus both B,BT are network matrices and so a result of Whitney states
that these arise from compatible pairs, where D∪T is a planar graph. Finally, we ask
whether one may find a compact (extended) formulation for dominating set polyhedra
for convex bipartite graphs.
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Abstract. Let H be a k-uniform hypergraph with n vertices. A strong r-coloring is a partition
of the vertices into r parts such that each edge of H intersects each part. A strong r-coloring is called
equitable if the size of each part is �n/r� or �n/r�. We prove that for all a ≥ 1, if the maximum
degree of H satisfies ∆(H) ≤ ka, then H has an equitable coloring with k

a ln k
(1 − ok(1)) parts. In

particular, every k-uniform hypergraph with maximum degree O(k) has an equitable coloring with
k
ln k

(1− ok(1)) parts. The result is asymptotically tight. The proof uses a double application of the
nonsymmetric version of the Lovász local lemma.
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1. Introduction. Let H be a k-uniform hypergraph with n vertices. (All hy-
pergraphs considered here are finite. For standard terminology the reader is referred
to [5].) A strong r-coloring is a partition of the vertices of H into r parts such that
each edge of H intersects each part. (A weak r-coloring is a coloring where no edge
is monochromatic.) A strong r-coloring is called equitable if the size of each part is
�n/r� or �n/r�. The study of equitable colorings is motivated by scheduling applica-
tions in which some tasks are required to perform at the same time. A good survey
on equitable colorings is given in [8]. See also [4, 7] for other related results in the
graph-theoretic case. Let c(H) denote the maximum possible number of parts in a
strong coloring of H. Let ec(H) denote the maximum possible number of parts in an
equitable coloring of H. Trivially, 1 ≤ ec(H) ≤ c(H) ≤ k. In general, k could be
large and still ec(H) = c(H) = 1 if we do not impose upper bounds on the maximum
degree. Consider the complete k-uniform hypergraph on 2k vertices. Trivially, it has
c(H) = 1, and the maximum degree is less than 4k. In this paper we prove that c(H)
and ec(H) are quite large if the maximum degree is bounded by a polynomial in k.
In fact, we get the following asymptotically tight result.

Theorem 1.1. If a ≥ 1, and H is a k-uniform hypergraph with maximum degree
at most ka, then ec(H) ≥ k

a ln k (1 − ok(1)). The lower bound is asymptotically tight.
For all a ≥ 1, there exist k-uniform hypergraphs H with maximum degree at most ka

and c(H) ≤ k
a ln k (1 + ok(1)).

The tightness is shown by exhibiting a random hypergraph with appropriate pa-
rameters. Alon [1] has shown that there exist k-uniform hypergraphs with n vertices
and maximum degree at most k that do not have a vertex cover (transversal) of size
less than (n ln k/k)(1−ok(1)). In particular, no strong coloring (moreover an equitable
one) could have more than (k/ ln k)(1 + ok(1)) parts. For completeness, in section 3
we give a general argument valid for all a ≥ 1. The proof of the main result appears
in section 2. The final section contains some concluding remarks.
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2. Proof of the main result. In the proof of Theorem 1.1 we need to use the
Lovász local lemma [6] in its strongest form, known as the nonsymmetric version. We
state it here, following the notation in [2] (which also contains a simple proof of the
lemma). Let A1, . . . , An be events in an arbitrary probability space. A directed graph
D = (V,E) on the set of vertices V = [n] is called a dependency digraph for the events
A1, . . . , An if for each i, i = 1, . . . , n, the event Ai is mutually independent of all the
events {Aj : (i, j) /∈ E}.

Lemma 2.1 (the local lemma, nonsymmetric version). If x1, . . . , xn are real
numbers so that 0 ≤ xi < 1 and Pr[Ai] ≤ xi

∏
(i,j)∈E(1−xj) for all i = 1, . . . , n, then

with positive probability no event Ai occurs.
If the maximum outdegree in D is at most d ≥ 1 and each Ai has Pr[Ai] ≤ p,

then by assigning xi = 1/(d+ 1) we immediately obtain the following.
Corollary 2.2 (the local lemma, symmetric version). If p(d + 1) ≤ 1/e, then

with positive probability no event Ai occurs.
Proof of Theorem 1.1. Let a ≥ 1 be any real number, and let ε > 0 be small.

Throughout the proof we assume k is sufficiently large as a function of a and ε. Let k
be so large that there is an integer between k

(1+ε2/4)a ln k and k
(1+ε2/8)a ln k . Thus, for

some γ ∈ [ε2/8, ε2/4], the number t = k
(1+γ)a ln k is an integer. Now, let H = (V,E)

be a hypergraph with n vertices and ∆(H) ≤ ka. We will show that there exists an
equitable coloring of H with k

(1+γ)a ln k − �
√
γ k
a ln k � > (1− ε) k

a ln k colors.

Assume that we have the set of colors {1, . . . , t}. It will be convenient to deal
with the finite set of hypergraphs having n < 2k ln k separately. We begin with the
general case.

2.1. The general case n > 2k ln k. In the first phase of the proof we color
most of the vertices (that is, we obtain a partial coloring) such that certain specific
properties hold. In the second phase we color the vertices that were not colored in the
first phase and show that we can do it carefully enough to obtain a strong t-coloring.
In the third phase we show how to modify our coloring to obtain an equitable coloring.

2.1.1. First phase. Our goal in this phase is to achieve a partial coloring with
several essential properties shown below.

Lemma 2.3. There exists a partial coloring of H with the colors {1, . . . , t} such
that the following four conditions hold:

1. Every edge contains at least kγ/5 uncolored vertices.
2. Every edge has at most �10/γ� colors that do not appear on its vertex set.
3. Put z = �k1−aγ/4�. For each v ∈ V , for each sequence of z distinct colors
c1, . . . , cz, and for each sequence of z distinct edges containing v denoted
f1, . . . , fz, at least one fi has an element colored ci.

4. Every color appears on at least n (1+γ/4)a ln k
k vertices.

Proof. We let each vertex v ∈ V choose a color from {1, . . . , t} randomly. The

probability of choosing color i is p = (1+γ/2)a ln k
k for i = 1, . . . , t and the probability

of it remaining uncolored is, therefore, q = 1 − pt = γ
2(1+γ) . For an edge f , let Af

denote the event that f contains less than kγ/5 uncolored vertices. Let Bf denote
the event that f has more than �10/γ� colors missing from its vertex set. For a vertex
v, let Cv denote the event that there exist z distinct edges f1, . . . , fz where each fi
contains v, and there exist z distinct colors c1, . . . , cz such that ci is missing from fi
for each i = 1, . . . , z. For a color c, let Dc denote the event that the color c appears on

less than n (1+γ/4)a ln k
k vertices. We must show that with positive probability, none of

the 2|E|+ |V |+ t events above hold. The following four claims provide upper bounds
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for the probabilities of the events Af , Bf , Cv, Dc.
Claim 2.4. Pr[Af ] <

1
k5a .

Proof. Let Xf denote the random variable counting the uncolored elements of f .
The expectation of Xf is E[Xf ] = kq. Since each vertex chooses its color indepen-
dently we have by a common Chernoff inequality (cf. [2])

Pr [Af ] = Pr

[
Xf <

kγ

5

]
≤ Pr

[
Xf <

kq

2

]
= Pr

[
Xf <

E[Xf ]

2

]

< e−2(E[Xf ]/2)2/k = e−k
2q2/(2k) = e−kq

2/2 <<
1

k5a
.

Claim 2.5. Pr[Bf ] <
1
k5a .

Proof. Fix s = �10/γ� distinct colors. The probability that none of them appear
on f is precisely (1− sp)k. Now,

(1− sp)k =

(
1− s(1 + γ

2 )a ln k

k

)k
<

1

kas+asγ/2
.

As there are
(
t
s

)
< ks possible sets of s distinct colors, we get that

Pr[Bf ] <

(
t

s

)
1

kas+asγ/2
<

1

kasγ/2
≤ 1

k5a
.

Claim 2.6. Pr[Cv] <
1
k5a .

Proof. If the degree of v is less than z, there is nothing to prove. Other-
wise, fix a set of z distinct colors {c1, . . . , cz} and z distinct edges containing v,
denoted {f1, . . . , fz}. We begin by computing the probability that for each i =
1, . . . , z, ci does not appear on an element of fi. Denote this probability by ρ =
ρ(v, f1, . . . , fz, c1, . . . , cz). For every vertex u let du be the number of edges fi,
1 ≤ i ≤ z, which contain u. By the definition of the event Cv we know that if
Cv holds, then there is a set of du colors, none of which was assigned to u. The
probability of this is 1− dup. Thus

ρ =
∏

u

(1− dup) ≤ e−pΣudu = e−pΣi|fi| = e−pkz =
1

ka(1+γ/2)z
.

There are exactly (t)z < (k/ ln k)z ordered sets of z distinct colors. Thus, the probabil-
ity that each edge of f1, . . . , fz misses a distinct color is less than (k/ ln k)z/ka(1+γ/2)z.

There are at most
(�ka�

z

)
distinct subsets of z edges containing v. This, together with

Stirling’s formula, gives

Pr[Cv] <

(�ka�
z

)
kz

(ln k)
z
ka(1+γ/2)z

<

(
eka

z

k

ka(1+γ/2) ln k

)z

≤
( e

kaγ/4 ln k

)z
<<

1

k5a
.
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Claim 2.7. Pr[Dc] <
1

en/k .
Proof. Let Xc denote the number of vertices which received the color c. Clearly,

E[Xc] = pn = n (1+γ/2)a ln k
k . Put β = naγ ln k

4k . We shall use the Chernoff inequality
(cf. [2])

Pr[Xc − pn < −β] < e−β2/(2pn).

In our case

Pr[Dc] = Pr[Xc − pn < −β] < e−β2/(2pn) = e−
na ln k

k ( γ2

32(1+γ/2)
)

< e−
na ln k

k ( γ2

33 ) =
1

k(an/k)(γ2/33)
≤ 1

k(n/k)(γ2/33)
<

1

en/k
.

We now construct a dependency digraph for all the events of the forms Af , Bf , Cv,
Dc (we refer to the events as type A, type B, type C, and type D, respectively).
Consider an event Af . Let E(f) denote the set of edges of H which are disjoint from
f . Let V (f) denote the set of vertices of H which do not appear on any edge that
intersects f . Clearly Af is mutually independent of all the 2|E(f)|+ |V (f)| events of
the form Ag, Bg, or Cv which correspond to the elements of E(f) and V (f). Since
there are at most ka+1 edges intersecting f and since there are at most ka+2 vertices
in these edges, the outdegree in the dependency graph from Af to other events of
type A is at most ka+1. Similarly, the outdegree in the dependency graph from Af
to other events of type B is at most ka+1, and to events of type C it is at most ka+2.
Since Af depends on all events of type D, we have that the outdegree is t. This
explains the first line of Table 1 (the dependency table). The other elements in the
table are determined similarly. Note that events of type D depend on all other events
(the fourth line in Table 1).

Table 1
The maximum possible outdegrees in the dependency digraph.

Source\target Af Bf Cv Dt

Af ka+1 ka+1 ka+2 t
Bf ka+1 ka+1 ka+2 t
Cv k2a+1 k2a+1 k2a+2 t
Dt |E| |E| n t

In order to apply Lemma 2.1 we need to assign a coefficient to each event in the
dependency digraph (the coefficients correspond to the xi in Lemma 2.1). To each
event of type A, B, or C we assign the coefficient 3/k5a. To each event of type D we
assign the coefficient 1/en/2k. It remains to show that the conditions in Lemma 2.1
hold for each event. For events of type A we must show that

Pr[Af ] <
3

k5a

(
1− 3

k5a

)ka+1 (
1− 3

k5a

)ka+1 (
1− 3

k5a

)ka+2 (
1− 1

en/2k

)t
.(1)

Indeed, recall that n > 2k ln k so (1 − 1/en/2k)k−1 > e−1. Using Claim 2.4 and the
relation t < k − 1, we find that the right side of (1) exceeds

3

k5a

(
1− 3

k5a

)3ka+2

e−1 >
3

k5a
· 0.99 · e−1 >

1

k5a
> Pr[Af ].
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The analogous inequalities for events of types B and C follow similarly from Claims
2.5 and 2.6, respectively. Finally, consider events of type D. We must show that

Pr[Dc] <
1

en/2k

(
1− 3

k5a

)2|E|+n(
1− 1

en/2k

)t
.(2)

In any k-uniform hypergraph we have |E| ≤ n∆/k. Thus, in our case, 2|E| + n ≤
3ka−1n. Using Claim 2.7 and again the relation (1− 1/en/2k)k−1 > e−1, we find that
the right side of (2) exceeds

1

en/2k

(
1− 3

k5a

)3ka−1n

e−1 >
1

en/2k

(
1− 3

k5a

)( k5a

3 −1) 18n

k4a+1

e−1

>
1

en/2k
e−

18n

k4a+1−1 >
1

en/2k
1

en/2k
=

1

en/k
> Pr[Dc].

According to Lemma 2.1, with positive probability, none of the events in the depen-
dency digraph hold. We have completed the proof of Lemma 2.3.

2.1.2. Second phase. Fix a partial coloring satisfying the four conditions in
Lemma 2.3. For an edge f , let M(f) denote the set of missing colors from f . By
Lemma 2.3 we know that |M(f)| ≤ �10/γ�. For a vertex v, let S(v) = ∪v∈fM(f).
We claim that |S(v)| ≤ �10/γ�(z − 1) ≤ 11z/γ. To see this, notice that if |S(v)| >
�10/γ�(z−1), then there must be at least z distinct edges containing v, say, f1, . . . , fz,
and z distinct colors c1, . . . , cz such that ci does not appear on fi for i = 1, . . . , z.
However, this is impossible by the third requirement in Lemma 2.3. In the second
phase we only color the vertices that are uncolored after the first phase. Let v be such
a vertex. We let v choose a random color from S(v) with uniform distribution. The
choices made by distinct vertices are independent. (In case S(v) = ∅ we can assign an
arbitrary color to v.) Let f ∈ E be any edge, and let c ∈M(f). Let Af,c denote the
event that, after the second phase, c still does not appear as a color on a vertex of f .
Our goal is to show that, with positive probability, none of the events Af,c for f ∈ E
and c ∈M(f) hold. This will give a strong t-coloring of H (although not necessarily
an equitable one).

Let T (f) be the subset of vertices of f which are uncolored after the first phase.
By Lemma 2.3 we have |T (f)| ≥ kγ/5. If c ∈ M(f), we have that for each u ∈ T (f)
the color c appears on S(u). Hence,

Pr[Af,c] = Πu∈T (f)

(
1− 1

|S(u)|
)
≤ Πu∈T (f)

(
1− γ

11z

)

≤
(
1− γ

11z

)kγ/5
< e−

kγ2

55z < e−k
aγ/4 γ2

110 <<
1

ka+2
.

Since each event Af,c is mutually independent of all other events except those that cor-
respond to edges that intersect f , we have that the dependency digraph of the events
has maximum outdegree at most �10/γ�ka+1 < ka+2/e−1. Since 1

ka+2 ((k
a+2/e−1)+

1) = 1/e we have, by Corollary 2.2, that with positive probability none of the events
of the form Af,c hold. In particular, there exists a strong t-coloring of H.
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2.1.3. Third phase. Assume the color classes of the strong t-coloring obtained
after the second phase are V1, . . . , Vt, where |Vi| ≥ |Vi+1|, i = 1, . . . , t− 1. By Lemma

2.3 we know that |Vi| ≥ n (1+γ/4)a ln k
k , i = 1, . . . , t. Let s = �√γk/(a ln k)� and let

W = V1 ∪ · · · ∪ Vs. Clearly

n−|W | = |V \W | = |Vs+1∪· · ·∪Vt| ≥ (t−s)n (1 + γ
4 )a ln k

k
= n

(
1 + γ

4

1 + γ

)
−sn(1 + γ

4 )a ln k

k
.

Hence,

|W | ≤ n
(
1− 1 + γ

4

1 + γ

)
+
sn(1 + γ

4 )a ln k

k
< γn+

sn(1 + γ
4 )a ln k

k
.

In particular, |Vs| ≤ |W |/s < γn/s+n(1+ γ/4)a ln k/k. It follows that ||Vi| − |Vj || <
γn/s for all s+1 ≤ i < j ≤ t. Hence, it suffices to show that |W | ≥ (t− s)γn/s since
we can then transfer all the vertices in the color classes V1, . . . , Vs to the color classes
Vs+1, . . . , Vt such that after the transfer, the t−s remaining classes form an equitable
partition (the strong coloring stays proper, of course). Indeed,

|W | > sna ln k

k
= s2n

a ln k

sk
≥ nγ k2

a2(ln k)2
a ln k

sk
= nγ

k

sa ln k
> n

tγ

s
> (t− s)nγ

s
.

We have shown how to obtain an equitable coloring with t−s = k
(1+γ)a ln k−�

√
γ k
a ln k � >

(1− ε) k
a ln k colors.

2.2. The finite case n < 2k ln k. As in the proof for the general case, let each
vertex choose a color randomly and independently, with each color having probability

p where p = (1+γ/2)a ln k
k for i = 1, . . . , t and whose probability of remaining uncolored

is q = 1 − pt = γ
2(1+γ) . As in the proof of Claim 2.4, the probability that an edge

contains less than kγ/5 uncolored vertices is less than 1/k5a. There are |E| ≤ nka/k ≤
2ka ln k edges. Hence, the expected number of edges with less than kγ/5 edges is less
than 1/k3. Thus, with probability at least 1 − 1/k3, all edges have at least kγ/5
uncolored vertices. As in the proof of Claim 2.7, the probability that a color appears
on less than na ln k(1 + γ/4)/k vertices is less than 1

k(n/k)(γ2/33)
. Unlike Claim 2.7,

we cannot bound this number from above by e−n/k; instead, since n ≥ k (otherwise

there are no edges at all), we can bound it with k−γ
2/33. Since there are t < k colors,

the expected number of colors which appear on less than na ln k(1+γ/4)/k vertices is

less than k1−γ2/33. Thus, with probability at least 2/3 there are less than 3k1−γ2/33

such colors. Finally, let X count the number of pairs (e, c), where e ∈ E and c is a
color that is missing from e. Clearly,

E[X] = |E|t(1− p)k < 2ka ln k · k · k−a(1+γ/2) = 2k1−aγ/2 ln k < 2k1−γ/4 <
kγ

15
.

Hence, with probability at least 2/3, X < kγ/5.
We have proved that with probability at least 1− 1/k3 − 1/3− 1/3 > 0 all of the

following occur simultaneously:
1. All edges have at least kγ/5 uncolored vertices.

2. At least t − 3k1−γ2/33 colors appear, each on at least na ln k(1 + γ/4)/k
vertices.

3. The number of pairs (e, c) of edges e and colors c such that c is missing from
e is less than kγ/5.
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Fix a partial coloring with all these properties. Trivially we can make it a strong
coloring by assigning a color c that is missing from an edge e to one of the uncolored
vertices of e, and we can do it greedily to all such (e, c) pairs. We therefore obtain a

strong t-coloring of H, where, in addition, at least t − 3k1−γ2/33 colors appear, each
on at least na ln k(1+ γ/4)/k vertices. We can now use the same arguments as in the
third phase of the general case and obtain an equitable coloring. The only difference
is that instead of t we only use t − r colors, where r is the number of color classes
having less than na ln k(1+γ/4)/k vertices. Thus, t−r ≥ t−3k1−γ2/33 > t(1−γ/33),
and it is easily seen that all computations in the third phase hold when replacing t
with t(1− γ/33).

3. A random hypergraph construction. Let a ≥ 1 and let ε > 0. Let
n = k2a. For simplicity we assume n is an integer in order to avoid floors and
ceilings. We select k sufficiently large to justify this assumption and the assumptions
that follow. Let m = (1 − ε)k3a−1 (again, assume m is an integer). Consider the
random k-uniform hypergraph on the vertex set [n] with m randomly selected edges
f1, . . . , fm. Each edge fi is chosen uniformly from all

(
n
k

)
possible edges. The m

choices are independent (thus, the same edge can be selected more than once). The
expected degree of a vertex v (including multiplicities) is mk/n = (1 − ε)ka. Notice
that for k sufficiently large we have, using a Chernoff inequality, that the degree of v is
greater than ka with probability less than 1/(2k2a) = 1/(2n). Hence, with probability
greater than 0.5 the maximum degree is at most ka. Put t = (1−2ε)na ln k/k. Again,
we assume t is an integer. We show that with probability greater than 0.5, no t-
subset of vertices is a vertex cover. This proves the existence of hypergraphs H with
∆(H) ≤ ka and c(H) ≤ (1 + ok(1))k/(a ln k).

Fix X ⊂ [n] with |X| = t. For each edge fi we have, assuming k is sufficiently
large,

Pr[fi ∩X = ∅] = (n− t)(n− t− 1) · · · (n− t− k + 1)

n(n− 1) · · · (n− k + 1)
>

(
1− t

n− k + 1

)k

>

(
1− t

(1− ε)n
)k

=

(
1− (1− 2ε)a ln k

(1− ε)k
)k
>

(
1− (1− ε)a ln k

k

)k

>
1

2
e−(1−ε)a ln k =

1

2ka(1−ε)
.

Since each edge is selected independently we have

Pr[X is a vertex cover] <

(
1− 1

2ka(1−ε)

)m
.

There are
(
n
t

)
possible choices for X. It suffices to show that

(
n

t

)(
1− 1

k2a(1−ε)

)m
<

1

2
.
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Indeed, for k sufficiently large

(
n

t

)(
1− 1

2ka(1−ε)

)m
<
(en
t

)t(
1− 1

2ka(1−ε)

)(1−ε)k3a−1

=

(
ek

(1− 2ε)a ln k

)(1−2ε)k2a−1 ln k (
1− 1

2ka(1−ε)

)(1−ε)k3a−1

=

((
ek

(1− 2ε)a ln k

)(1−2ε) ln k (
1− 1

2ka(1−ε)

)(1−ε)ka)k2a−1

<
(
eln

2 ke−k
aε(1−ε)/2

)k2a−1

<<
1

2
.

4. Concluding remarks. In the proof of Theorem 1.1 we require that ∆(H) ≤
ka for some fixed a ≥ 1. It is possible (although the computations get somewhat more
complicated) to prove Theorem 1.1 when a is not necessarily a constant but satisfies
a = a(k) = o(k/ ln k). In other words, ∆(H) is allowed to be any subexponential
function of k.

The proof of Theorem 1.1 is not algorithmic. It is, however, possible to obtain a
polynomial time (in the number of vertices of the hypergraph, and not in its unifor-
mity) algorithm that yields an equitable partition with (1 − ok(1))ck/(a ln k) parts,
where c is a fixed small constant (depending only on a). This can be done by us-
ing the method of Beck for the 2-coloring of hypergraphs [3] and generalizing it to
more colors. We also need to take care that the coloring obtained is equitable (Beck’s
algorithm does not guarantee this). However, Beck’s algorithm can be modified to
guarantee that all colors use roughly the same number of colors, and then we can use
the approach from the third phase of our proof to show that by sacrificing only a
small fraction of the colors we can make the partition equitable using the remaining
colors. Notice that the third phase can be easily implemented in polynomial time.

A special case of Theorem 1.1 yields an interesting result about graphs. Let G
be a k-regular graph. If k is sufficiently large, then G has an equitable coloring with
(1− ok(1))(k/ ln k) colors such that each color class is a total dominating set (a total
dominating set D is a subset of the vertices that has the property that each vertex
v ∈ G has a neighbor in D). To see this, we can construct a hypergraph H from the
graph G as follows. For each vertex v ∈ G, let N(v) denote the neighborhood of v.
The vertices of H are those of G and the edges are all the sets N(v). Note that H is
k-uniform and ∆(H) = k. Theorem 1.1 applied to H gives the desired result about
G.
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Abstract. We study the relationship between the number of rounds needed to repeatedly
perform a private computation (i.e., where there are many sets of inputs sequentially given to the
players on which the players must compute a function privately) and the overall randomness needed
for this task. For the xor function we show that, by re-using the same � random bits, we can
significantly speed up the round-complexity of each computation compared to what is achieved by
the naive strategy of partitioning the � random bits between the computations. Moreover, we prove
that our protocols are optimal in the amount of randomness they require.
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1. Introduction. A very basic question in the theory of computation is the
direct-sum question defined as follows: Can the complexity of solving k independent
instances of a problem be smaller than the cost of independently solving the k in-
stances? This general question was studied in various scenarios and with respect to
various complexity measures, e.g., in [10, 20, 21, 23, 27, 40, 43]. To answer such a
question, one typically needs to consider a problem whose complexity in the single-
instance case is reasonably well understood.

In this work, we consider a direct-sum question related to the randomness com-
plexity of private multiparty protocols. A 1-private (or simply, private) protocol A for
computing a function f is a protocol that allows n players Pi, P1, . . . , Pn, each possess-
ing an individual secret input xi, to compute the value of f(�x) in a way that no single
player learns about the initial inputs of other players more than what is revealed by
the value of f(�x) and its own input.1 We consider the setting in which the players have
unlimited computational power; however, they do not deviate from their prescribed
protocol (i.e., the information theoretical setting with honest-but-curious players, as
opposed to byzantine parties). Private computations in this setting were the subject
of a considerable amount of work; e.g., [5, 13, 2, 3, 15, 16, 17, 18, 21, 33, 37].2 In
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1In the literature a more general definition of t-privacy is given. The above definition is the case
t = 1.

2This information theoretic privacy setting is different from the computational privacy setting
[46, 24] where players are limited to polynomial-time computations in their attempts to learn addi-
tional information.
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this paper, we consider this setting for the basic xor (exclusive-or) function and show
direct-sum-type results relating the round-complexity and the randomness-complexity
of such computations.

Randomness is an important resource in computation. As a result, various meth-
ods for saving in randomness were studied [1, 6, 14, 19, 26, 28, 29, 30, 38, 39, 42, 44,
45, 47]. In addition, the role of randomness in specific contexts was studied in, e.g.,
[41, 36, 4, 11, 8, 9]. One such case is the study of randomness in private multiparty
computations [7, 12, 31, 34, 35, 22]. In particular, in [7, 35, 31] the amount of ran-
domness required for private computations of xor was considered (this function was
the subject of previous research in the area of privacy due to its being a basic linear
operation and its relative simplicity [21, 16]).

In this paper too we concentrate on the xor function. We chose this function since
its single-instance case is relatively well understood, and thus it enables us to derive
direct-sum-type results. Indeed, the randomness-complexity of private computations
of the xor function on a single instance (that is, where each player has a single input
bit) was previously investigated and the following results are known:

• There is no deterministic solution for the problem for n ≥ 3;
• with a single random bit the problem requires Θ(n) rounds (time) [35];
• with 	 ≥ 2 random bits the problem requires Θ( log n

log � ) rounds [35, 22].

None of the above mentioned works addressed multiple inputs.3

Our results. Before we make a precise statement of our general result, we start
with a statement of a somewhat weaker version of our result which is simpler to state.
Let us consider the case where n players are sequentially given n sets of inputs, of a
single bit each, and for each such set the players wish to privately compute the xor
of these bits. In this case, using the results in [35], if the players use only a single
independent random bit for each set of inputs, they can compute the xor for each of
the n sets of inputs in n/2 rounds for each set of inputs. It is impossible to compute
the xor’s privately using the single random bit (per computation) with less than
Ω(n) rounds per computation [35]. If the players wish to compute n independent
xor’s with O(1) rounds per computation, using independent random bits for each
computation, they will need at least Ω(n1+ε) random bits overall (i.e., at least Ω(nε)
for each input set) [22]. In this paper we show how to re-use the same O(n) random
bits for all computations and achieve optimal rounds-performance each time; i.e., each
computation will be performed in O(1) rounds. Moreover, we accompany this result
with a corresponding lower bound showing that in order to privately compute the
n xor’s the players need Ω(n) random bits regardless of the number of rounds (for
any n ≥ 3). Thus, using the minimum number of random bits possible, we achieve
by a recycling procedure the optimal round-complexity.

More generally, we consider the setting in which the players are sequentially given
k input bits each, and the goal is to sequentially compute the xor function k times
immediately after the input bits for each set are provided. If one uses 	 ≥ k random
bits, the naive solution would be to partition these bits into sets of d ∼= 	/k random
bits and to use the best single-input solution for d random bits to compute xor for
each sequential input. For example, if 	 = k, then d = 1 and this solution requires
Θ(n) rounds and, if 	 = Θ(k), then d = O(1) and this solution requires Θ(logn) rounds
[35, 22]. In this paper we present much better solutions than the above. In particular,
we show that if 	 = k = c · (n − 1), then the problem can be solved in O(1) rounds

3Amortization of the communication-complexity in private computation of xor was shown in [21].
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per computation (rather than Θ(n)), and for 	 = O(k) we can solve the problem
in O( logn

log k ) rounds (rather than Θ(logn)). In addition, we prove that in order to

privately compute the function xor on k sequential inputs, at least (1− 2
n )k random

bits are required. That is, for any fixed number n ≥ 3 of players, Ω(k) random bits
are required. This generalizes the claim that for the single-input case there is no
deterministic private protocol if n ≥ 3.

Our techniques. For the upper bounds, we present protocols that re-use the
random bits and obtain the desired round-complexity. The lower bounds require more
technical work. We first use techniques from [35] in order to reduce the problem of
proving lower bounds on the amount of randomness used in such private computations
to a problem of proving a lower bound on the number of views that the players may
have in a deterministic protocol for computing the same function. Then, the main
technical part is to give a lower bound on the number of such views. We note that
the measure of the number of views is different from the measure of the number of
histories (or projected histories), which is usually used in the study of (multiparty)
communication complexity (cf. [32]) but is insufficient for our purposes.4

Organization. In section 2 we provide the required definitions, including the
model and the definition of privacy. In section 3 we present our protocols that show
our technique for recycling the random bits. Section 4 includes the lower bound.

2. Preliminaries. In this section we give a description of the protocols we con-
sider and define the privacy property of protocols as well as the required complexity
measures.

A set of n players Pi (1 ≤ i ≤ n), each receiving sequentially k input bits x1
i , . . . , x

k
i

(known only to that player), collaborate in a protocol to compute the k values

xor(x1
1, x

1
2, . . . , x

1
n),

xor(x2
1, x

2
2, . . . , x

2
n),

...

xor(xk1 , x
k
2 , . . . , x

k
n).

(In general, we may be interested in computing any function f .) More specifically, a
protocol works in k phases. In phase j each player Pi gets the input bit xji . Then,

the players have to compute the jth value xor(xj1, x
j
2, . . . , x

j
n) and only after this

computation is completed do they get the (j + 1)st input bit. The computation in
each phase operates in rounds. In each round each player Pi may toss some coins and
then sends messages to the other players. All messages are sent over private channels
so that other than the intended receiver of each message no other player can listen
to it. The content of each message may depend on all the information available to
the sender: its input (in the current and previous phases), its random coins, and
the messages it received so far (in the current and previous phases). Player Pi then

4To clarify the terminology, the history is the transcript of the communication exchanged in the
protocol; the projected history is that part of the history seen by some player Pi (i.e., only those
messages sent from/to Pi); the view of Pi includes all the information to which Pi has access, i.e.,
the projected history as well as its input and random input.
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receives the messages sent to it by the other players. During the execution of each
phase j, each player Pi produces its output value. The correctness of the protocol
requires that this value will always be equal to xor(xj1, x

j
2, . . . , x

j
n). We use Ci to

denote the sequence of messages that player Pi receives during the execution of the
protocol. We also use xi to denote the input seen by Pi during the whole protocol,
i.e., xi = x1

i , . . . , x
k
i , and use �x to denote the vector of inputs seen by all players, i.e.,

�x = (x1, . . . , xn). We denote by xj the vector of inputs received by all players in the
jth phase, i.e., xj = (xj1, . . . , x

j
n). Finally, we use fk(�x) to denote the k-tuple of the

function values, i.e., fk(�x) = (f(x1), . . . , f(xk)).
Informally, privacy with respect to player Pi means that player Pi cannot learn

anything (in particular, the inputs of the other players) from Ci except what is implied
by its input bits, and the value of the function computed. Formally, we have the
following definition.5

Definition 1 (privacy). A (k-phase) protocol A for computing a function f
is private with respect to player Pi if for any two input vectors �x and �y, such that
fk(�x) = fk(�y) and xi = yi, for any sequence of messages C, and for any random
coins, Ri, tossed by Pi,

Pr[Ci = C|Ri, �x] = Pr[Ci = C|Ri, �y],

where the probability is over the random coin tosses of all other players.
A protocol is called private if it is private with respect to every Pi.
To measure the amount of randomness used by a protocol we use the next

definition.
Definition 2. An 	-random protocol is a protocol such that for every input

assignment �x the total number of coins tossed by all players in every execution (during
all phases) is at most 	.

Next, we define the round-complexity of a protocol. Note that while in the case
of the randomness-complexity it makes sense to measure the total number of coins
tossed in the protocol over all phases, the definition of round-complexity considers
each phase separately (that is, it measures the number of rounds that it takes from
the time that the input to the phase is given and until the time that the output of
this phase is computed).

Definition 3. An r-round protocol is a protocol such that for every input as-
signment �x, and every sequence of coin tosses, the number of rounds in each phase j
is at most r.

We emphasize that the definitions allow, for example, that in different executions
different players will toss the coins. This may depend both on the input of the players
and on the previous coin tosses.

3. Upper bound. In this section we present our positive results. First, we
consider the case k = n− 1. By the lower bound of section 4, at least n− 2 random
bits are needed for such a computation, regardless of the number of rounds per phase.
The protocol below uses n−1 random bits. Of course, there is a naive way to perform
this computation using only n − 1 random bits, and that is to use a single random
bit for each of the n − 1 phases. However, such computation takes Θ(n) rounds per
phase, and this is the best one can do with a single random bit (per phase) [35]. Our
protocol takes a different direction that allows it to use only O(1) rounds per phase.

5The formalization below, which is the most common in the literature on information theoretic
privacy, is perfect in the sense that it requires the relevant probability distributions to be equal.
Certain weaker definitions can be found, e.g., in [15].
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Lemma 4. There is a private, k-phase protocol that computes xor on k = n− 1
inputs with 	 = n− 1 random bits overall and r = 2 rounds per phase. It requires an
additional initialization round before the k phases.

Proof. For the proof we present an appropriate k-phase protocol.
Initialization. Player Pn chooses n−1 random bits, denoted r1, . . . , rn−1. It sends

bit ri to player Pi.
Phase j.
1. Each player Pi, 1 ≤ i ≤ n− 1, sends a bit bi,j = xji + ri to player Pj .

In addition, player Pn sends to Pj the bit bn,j = xjn +
∑n−1
m=1 rm. (The

summations here and elsewhere are all modulo 2.)
2. Player Pj sums the n bits bi,j it received in the previous step. It announces∑n

i=1 bi,j as the output for the jth phase.
For the correctness, consider the sum computed by player Pj in step 2. This sum
equals

n∑

i=1

bi,j =

n−1∑

i=1

(xji + ri) +

(
xjn +

n−1∑

m=1

rm

)

= xor(xj1, x
j
2, . . . , x

j
n).

For the privacy, note that player Pn receives no message (except the output val-
ues) during the protocol, and hence the privacy with respect to Pn certainly holds.
Also, observe that during phase j only player Pj receives any message (other than
the output of the phase). The communication received by Pj in phase j is the se-
quence of messages b1,j , . . . , bn−1,j , bn,j ; the only additional message received by Pj
is rj . Now, observe that for every input �xj = (xj1, x

j
2, . . . , x

j
n), every communication

rj , b1,j , . . . , bn−1,j , bn,j which is consistent with the output (and the input xjj of Pj)

has the same probability, 2−(n−1). This is because each of b1,j , . . . , bn−1,j determines
one of the n − 1 random bits (which are all independent), bj,j determines rj , and
bn,j is determined by the value of the function and the previously determined values.
The privacy of the protocol follows.

The main idea in the above protocol is that we can compute the xor of each of
the n− 1 inputs, using n− 1 random bits, in a way that allows using the same n− 1
random bits for all the n − 1 inputs. We can use the same idea, with a bit more
precaution, to achieve similar savings for other parameters. The following is a simple
corollary of the previous construction.

Lemma 5. There is a private, k-phase protocol that computes xor on k = d(n−1)
inputs with 	 = d(n− 1) random bits overall and r = O(1) rounds per phase.

Proof. Simply partition the d(n− 1) inputs into d sets of size n− 1. For each set
of n− 1 inputs use the (n− 1)-phase protocol of Lemma 4 that requires n− 1 random
bits and O(1) rounds. If we do this each time with new and independent random bits,
we get the desired result.

Again note that, by the results of section 4, the above lemma is (almost) optimal
in terms of the number of random bits required for this computation. Moreover, if
k (the number of inputs) is not divisible by n − 1 we can always add some dummy
inputs to each player to make the number of inputs some k′ which is divisible by n−1.
For example, if n−1

2 ≤ k < n − 1, then 	 = n − 1 random bits and r = O(1) rounds
suffice. The only case in which this is inefficient is when k 	 n − 1; in such a case
increasing the number of inputs to k′ = n− 1 would be wasteful. For such cases, we
use the following construction.
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Lemma 6. Let s be an integer (1 ≤ s ≤ n). There is a private, k-phase protocol
that computes xor on k inputs, k < (n − 1)/2 with 	 = 2k + s random bits, and
r ≤ log n/ log s rounds per phase. The protocol requires an additional initialization
round before the k phases.

Proof. As in the previous protocols, Pn will be the player that makes the random
choices. We partition the other n − 1 players into g groups of size k. Assume for
simplicity that n − 1 is divisible by k. Moreover, assume that g = (n − 1)/k is even
(later we describe the modifications required when this is not the case).

Initialization. Player Pn chooses k random bits, denoted r1, . . . , rk. It sends the
bit ri to the ith player of each of the g groups. Pn chooses s additional random bits
α1, . . . , αs to be used later.

Phase j.

1. The ith player in each group t (1 ≤ i ≤ k, 1 ≤ t ≤ g), denoted Pi,t, sends a

bit bji,t = xji,t + ri to player Pj,t (where xji,t denotes the input of Pi,t in the
current phase, j).

2. Each player Pj,t computes Y jt =
∑k
i=1 b

j
i,t.

3. The jth players of all groups together with Pn participate in a private protocol
to compute the sum of g + 1 bits: Y 1

j , . . . , Y
g
j and xjn. They announce the

output as the xor of the jth input. The players do this computation using the
protocol of [35]. This protocol, when using s random bits, terminates within
log(g + 1)/ log s rounds. In addition, all the random bits in this protocol are
chosen by one player who receives no message during the protocol; we choose
this player to be Pn and choose α1, . . . , αs to be these random bits (note that
Pn uses the same s random bits in all k phases).

For the correctness note that

g∑

t=1

Y tj + xjn =

g∑

t=1

k∑

i=1

bji,t + xjn

=

g∑

t=1

k∑

i=1

(xji,t + ri) + xjn

=

n∑

i=1

xji + g ·
(

k∑

i=1

ri

)
.

Since we assumed that g is even, the last term contributes 0 to the sum (modulo 2)
and so the jth output is

∑n
i=1 x

j
i , as needed. The number of random bits used is

k + s.

For the privacy, note again that Pn only sends messages during the whole protocol
and that in phase j only the jth player of each group receives messages. In step 1 each
of the players Pj,t receives from the members of its group k bits bj1,t, . . . , b

j
k,t which are

distributed uniformly and independently. Then, each player Pj,t becomes involved in
a private protocol which guarantees that, no matter what is the input to the protocol,
each player sees the same distribution of communications for all the possible inputs
that Pj,t may have and all possible outputs; moreover, Pj,t receives messages only in
the jth phase of the protocol (other than initialization messages and output values).
Also note that the s random bits used for this subprotocol are independent of the
random bits used in step 1. Altogether, the privacy follows.

Now, there are some technical issues that we still need to address. First, if the
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number of groups g is odd, then Pn can always make sure that there will be no
contribution of random bits to the result by using as its input in step 3 of phase j
the bit xjn xored with these random bits. Another technical issue that has to be dealt
with is the case in which n − 1 is not divisible by k. In this case the gth group is
of size k′ < k and hence cannot use the above protocol. We solve this by letting Pn
choose for the members of the gth group k′ special random bits. The messages bji,g
will be sent to the jth player of group 1 instead of the jth player of group g (which
may not exist). Since this is done with new random bits, the privacy still holds and
the total number of random bits is still at most 2k + s.

Combining Lemmas 5 and 6 we get the following theorem.
Theorem 7. Let s be an integer (1 ≤ s ≤ n). There is a private k-phase protocol

that computes xor on k = d(n− 1) + q inputs, with 	 = d(n− 1) + 2q+ s random bits
and r ≤ max{log n/ log s, 2} rounds per phase. The protocol requires an additional
initialization round before the k phases.

An interesting case, obtained by setting s = k, is the following.
Corollary 8. There is a private, k-phase protocol that computes xor on k in-

puts with 	 = O(k) random bits overall and r ≤ max{log n/ log k, 2} rounds per phase.
The protocol requires an additional initialization round before the k phases.

This means that we can use O(k) random bits overall and, in each of the k phases,
compute the function in the optimal time for computing xor on a single input using
k bits (i.e., Θ(logn/ log k) rounds [35, 22]).

4. Lower bound. In this section we prove a lower bound on the number of
random bits required for a k-phase, private computation of xor (on k instances).
This lower bound holds for any number of rounds used by the protocol. We prove the
following theorem.

Theorem 9. Let A be a d-random, k-phase, n-player, private protocol computing
the function xor. Then d ≥ (1− 2

n ) · k.
(Note that for n = 2 there is a deterministic protocol for computing xor; indeed,

in this case, the above theorem is trivialized, as it states that d ≥ 0.) To prove the
theorem, we first present the following definition and two technical lemmas. We then
show how to derive the theorem from the lemmas. The proofs of these lemmas are
deferred to the next subsection.

Definition 10. Denote by View ti(�x,
�R) the view of player Pi at time t on input �x

and vector of random tapes �R. This view consists of the inputs to player Pi received
so far, the random tape of player Pi, i.e., Ri, and the communication received by
player Pi up to and including time t− 1.

In our proof we argue about the number of different views that players can see in
various executions of the protocol. The following lemmas are useful for this argument.
The proof of Theorem 9 is based on the following two lemmas. The first lemma is
very similar to a lemma in [35] and its proof appears (in the next subsection) mainly
for self-containment.

Lemma 11 (see [35]). Consider a private d-random, k-phase protocol A com-

puting a Boolean function f . Fix the random tapes of the players to be �R. Then,
for any Pi, the view View

t
i(·, �R) can assume at most 22k+d different values (over the

2kn input assignments).
Lemma 12. Let A be a deterministic (possibly nonprivate), k-phase, n-player

protocol computing the function xor. Then, there is at least one player that can see
at least 2(3− 2

n )k views over the 2kn input assignments.
Proof of Theorem 9. By Lemma 11, if we fix the random tapes of the players,
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then each player can see (over the different inputs) at most 22k+d different views. But,
by Lemma 12, for the protocol to be correct there must be at least one player that
sees at least 2(3− 2

n )k views. Thus 2(3− 2
n )k ≤ 22k+d, and the theorem follows.

4.1. Proofs of the lemmas. To complete the proof of the main theorem of this
section, we give below the proofs of Lemmas 11 and 12.

Proof of Lemma 11. In the first step of the proof, we fix an arbitrary input �x and
consider the possible values View ti(�x,

�R) over all different choices of random tapes
�R = (R1, . . . , Rn). The d-randomness of the protocol implies that the total num-
ber of coins tossed is at most d; however, in different executions these coins can be
tossed by different players. Nevertheless, we claim that the number of different values
View ti(�x,

�R) is at most 2d. For each execution we can order the coin tosses of all
players (i.e., the readings from the local random tapes) according to the phases of the
protocol, within each phase according to the rounds, and within each round according
to the index of the player that tosses them. The identity of the player who tosses the
first coin is fixed by �x. The identity of the player who tosses any following coin is
determined by �x and by the outcome of the previous coins. Therefore, the different
executions on input �x can be described using the following binary tree: In each node
of the tree we have a name of a player Pj that tosses a coin. The two outgoing edges
from this node, labeled 0 and 1 according to the outcome of the coin, lead to two
nodes labeled Pk and P�, respectively (j, k, and 	 need not be distinct) which are
the identities of the players who toss the next coin depending on the outcome of the
random choice made by Pj . If no additional coin toss occurs, the node is labeled
“nil”; there are no outgoing edges from a nil node. By the d-randomness property
of the protocol, the depth of the above tree is at most d, and hence it has at most
2d root-to-leaf paths. Every possible run of the protocol is described by one root-to-
leaf path. Such a path determines all the messages sent in the protocol, which player
tosses coins and when, and the outcome of these coins. In particular each such path
determines the view for any Pi. Hence, View ti(�x, ·) can assume at most 2d different
values.

In the second step of the proof, we first fix a vector of random tapes for the
players �R = (R1, . . . , Rn). We now consider the deterministic protocol AR derived
from the private protocol A by fixing these random tapes. We partition the input
assignments �x into 22k groups according to the input value of xi (0 or 1) in each of
the k phases and according to the output value (0 or 1) in each of the k phases. We

argue that the number of different values that View ti(·, �R) can assume in AR, on the
different input assignments within each such group, is at most 2d. For this, fix �x in
one of these 22k groups and consider any other �y pertaining to the same group. If
the value View ti(�y,

�R) is some ξi (which includes the input of player Pi, its random
input, and the communication it observes), then by the privacy requirement (with
respect to player Pi), the view ξi must also occur (in A) when the input is �x, and the

random tapes are some �R
′

= (R′1, . . . , R
′
n), where R′i = Ri. However, by the first step

of the proof, for a fixed �x, View ti(�x, ·) can assume at most 2d values (over the choice
of random tapes). Since this is true for each group, the lemma follows.

Before proving Lemma 12, we need the following technical claim.
Claim 13. For any nonnegative values ai,j (1 ≤ j ≤ q, 1 ≤ i ≤ p),

q∏

j=1

(
p∑

i=1

ai,j

)
≥ pq min

1≤i≤p






q∏

j=1

ai,j




 .
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Proof. We have

q∏

j=1

p∑

i=1

ai,j = pq
q∏

j=1

(∑p
i=1 ai,j
p

)

≥ pq
q∏

j=1

(
p∏

i=1

ai,j

) 1
p

= pq




p∏

i=1

q∏

j=1

ai,j





1
p

≥ pq min
1≤i≤p




q∏

j=1

ai,j



 ,

where the first inequality uses the theorem of the arithmetic and geometric means
(cf. [25, p. 17]).

It remains to prove Lemma 12. To this end we turn to the main technical part of
this section. For the purpose of the proof, we extend the set of protocols that we look
at: we consider k-phase (deterministic, possibly nonprivate) protocols that compute
xor with the modification that for the first instance to be computed, only m of the
n players get inputs (alternatively, we can assume that the input of n − m of the
players for the first instance is 0). For k ≥ 1 and 1 ≤ m ≤ n let A(k,m) be the set of
k-phase protocols that correctly compute xor with the above restriction. We prove
the following lemma that applies to this extended class of protocols (the extension of
the class of protocols makes the proof by induction easier).

Lemma 14. Let A ∈ A(k,m). Let V As be the number of different views player Ps
can see (in protocol A) over the 2(k−1)n+m inputs. Then,

Πn
s=1V

A
s ≥ 2(3n−2)(k−1)+n+2(m−1).

Proof. We prove the claim by induction on both k and m, where the base case is
k = 1, m = 1. Let A ∈ A(1, 1). That is, one player has an input bit and A has to
ensure that all players “compute” the value of this bit. Obviously for all Ps we have
V As ≥ 2 (as there are two output values), which gives Πn

s=1V
A
s ≥ 2n, as required. For

the induction step, let A ∈ A(k,m) for k > 1 or m > 1. We consider two cases m > 1
and m = 1.

Case m > 1 (and k ≥ 1). Before the first xor value is computed by any player
there must be at least one nonconstant message sent in the protocol. That is, there
must be at least one player Pi that sends a message to some player Pj , and this
message is not constant over all input assignments. Consider the first round in which
at least one such nonconstant message is sent, and consider one of the nonconstant
messages sent in this round. Denote this message by M . Without loss of generality,
let M be sent from player Pi to player Pj . Since no nonconstant message is received
by Pi before M is sent, M can only depend on the first input of Pi. Without loss of
generality, assume that Pi sends the value of its input bit. Let 	0s (resp., 	1s) be the
number of possible views of player Ps given that the value of M is 0 (resp., 1). We
get that

• V Ai = 	0i + 	1i .
• V Aj = 	0j + 	1j .

• For all k = i, j, V Ak ≥ max(	0k, 	
1
k).
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Therefore,

Πn
s=1V

A
s ≥ (	0i + 	1i )(	

0
j + 	1j )Πs �=i,j max(	0s, 	

1
s)

≥ 4 min(	0i 	
0
j , 	

1
i 	

1
j )Πs �=i,j max(	0s, 	

1
s)

= 4	0i 	
0
jΠs �=i,j max(	0s, 	

1
s)

≥ 4Πn
s=1	

0
s,

where the second inequality follows by Claim 13 and the equality follows by assuming,
without loss of generality, that 	0i 	

0
j ≤ 	1i 	

1
j .

Now, consider a protocol A0 defined as follows. It is the protocol A with the
modification that Pi has no input, and it behaves as if its input is 0. Since we assume
that A is a correct protocol, A0 is a correct protocol as well in the class A(k,m− 1).6

Also, we know that A0 sends 0 as the value of M . Therefore for any s, 1 ≤ s ≤ n, we
have V A0

s = 	0s. We get

Πn
s=1V

A
s ≥ 4Πn

s=1	
0
s

= 4Πn
s=1V

A0
s

≥ 4 · 2(3n−2)(k−1)+n+2(m−2),

where the last inequality follows from the induction hypothesis. We get that

Πn
s=1V

A
s ≥ 2(3n−2)(k−1)+n+2(m−1),

which concludes the proof of the first case.
Case m = 1 (and k > 1). This is the case where, in the first phase, there is

a single player who has an input bit. The value of the function on this input has
to be computed by all players before they receive the next input to be computed.
Therefore, the first step of the protocol must be that all players receive messages
from which each player can conclude whether this first input is 0 or 1. It follows for
each Ps that V As = 	0s + 	1s, where 	0s (resp., 	1s) is the number of different views of
player Ps given that the first input bit is 0 (resp., 1). Also note that all players agree
on the output. We get

Πn
s=1V

A
s = Πn

s=1(	0s + 	1s).

Using Claim 13, we have

Πn
s=1(	0s + 	1s) ≥ 2n min(Πn

s=1	
0
s,Π

n
s=1	

1
s),

and assuming, without loss of generality, that Πn
s=1	

0
s ≤ Πn

s=1	
1
s, we get

Πn
s=1V

A
s ≥ 2nΠn

s=1	
0
s.

By the same arguments as those for the first case, we now consider a protocol
A0 ∈ A(k − 1, n) defined using protocol A, and we have that V A0

s = 	0s for any Ps.
Using the induction hypothesis we have

Πn
s=1V

A
s ≥ 2nΠn

s=1	
0
s

= 2nΠn
s=1V

A0
s

≥ 2n2(3n−2)(k−2)+n+2(n−1)

= 2(3n−2)(k−1)+n,

6In case �0i �
0
j > �1i �

1
j we consider a protocol A1 that behaves as if the input to Pi is 1, but also

negates the outputs of the first set of inputs.
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which concludes the proof of the second case.
We can now complete the proof of Lemma 12.
Proof of Lemma 12. Let A ∈ A(k, n). Then, by Lemma 14,

Πn
s=1V

A
i ≥ 2(3n−2)(k−1)+n+2(n−1) = 2(3n−2)k.

Therefore there is at least one player Pi such that V Ai ≥ 2(3− 2
n )k.
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Introduction. Let G be a finite group acting transitively on two finite sets X
and Y . Let L(X) and L(Y ) denote the vector spaces of complex valued functions
defined, respectively, on X and Y . If I is a G-invariant incidence relation between Y
and X (i.e., I is a subset of Y ×X such that if (y, x) ∈ I and g ∈ G, then (gy, gx) ∈ I),
we can define the associated Radon transform R from L(Y ) to L(X) by

(Rf)(x) =
∑

y∈Y :(y,x)∈I
f(y)

for every x ∈ X and f ∈ L(Y ); compare with [13, Appendix C]. Clearly, R is a
linear operator that intertwines the permutation representations of G on L(Y ) and
L(X). The aim of this paper is to develop a suitable Fourier analysis for the Radon
transform R in the case where both L(X) and L(Y ) are multiplicity-free permutation
representations of the group G; we also assume that every irreducible representation in
L(Y ) is also in L(X). Our investigation follows a suggestion at the end of [4]. In that
paper, Diaconis and Rockmore developed, for statistical applications (see also [2]),
algorithms for computing projections onto the isotypic subspaces of a permutation
representation of G on a space L(X). More precisely, for the case in which K is
the isotropy subgroup of a fixed element x0 ∈ X, they give general algorithms that
use a set of generalized spherical functions obtained by projecting the irreducible
characters onto the space of bi-K-invariant functions on G; when the permutation
representation L(X) is multiplicity free, i.e., (G,K) is a Gelfand pair, their algorithms
involve ordinary spherical functions. For the particular Gelfand pair G = Sn (the
symmetric group) and K = Sn−k × Sk, they give another algorithm, which is based
on the inversion of a natural Radon transform from Sn/(Sn−j×Sj) to Sn/(Sn−k×Sk),
j ≤ k. R is defined as follows: If Sn/(Sn−j × Sj) and Sn/(Sn−k × Sk) are identified,
respectively, with the space of all j-subsets and of all k-subsets of {1, 2, . . . , n}, then
for every B ∈ Sn/(Sn−k × Sk) and every f ∈ L(Sn/(Sn−j × Sj))

(Rf)(B) =
∑

A∈Sn/(Sn−j×Sj):A⊂B
f(A).
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At the end of their paper, Diaconis and Rockmore posed the problem of finding
the connection between Radon transforms and character theory. In the present paper
we show that every Radon transform R is a convolution operator whose kernel is
a K-invariant function defined on Y ; the natural Fourier analysis of R consists in
the decomposition of R as a linear combination of operators acting on irreducible
subspaces and may be obtained using the intertwining functions studied in [6]. This
Fourier analysis tells us whether R is injective and gives a left inverse if it exists (the
inversion of the Radon transform on Sn/(Sn−j×Sj), taken from [8], is the key fact in
the last algorithm in [4]). We also formalize the method used in [8] and [3] to compute
the left inverse of a Radon transform by means of a direct computation; in concrete
examples, this method seems simpler than Fourier analysis.

1. Intertwining operators and Radon transforms. Let G be a finite group
acting transitively on a finite set X. Fix a point x0 ∈ X and define K = {g ∈ G :
gx0 = x0}; thus X = G/K. The permutation representation of G on the vector space
L(X) of all complex-valued functions on X is defined by setting (gf)(x) = f(g−1x)
for every f ∈ L(X), x ∈ X, and g ∈ G. We suppose L(X) endowed with the natural
scalar product: for f1, f2 ∈ L(X) we set 〈f1, f2〉 =

∑
x∈X f1(x)f2(x). The space

L(X) is isomorphic to the space of right-K-invariant functions defined on G; the
isomorphism is given by the map f → f̃ , where

f̃(g) = f(gx0).

In what follows, especially in the definitions of convolution operators, f and f̃
will be identified.

Now suppose that Y is another homogeneous space for G. Fix a point y0 ∈ Y
and define H = {g ∈ G : gy0 = y0}. Suppose that R is an intertwining operator from
L(Y ) to L(X). That is, R is linear and R(gf) = g(Rf) for every f ∈ L(Y ) and every
g ∈ G. Then we may define the function f0 on Y by setting, for every y ∈ Y ,

f0(y) = (Rδy)(x0),

where δy is the dirac function at y. Note that f0 is K-invariant: if k ∈ K, then
f0(ky) = (Rδky)(x0) = [R(kδy)](x0) = [k(Rδy)](x0) = (Rδy)(k−1x0) = (Rδy)(x0) =
f0(y). Moreover, if f ∈ L(Y ), then f =

∑
y∈Y f(y)δy, and therefore

(Rf)(gx0) = (g−1Rf)(x0) = (Rg−1f)(x0) =
∑

y∈Y
f(y)(Rg−1δy)(x0)

=
∑

y∈Y
f(y)(Rδg−1y)(x0) =

∑

y∈Y
f(y)f0(g−1y).

Conversely, if f0 is a K-invariant function defined on Y , then the formula

(Rf)(gx0) =
∑

y∈Y
f(y)f0(g−1y)(1)

defines an operator R that intertwines L(Y ) with L(X); it is easy to check that the
correspondence f0 → R is a linear isomorphism between the space of K-invariant
functions on L(Y ) and the space of the operators that intertwine L(X) with L(Y ).
Note that (1) may be written in the following form of convolution:

(Rf)(gx0) =
1

|H|
∑

s∈G
f̃(gs)ω(s−1) =

1

|H| (f̃ ∗ ω)(g),
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where f̃(g) = f(gy0) and ω(s) = f0(s−1y0); ω is a function defined on G left-H-
invariant and right-K-invariant (thus we will say that ω is H-K-invariant, as in
[6]). In what follows, R will be called the intertwining operator associated to the
K-invariant function f0 (or to the H-K-invariant convolution kernel ω). Now sup-
pose that Ω0,Ω1, . . . ,Ωj are the orbits of K on Y . Their characteristic functions
1Ω0 ,1Ω1

, . . . ,1Ωj form a basis for the space of K-invariant functions on Y ; the ker-
nels ω0, ω1, . . . , ωj , defined by ωl(s) = 1Ωl

(s−1y0), l = 0, 1, . . . , j, form a basis for
the space of H-K-invariant functions defined on G; and the associated intertwining
operators R0, R1, . . . , Rj , defined as in (1), form a basis for the space of operators
that intertwine L(Y ) with L(X). If for l = 0, 1, . . . , j we choose an element gl in G
such that gly0 belongs to Ωl, then we have 1Ωl

(sy0) = 1KglH(s), and this tells us
that the kernel ωl is the characteristic function 1Hg−1

l
K of the double coset Hg−1

l K

(clearly g0, g1, . . . , gl is a set of representatives for the double cosets KgH).

If I is a G-invariant incidence relation between Y and X as described at the
beginning of the introduction, a moment of reflection shows that the associated Radon
transform R may be written as the sum of some of the operators R0, R1, . . . , Rj ; in
the most important cases (see the examples in the final part of the paper) R coincides
with one of the Rl (in general the most simple). Thus in what follows, we restrict our
attention to the operators Rl, which will be called Radon transforms.

Remark. Formula (1) may be written in two other, different ways. Since f0 is
constant on the orbits Ωl, following [4, p. 99], we may define fg(l) =

∑
y∈Ωl

f(gy)
(note that g → fg(l) is right-K-invariant) and write

(Rf)(gx0) =

j∑

l=0

fg(l)f0(Ωl).

Since f0 is K-invariant, we may also define the matrix (r(y, x))y∈Y,x∈X by r(y, gx0)

= f0(g−1y). Thus (1) may be written in the matrix form

(Rf)(x) =
∑

y∈Y
f(y)r(y, x).

Note also that r(sy, sx) = r(y, x) for every y ∈ Y , x ∈ X, and s ∈ G and that the
map f0 → r is a linear bijection between the space of K-invariant functions on L(Y )
and the space of the matrices satisfying this condition; see also [1, pp. 38–39]. From
a theoretical point of view, the main difference between the algorithms in [4, p. 99]
and [4, p. 102] is the use of these two different ways of writing formula (1) (see also
the remark at the end of section 5).

2. Intertwining functions. In what follows we suppose that both L(Y ) and
L(X) decompose without multiplicity and that every irreducible representation con-

tained in L(Y ) is also contained in L(X): L(X) =
⊕k

i=0 Vi and L(Y ) =
⊕j

i=0 Vi,
where Vi, i = 0, 1, . . . , k, are distinct irreducible representations, and j ≤ k. In
every Vi we choose a normalized K-invariant vector vi and, if i ≤ k, a normalized H-
invariant vector ui, and we set ψi(g) = 〈gvi, ui〉, ϕi(g) = 〈gui, vi〉, ηi(g) = 〈gui, ui〉,
σi(g) = 〈gvi, vi〉 (by Frobenius reciprocity, ui and vi exist and are unique up to a
multiplicative complex constant of modulus one). Clearly, ηi and σi are the spherical
functions of the Gelfand pairs (G,H) and (G,K), while ϕi and ψi are the intertwining
functions of [6]. Intertwining and spherical functions take the place of the characters
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in our cases: 1
|K|
∑
k∈K k is the projection on the space of K-invariant functions on

G and, if χi is the character of the irreducible representation Vi, then

1

|K|
∑

k∈K
χi(gk) = σi(g)

and (we denote by e the identity of G)

1

|K||H|
∑

h∈H

∑

k∈K
χi(kgh) =

1

|H|
∑

σ∈H
σi(gh) =

1

|H|
∑

h∈H
〈ghvi, vi〉

= 〈vi, ui〉〈gui, vi〉 = ψi(e)ϕi(g)

because the projection of a vector v ∈ Vi on the space of H-invariant vectors is given
by 〈v, ui〉ui. The intertwining functions are bi-invariant; thus

ψi =

j∑

l=0

ψi(g
−1
l )1Hg−1

l
K , ϕi =

j∑

l=0

ϕi(gl)1KglH .

We recall that {ψ0, ψ1, . . . , ψj} and {ϕ0, ϕ1, . . . , ϕj} are orthogonal bases for the

space of H-K- and K-H-invariant functions on G and ‖ψi‖2 =
∑
g∈G |ψi(g)|2 = |G|

di
=

‖ϕi‖2 [6]. Thus

1Hg−1
l
K =

j∑

i=0

di
|G|

〈
1Hg−1

l
K , ψi

〉
ψi =

j∑

i=0

di
|G| ‖1Hg−1

l
K‖2ψi(g−1

l )ψi(2)

=
|H||K|

|G||g−1
l Kgl ∩H|

j∑

i=0

diϕi(gl)ψi.

3. Fourier analysis of the Radon transforms R0, R1, . . . , Rj. For both
the space of K-H-invariant functions and the space of H-K-invariant functions we
have two bases, the first made up of characteristic functions and the second made
up of matrix coefficients of irreducible representations. Now we introduce the corre-
sponding bases for the spaces of intertwining operators (we have already defined the
operators Rl). We define the Radon transforms D0, D1, . . . , Dj from L(X) to L(Y )
and the intertwining operators T0, T1, . . . , Tj from L(Y ) to L(X) and S0, S1, . . . , Sj
from L(X) to L(Y ) by setting

Dlf̃ =
1

|K| f̃ ∗ 1KglH for l = 0, 1, . . . , j and f ∈ L(X),

Tif̃ =
1

|H| f̃ ∗ ψi for i = 0, 1, . . . , j and f ∈ L(Y ),

Sif̃ =
1

|K| f̃ ∗ ϕi for i = 0, 1, . . . , j and f ∈ L(X).

We recall that the convolution by the kernel di
|G|ηi gives the projection from L(Y )

to Vi (this is the key fact in the algorithm in [4, pp. 98–100]). The following proposition
gives a simple generalization of this fact.
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Proposition 3.1. The kernel of Ti (resp., of Si) is
⊕

t�=i Vt and its range is the
subspace of L(X) (resp., ofL(Y )) isomorphic to Vi.

Proof. If t = i, and f belongs to the subspace of L(Y ) isomorphic to Vt, then
Tif̃ = Ti

dt
|H| f̃ ∗ηt = dt

|H|2 f̃ ∗ηt ∗ψi = 0: ηt and ψi are matrix coefficients of irreducible

nonequivalent representations, so ηt ∗ ψi = 0. Moreover, Ti is nontrivial (resp., ψi is
nontrivial); thus its range is the Vi in L(X).

Clearly

Ti =

j∑

l=0

ψi(g
−1
l )Rl, Si =

j∑

l=0

ϕi(gl)Dl.(3)

Moreover, formula (2) may be translated in terms of intertwining operators obtaining

Rl =
|K||H|

|G||g−1
l Kgl ∩H|

j∑

i=0

diϕi(gl)Ti,(4)

which gives the Fourier analysis of the Radon transform Rl.
Remark. In the case X = Y (and K = H) (4) becomes the usual spectral analysis

of the invariant operator Rl obtained by means of the spherical Fourier transform (now
Ti is a multiple of the orthogonal projection onto the irreducible subspace Vi of L(Y )).

4. On the inversion of the Radon transforms. The main problems are to
know when the Radon transform Rl is injective and, if it is injective, to compute a left
inverse, which is also an intertwining operator. The Fourier analysis of the preceding
section gives a solution to these problems. In the following lemma, δit is the usual
Kronecker symbol.

Lemma 4.1. (i) ψi ∗ ϕt = δit
|G|
di
ηi.

(ii) SiTt is δit
|G|2

|K||H|d2
i

times the projection from L(Y ) onto the subspace Vi.

Proof. If i = t, then ψi ∗ ϕt = 0 because ψi and ϕt are matrix coefficients of
irreducible nonequivalent representations. If i = t, the convolution ψi ∗ ϕi is a bi-H-
invariant function and, as a function of L(Y ), it belongs to Vi (it is the convolution
of two matrix coefficients of Vi), and thus it must be a multiple of ηi; but from the
orthogonality relations for the matrix coefficients of an irreducible representation it

follows that (ψ ∗ ϕ)(e) =
∑
s∈G ψ(s)ϕ(s−1) =

∑
s∈G |〈sv, u〉|2 = |G|

di
, and so (i) is

proved. (ii) follows easily from (i).
As a consequence of Lemma 4.1 and (4) we have the following theorem.
Theorem 4.2. The operator Rl is injective if and only if all the numbers {ϕi(gl) :

i = 0, 1, . . . , j} are nonzero. If it is injective, it has a left inverse, which is also an
intertwining operator, and such inverse is given by the formula

j∑

i=0

|g−1
l Kgl ∩H|
|G| · di

ϕi(gl)
Si.

Note that this formula is a kind of inverse Fourier transform that must be eval-
uated using (3) in order to express the inverse of Rl in terms of the operators
D0, D1, . . . , Dj . In concrete examples, the computation of this Fourier transform
may be very complicated. Thus we describe another possible way to compute the
inverse of a Radon transform R (if it is injective). Choose a set {s0, s1, . . . , sj} of
representatives for the double cosets HgH (we suppose that s0 is the identity of G)



550 FABIO SCARABOTTI

and define the “Laplace operators” by setting ∆rf̃ = 1
|H| f̃ ∗ 1HsrH (thus ∆0 is the

identity). The operators {∆0,∆1, . . . ,∆j} on L(Y ) form a basis for the space of
all operators that intertwine L(Y ) with itself. Thus there exists a set of coefficients
{αlr : l = 0, 1, . . . , j} such that

DlR =

j∑

r=0

αlr∆r.(5)

We may look for a left inverse of R in the form
∑j
l=0 βlDl, i.e., we may look for

coefficients β0, β1, . . . , βj such that (
∑j
l=0 βlDl)R =

∑j
r=0(

∑j
l=0 βlαlr)∆r is equal to

∆0. Thus we have to solve the system
{ ∑j

l=0 βlαl0 = 1,∑j
l=0 βlαlr = 0 for r = 1, 2, . . . , j.

(6)

Clearly, R is injective if and only if the matrix (αlr)l,r=0,... ,j is nonsingular. In
some important examples (see the next sections) (αlr) is a triangular matrix and the
system (6) may be solved using standard binomial (or q-binomial) identities (see also
[1] for the case j = 1). Moreover, if X = Y is a finite distance transitive graph
and R is the associated Laplace operator, then (αlr) is a tridiagonal matrix; see [3,
pp. 334–338] for an example, [10] for the use of the Fourier transform in this example,
and [12] for general background.

Remark. If R is injective, it has a unique left inverse R′ in the space of intertwining
operators, and we will call it the left inverse. Moreover, RR′ is always the orthogonal
projection onto the range of R, as in the case in [4, pp. 101–102] (if T is an injective
linear operator between two vector spaces with inner product, and S is a left inverse
of T , then TS is the orthogonal projection onto the range of T RanT if and only if
the kernel of S is the orthogonal complement of RanT ).

5. Radon transforms between the Gelfand pairs (Sn, Sn−k × Sk). Let
Sn be the symmetric group on {1, 2, . . . , n}. Let j, k be two nonnegative integers such
that 0 ≤ j < k ≤ n/2. We identify Y = Sn/(Sn−j × Sj) and X = Sn/(Sn−k × Sk),
respectively, with the space of all j-subsets and with the space of all k-subsets of
{1, 2, . . . , n}. We suppose that H = Sn−j × Sj and K = Sn−k × Sk are the isotropy
subgroups, respectively, of the subsets {1, 2, . . . , j} and {1, 2, . . . , k}. In this case
the orbits of K on Y , the orbits of H on X, and the orbits of H on Y are given,
respectively, by the subsets

Ωl = {A ∈ Y : |A ∩ {1, 2, . . . , k}| = j − l}, l = 0, 1, . . . , j;

Θl = {B ∈ X : |B ∩ {1, 2, . . . , j}| = j − l}, l = 0, 1, . . . , j;

Πr = {A ∈ Y : |B ∩ {1, 2, . . . , j}| = j − r}, r = 0, 1, . . . , j.

Proposition 5.1. The intertwining operators Rl, Dl, and ∆r associated to the
characteristic functions of the orbits Ωl,Θl, and Πr are given by the following formu-
las: For A ∈ Y and B ∈ X
RlδA =

∑

C∈X:|C∩A|=j−l
δC , DlδB =

∑

C∈Y :|C∩B|=j−l
δC , ∆rδA =

∑

C∈Y :|C∩A|=j−r
δC .

Proof. If Rl is the intertwining operator associated to the orbit Ωl, A ∈ Y , and
B = g{1, 2, . . . , k} ∈ X, g ∈ Sn, then

(RlδA)(B) = 1Ωl
(g−1A) =

{
1 if |B ∩A| = j − l,
0 otherwise,
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and this proves the first formula. The others may be proved analogously.
The most important operator is R0: it is the natural Radon transform from L(Y )

and L(X). Its left inverse R′ is given in [8]; in our notation it is given by the formula

R′ = (k − j)

j∑

l=0

(−1)l

k − j + l
· 1(

n−j
k−j+l

)Dl.

If A,C ∈ Y and |A ∩ C| = j − r, then the number of B ∈ X such that A ⊂ B
and |C ∩B| = j − l is equal to

(
r
l

)(
n−j−r
k−j+l−r

)
. Thus in this case (5) is

DlR0 =

min{k−j+l,j}∑

r=l

(
r

l

)(
n− j − r

k − j + l − r

)
∆r

and the system (6) is triangular; by means of elementary manipulations and of the
identity (5.24) in [7], it is simple to verify that R′ is the left inverse of R0. Clearly,
R′ is the intertwining operator associated to the K-H-invariant convolution kernel

ω0 = (k − j)
∑j
l=0

(−1)l

k−j+l · 1

( n−j
k−j+l)

1̃Θl
.

Now we want to connect the formula for ω0 with the formula in Theorem 4.2 and
the theory of the (Sn−j ×Sj −Sn−k ×Sk)-invariant functions on Sn developed in [6].
We use the results in [6] and the notation of the preceding sections of this paper. In
this case L(Y ) decomposes into j+ 1 distinct irreducible representations that are also
contained in L(X). The intertwining functions ϕi are given by the following formula
(in [6] a different normalization is used):

ϕi =

(
(n− k)!(n− i− j)!j!(k − i)!

(n− j)!(n− k − i)!(j − i)!k!

)1/2 j∑

l=0

Qi(l;−(n− k)− 1,−k − 1, j)1̃Θl
,

i = 0, 1, . . . , j,

where Qi is the Hahn polynomial [12]

Qi(l;−(n− k)− 1,−k − 1, j) =
1(
j
i

)
i∑

s=0

(−1)s
(
k−i+s
s

)
(
n−k
s

)
(
j − l

i− s

)(
l

s

)
.

Note that the value of ϕi on Ω0 is
(

(n−k)!(n−i−j)!j!(k−i)!
(n−j)!(n−k−i)!(j−i)!k!

)1/2

, and thus it is nonzero for

every i. By Theorem 4.2, this confirms that R0 is injective. In this case the operator
given by Theorem 4.2 is the intertwining operator associated to the K-H-invariant
convolution kernel ω1 given by

ω1 =
j!(k − j)!(n− k)!

n!

j∑

i=0

(
(n− k)!(n− i− j)!j!(k − i)!

(n− j)!(n− k − i)!(j − i)!k!

)−1/2 [(
n

i

)
−
(

n

i− 1

)]
ϕi.

In fact the dimension of the irreducible representation corresponding to ϕi is [
(
n
i

) −(
n
i−1

)
], |K ∩ H| = j!(k − j)!(n − k)!, and |G| = n!. However, R0 has a unique left

inverse in the space of intertwining operators, and thus we have ω0 = ω1; a simple
calculation shows that this fact is equivalent to the following formula for the Hahn
polynomials:

j∑

i=0

[(
n

i

)
−
(

n

i− 1

)]
Qi(l;−n + k − 1,−k − 1, j) =

(
n

j

)(
n− j

k − j

)
(−1)l

k − j + l

k − j(
n−j
k−j+l

) .

(7)
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An analytic proof of (7) may be easily obtained using the orthogonality relations for
the Hahn polynomials and (5.26) in [7].

Remark. As noted in the remark of section 1, the main theoretical difference
between the algorithms in [4, p. 99] and [4, pp. 101–102] is the different way to write
(1). Moreover, the second algorithm contains implicitly an expression for the spherical
functions of the Gelfand pair (Sn, Sn−k ×Sk), which is different that in the literature
[6], [12].

6. A Radon transform from S2n/(SnwrS2) to S2n/(S2wrSn). Let wr
denote the wreath product of finite groups (see [9]). Then Y = S2n/(SnwrS2) may
be identified with the space of all partitions of {1, 2, . . . , 2n} in two parts of size
n, while X = S2n/(S2wrSn) may be identified with the space of all partitions of
{1, 2, . . . , 2n} in n parts of size two (in both cases there is no order between or
within parts). It is known [11] that the permutation representations of S2n on L(Y )
and L(X) are multiplicity free and that every irreducible subrepresentation of L(Y )
is also contained in L(X) (but in this case L(X) is much bigger than L(Y )). If
y ∈ Y, x ∈ X, y = {A,B}, and x = {A1, A2, . . . , An} we define w(y, x) = |{s :
As is contained in A or in B}|; i.e., w(y, x) is the number of parts of x that are
contained in a part of y. Clearly, w(y, x) is an even number. If SnwrS2 (S2wrSn) is
the isotropy group of y0 (of x0), then the orbits of SnwrS2 (of S2wrSn) on X (resp.,
on Y ) are given by the subsets {x ∈ X : w(y0, x) = 2l} (resp., {y ∈ Y : w(y, x0) =
2l}), l = 0, 1, . . . , [n/2]. The Radon transforms associated to these orbits are given
by the formulas

Rlδy =
∑

x:w(y,x)=2l

δx, Rl from L(Y ) to L(X),

Dlδx =
∑

y:w(y,x)=2l

δy, Dl from L(X) to L(Y ).

Then we define the invariant operators ∆r, 0 ≤ r ≤ [n/2], setting, for y = {A,B} ∈ Y ,

∆rδy =
∑

δz,

where the sum is over all z = {A′, B′} ∈ Y such that {|A∩A′|, |A∩B′|} = {r, n− r}
(thus z may be obtained from y by moving r elements from A to B and r elements
from B to A). The set {∆r : r = 0, 1, . . . , [n/2]} is a basis for the space of all operators
that intertwine L(Y ) with itself; it is formed by the operators associated to the orbits
of SnwrS2 on Y .

The most simple Radon transform is R0; we want to invert it, solving the corre-
sponding system (6). If y, z ∈ Y , y = {A,B}, z = {A′, B′}, and {|A∩A′|, |A∩B′|} =
{n, n − r}, 0 ≤ r ≤ n/2, then the number of x ∈ X such that w(y, x) = 0 and

w(z, x) = 2l is equal to
(
n−r
l

)2(r
l

)2
(l!)2(r− l)!(n− r− l)! =

(
n−r
l

)(
r
l

)
r!(n− r)!. There-

fore in this case (5) is

DlR0 =

min{[n/2],n−l}∑

r=l

r!(n− r)!

(
n− r

l

)(
r

l

)
∆r.

Thus the matrix of the system (6) is triangular and its diagonal elements are different
from zero: it follows that R is injective. Moreover, this system may be easily solved:
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by using formula (5.25) in [7] it is not hard to prove that the left inverse R′ of R0 is
given by the formula

R′ =

[n/2]∑

l=0

(−1)l

n!
(
n−1
l

)Dl.

7. The Radon transform on the finite Grasmann manifold GLn(Fq)/
(GLn−k(Fq)×GLk(Fq)). In this section we treat the inversion of the q-analogue of
the Radon transform of section 5 (the study of this Radon transform is suggested in [4,
p. 103]). Let GLn(Fq) be the group of all nondegenerate linear transformations of Fnq ,
which is the n-dimensional vector space over the finite field Fq of q elements. Then the
finite homogeneous space GLn(Fq)/(GLn−k(Fq) × GLk(Fq)) may be identified with
the Grasmann manifold Xk(q) of all k-dimensional subspaces of Fnq . Let 0 ≤ j < k ≤
[n/2]; then it is known [5] that L(Xj(q)) decompose into j+1 nonequivalent irreducible
representations of GLn(Fq) and that every irreducible representation in L(Xj(q)) is
also in L(Xk(q)). The natural Radon transform from L(Xj(q)) to L(Xk(q)) is defined
by

(Rf)(x) =
∑

y∈Xj(q):y⊂x
f(y) ∀x ∈ Xk(q), f ∈ L(Xj(q)).

In this case the operator associated to the orbits of GLn−j(Fq) × GLj(Fq) on
Xk(q) and on Xj(q) is given by

Dlδx =
∑

y∈Xj(q):dim(x∩y)=j−l
δy ∀x ∈ Xk(q), l = 0, 1, . . . , j;

∆rδy =
∑

z∈Xj(q):dim(z∩y)=j−r
δz ∀y ∈ Xj(q), l = 0, 1, . . . , j.

We recall that if y, z ∈ Xj(q) and dim(y ∩ z) = j − r, then the number of x ∈
Xk(q) such that z ⊂ x and dim(y ∩ x) = j − l is equal to [5, p. 13].

(
r

l

)

q

(
n− j − r

k − j + l − r

)

q

ql(k−j+l−r),

where
(
x
k

)
q

= (qx−1)(qx−1−1)···(qx−k+1−1)
(qk−1)(qk−1−1)···(q−1)

if k is positive,
(
x
0

)
q

= 1, and
(
x
k

)
q

= 0 if k is

a negative integer. It follows that, in this case, formula (5) is

DlR =

min{j,k−j+l}∑

r=l

(
r

l

)

q

(
n− j − r

k − j + l − r

)

q

ql(k−j+l−r)∆r.

Again the matrix of the system (6) is triangular and its diagonal elements are
different from zero. Therefore R is injective. Its left inverse R′ is given by the
formula

R′ = (1− qk−j)
j∑

l=0

(−1)l

1− qk−j+l
1(

n−j
k−j+l

)
q

q−l(k−j)+(l−l2)/2Dl.
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This may be proved using the following q-analogue of (5.24) in [7]:

∑

k

(
l

m + k

)

q

(
s + k

n

)

q

(−1)kq(k2+k)/2+k(m−n−1)

= (−1)l+mq(l−m)(l−2n+m−1)/2

(
s−m

n− l

)

q

, l ≥ 0,

which may be easily proved by induction on l.
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Abstract. We consider a very general online scheduling problem with an objective to minimize
the maximum level of resource allocated. We find a simple characterization of an optimal deter-
ministic online algorithm. We develop further results for the two, more specific problems of single
resource scheduling and hierarchical line balancing. We determine how to compute optimal online
algorithms for both problems using linear programming and integer programming, respectively. We
show that randomized algorithms can outperform deterministic algorithms, but only if the amount
of work done is a nonconcave function of resource allocation.

Key words. online algorithms, competitive analysis, worst-case analysis, single-machine schedul-
ing, multiprocessor scheduling, line balancing
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1. Introduction. Consider the following problem: Work with different dead-
lines arrives over time and has to be performed using a resource. The quantities of
work that arrive as well as their deadlines become known only at the times of arrival.
At a given set of time points, the decision maker decides how much resource to allo-
cate and what part of the available work to perform at that time. The objective is to
minimize the maximum amount of resource allocated at any time during the planning
period. This problem is called the online resource minimization problem (ORMP). It
occurs in production scheduling settings in which the major cost component is energy
consumption (Kleywegt et al. [13]). The decision maker would like to spread the work-
load out as evenly as possible over time but faces the dilemma of uncertainty about
future work. That is, the decision maker must make a trade-off between allocating
too much resource early and postponing too much work to be completed with work
that arrives later.

Consider another problem: Work with different requirements arrives over time
and has to be assigned to a collection of machines with different capabilities. The
machines form a linear hierarchy based on their capabilities; i.e., machine j has at
least the same capabilities as machine j − 1. The amount of work that arrives as
well as the required machine capabilities become known only at the time of arrival.
At a given set of decision points, the decision maker decides how to assign to the
machines the work that has arrived since the previous decision point. The objective
is to minimize the maximum amount of work assigned to any machine. This problem
is called the hierarchical line balancing problem (HLBP).

∗Received by the editors November 12, 2001; accepted for publication (in revised form) Febru-
ary 26, 2003; published electronically July 30, 2003. Some of these results were reported in A. J.
Kleywegt, V. S. Nori, M. W. P. Savelsbergh, and C. A. Tovey, “Online Resource Minimization,”
in Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’ 99),
Baltimore, MD, January 1999, SIAM, Philadelphia, pp. 576–585.

http://www.siam.org/journals/sidma/16-4/39776.html
†School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA

30332-0205 (hunsacker@isye.gatech.edu, Anton.Kleywegt@isye.gatech.edu, mwps@isye.gatech.edu,
ctovey@isye.gatech.edu). The second author was supported by the National Science Foundation
under grant DMI-9875400.

555



556 HUNSAKER, KLEYWEGT, SAVELSBERGH, AND TOVEY

In both the ORMP and the HLBP, the quality of an algorithm is evaluated by
its competitive ratio, i.e., the worst-case ratio over all possible instances of the value
of the solution produced by the algorithm and the value of the optimal solution with
perfect information.

In this paper, we introduce a simple parameterized deterministic algorithm, called
the α-policy, with parameter α and competitive ratio α, provided it produces a feasi-
ble solution. We show that with an appropriate choice of parameter α, the α-policy
has as good a competitive ratio as any other deterministic algorithm. Under a con-
vexity assumption, which holds for both the ORMP and the HLBP, the α-policy is
also optimal among all randomized algorithms. However, we show that randomized
algorithms can outperform deterministic algorithms in other cases.

We also investigate how the optimal parameter can be computed for the ORMP
and the HLBP. For the ORMP, we construct linear programs to compute the opti-
mal parameters, which depend on the number of time periods. For the HLBP, the
optimal parameters are computed with linear programming if the number of time pe-
riods is greater than or equal to the number of machines and computed with integer
programming for the remaining cases. Interestingly, the resulting parameter values
(and hence the optimal competitive ratios) for realistic finite numbers of machines
and time periods are substantially lower than the asymptotic values.

The ORMP and the HLBP are special cases of a more general problem, the online
min-max problem (OMMP), and several of our results can be extended to the OMMP.

The ORMP appears to be a new problem, as we have not been able to find any
existing literature discussing it. On the other hand, the HLBP is a known problem
and has been studied, for example, by Bar-Noy, Freund, and Naor [6], who distinguish
a fractional variant and an integral variant. In the integral variant work must be
assigned in its entirety to a machine; in the fractional variant work may be split
among eligible machines. Our results are for the fractional variant. Bar-Noy, Freund,
and Naor [6] give an algorithm with asymptotically optimal competitive ratio e in
the limiting case, where the number of machines goes to infinity. When all machines
have the same capabilities, i.e., there is no linear hierarchy among machines, the
fractional variant of the HLBP is trivial: divide arriving work equally among the
machines. On the other hand, when all machines have the same capabilities, the
integral variant of the HLBP remains difficult, as it is equivalent to minimizing the
makespan on a set of parallel identical machines. Already in 1966, Graham [10]
had presented a greedy algorithm with a competitive ratio of 2 − 1/m for online
makespan minimization on m identical parallel machines. This problem has continued
to attract researchers; see, for example, the recent papers by Albers [1], Bartal et
al. [7], Fleischer and Wahl [9], and Seiden [17]. Fleischer and Wahl [9] present the
current best deterministic online algorithm, and Albers [1] presents the current best
randomized algorithm. In Aspnes et al. [2] an 8-competitive algorithm is given for
online makespan minimization on related parallel machines, i.e., where the processing
requirement of a job is determined not only by the length of the job but also by the
speed of the machine. This was improved by Berman, Charikar, and Karpinski [8].
Azar, Naor, and Rom [5] consider a more general online load balancing problem in
which each job can be handled only by a subset of machines and requires a different
level of service. In load balancing problems a distinction is made between permanent
and temporary jobs. Permanent jobs continue forever after they arrive and load the
machine indefinitely, while temporary jobs load the machine only during the interval
in which they are active. Azar, Broder, and Karlin [3] and Azar et al. [4] extend
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the work mentioned above to handle temporary jobs. Finally, we want to mention
the work by Hoogeveen and Vestjens [11]. They consider the problem of minimizing
the maximum delivery time on a single machine and present an optimal deterministic
online algorithm. This is one of the few cases that we are aware of in which an optimal
online algorithm is presented. Note that our α-policy, with an appropriate choice of
α, is also an optimal policy.

The paper is organized as follows. In section 2, we define the OMMP, the ORMP,
and the HLBP. In section 3, we introduce an optimal online algorithm called the α-
policy. In section 4, we establish optimality results for the ORMP, the HLBP, and
we generalize these results for the OMMP. In section 5, we show that randomized
algorithms can outperform deterministic algorithms, but only if the amount of work
done is a nonconcave function of resource allocation. Finally, in section 6, we point
out future research directions.

2. Problem definition. In this section we define the general problem, OMMP,
as well as two special cases of it, the ORMP and the HLBP.

2.1. OMMP.
Definition 2.1 (OMMP). An instance ω of the OMMP is a finite sequence

(a(1), . . . , a(T )) of length T . Each a(t) could be a number, vector, function, set,
problem instance, or any other object, and it could be different for different t. The
nature of each a(t) is determined by the particular type of OMMP, as illustrated in
the examples of sections 2.2 and 2.3. The set of all instances is denoted by Ω. Often
it is of interest to explore the characteristics of the OMMP as a function of problem
parameters. For that purpose, the set of all instances with parameter β is denoted
by Ωβ. For example, the set of all instances of length T is denoted by ΩT . For any
instance ω = (a(1), . . . , a(T )) ∈ Ωβ, and any t ∈ {1, . . . , T}, let ωt ≡ (a(1), . . . , a(t))
denote the first t elements of instance ω; that is, ωt denotes the history of instance
ω up to time t. Let Ωt

β ≡ {ωt : ω ∈ Ωβ} denote the set of all such partial instances
of the first t elements. For any instance of length T , a solution r of the OMMP is a
sequence (r(1), . . . , r(T )) ∈ R

T
+ of T nonnegative real numbers. Let R

∞
+ ≡

⋃∞
T=1 R

T
+

denote the set of all solutions. For any instance ω, let R(ω) denote the set of feasible
solutions. A deterministic algorithm π for the OMMP is a function π : Ω �→ R

∞
+ ,

such that for any ω ∈ ΩT , π(ω) ∈ R
T
+; i.e., if ω is of length T , then π(ω) is also of

length T . A deterministic algorithm π is called feasible if, for every ω, π(ω) ∈ R(ω).
Let BT+ denote the Borel sets on R

T
+, let PT denote the set of probability measures on

BT+, and let P ≡ ⋃∞T=1 PT . A randomized algorithm π for the OMMP is a function
π : Ω �→ P such that for any ω ∈ ΩT , π(ω) ∈ PT . The probability that the solution
is in a set B ∈ BT+ is denoted by π(ω)[B]. We assume that R(ω) ∈ BT+ for ω ∈ ΩT ,
and a randomized algorithm π is called feasible if, for every ω, π(ω)[R(ω)] = 1.
Also, for any t ∈ {1, . . . , T}, we will use π(ω)(t) to denote the decision at time
t for instance ω under algorithm π. For a deterministic algorithm π, π(ω)(t) is
deterministic, and for a randomized algorithm π, π(ω)(t) is a random variable, where
the tuple (π(ω)(1), . . . , π(ω)(T )) is distributed according to the probability measure
π(ω). When the instance ω has been fixed, we also use rπ(t) to denote the decision
π(ω)(t) under algorithm π at time t. A deterministic (randomized) online algorithm
π for the OMMP is a deterministic (randomized) algorithm such that, for each ω and
each t, (the probability distribution of) π(ω)(t) depends on ωt only; i.e., it depends
only on the history of instance ω up to time t and not on the whole instance ω. Let
ΠDO denote the set of all deterministic online algorithms, and let ΠRO ⊇ ΠDO denote
the set of all randomized online algorithms for the OMMP.
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For any instance ω ∈ ΩT , and any deterministic algorithm π, the value vπ(ω) is
the maximum norm of π(ω); i.e.,

vπ(ω) ≡ max
{
rπ(1), . . . , rπ(T )

}

if π(ω) ∈ R(ω), and vπ(ω) = ∞ otherwise. Similarly, for any instance ω ∈ ΩT , and
any randomized algorithm π, the value vπ(ω) is the expected maximum norm under
π(ω); i.e.,

vπ(ω) ≡ Eπ(ω)
[

max
{
rπ(1), . . . , rπ(T )

}]

if π(ω)[R(ω)] = 1, and vπ(ω) =∞ otherwise.
For any instance ω ∈ ΩT , the optimal value with perfect information, v∗(ω), is

defined by

v∗(ω) ≡ inf
r∈R(ω)

{
max{r(1), . . . , r(T )}

}
.

We assume that v∗(ω) <∞ for all ω ∈ Ω, so R(ω) = ∅.
In this paper, the quality of an algorithm π for an instance ω is evaluated by

the ratio of the value of the algorithm and the optimal value with perfect information,
i.e., vπ(ω)/v∗(ω). For any class Ωβ of instances, and any algorithm π, the competitive
ratio or worst-case ratio ρπβ denotes the largest ratio of the value of algorithm π and
the optimal value with perfect information over all instances in Ωβ, i.e.,

ρπβ ≡ inf
{
ρ ≥ 1 : vπ(ω) ≤ ρv∗(ω) ∀ ω ∈ Ωβ

}
.(2.1)

The convention is that inf ∅ =∞. Note that, if v∗(ω) > 0 for all ω ∈ Ωβ, then

ρπβ = sup
ω∈Ωβ

{
vπ(ω)

v∗(ω)

}
.

Also note that, if ρπβ < ∞, then the infimum in (2.1) is attained, in the sense that
vπ(ω) ≤ ρπβv∗(ω) for all ω ∈ Ωβ. This criterion is standard in the literature for online
algorithms; see, for example, McGeoch and Sleator [15] and Irani and Karlin [12]. The
competitive ratio ρπ of algorithm π over all instances is given by

ρπ ≡ inf
{
ρ ≥ 1 : vπ(ω) ≤ ρv∗(ω) ∀ ω ∈ Ω

}
.

If B is the set of parameters β, i.e., Ω =
⋃
β∈B Ωβ, then ρ

π = supβ∈B ρ
π
β.

The optimal competitive ratio ρ∗β over all deterministic online algorithms, and
over all instances in Ωβ, is given by

ρ∗β ≡ inf
π∈ΠDO

ρπβ .

The optimal competitive ratio ρ∗ over all deterministic online algorithms, and over
all instances, is given by

ρ∗ ≡ inf
π∈ΠDO

ρπ.

The optimal competitive ratios over all randomized online algorithms are defined
similarly.
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Alternatively, one may want to define ρ∗ ≡ supβ∈B ρ
∗
β. The question is whether

the two definitions of ρ∗ are equal, that is, whether supβ∈B infπ∈ΠRO ρπβ = infπ∈ΠRO

supβ∈B ρ
π
β. In general, for any real valued function f(x, y), it holds that supx infy f(x, y)

≤ infy supx f(x, y), and the inequality may be strict. Thus supβ∈B infπ∈ΠRO ρπβ ≤
infπ∈ΠRO supβ∈B ρ

π
β. Lemma 2.2 establishes that if the parameter β is known before-

hand by the decision maker, then the two definitions of ρ∗ are in fact equal. If the
parameter β is not known beforehand, then the inequality may be strict, because for
each β, there may be an algorithm πβ that performs particularly well for instances
in Ωβ, but there may not exist a single algorithm π that does not depend on β (be-
cause β is not known beforehand) that performs well for all β. For the special cases
of the OMMP and the choices of parameter β considered in this paper, β is known
beforehand.

Lemma 2.2. If β is known beforehand by the decision maker, then

ρ∗ = sup
β∈B

ρ∗β .

An algorithm π∗ ∈ ΠDO is called optimal over deterministic online algorithms if
ρπ

∗
β = ρ∗β for all β ∈ B.

For any r1, r2 ∈ R
T , we denote r1 ≤ r2 if r1(t) ≤ r2(t) for all t. Since the objective

is to minimize max{r(1), . . . , r(T )}, it is natural to assume that increasing r does not
adversely impact the feasibility of the solution, so there is a trade-off between smaller
values of r for improving the objective value and larger values of r for improving the
feasibility. It is therefore assumed that R has the feasibility monotonicity property;
that is, for any ω ∈ Ω and any r1 ∈ R(ω), it holds that r2 ∈ R(ω) for all r2 ≥ r1.

2.2. ORMP. In this section we define the ORMP and show that it is a special
case of the OMMP.

Definition 2.3 (ORMP). Work with different deadlines arrives over time and
has to be performed using a costly resource. The amount of work that arrives at each
point in time as well as its deadlines become known only at the time of arrival. At a
given set of decision points, indexed with t = 1, . . . , T , the decision maker decides how
much resource to allocate and what part of the available work to perform at that time.
The objective is to minimize the maximum amount of resource allocated at any time
during the planning period. Let au(t) ∈ R+ denote the amount of work that arrives
at time t with deadline u, with t, u ∈ {1, . . . , T}, and let a(t) ≡ (a1(t), . . . , aT (t)).
Assume that au(t) = 0 for u < t; i.e., work does not arrive after its deadline. Let
r(t) ∈ R+ denote the total amount of resource allocated at decision point t, and let
r ≡ (r(1), . . . , r(T )). Let qu(t) ∈ R+ denote the amount of work with deadline u that
is performed at time t, and let q(t) ≡ (q1(t), . . . , qT (t)) and q = (q(1), . . . , q(T )). Thus
(r(t), q(t)) denotes the decision made at time t. For (r, q) to be feasible, (r(t), q(t))
must satisfy the following for all t:

T∑

u=1

qu(t) ≤ r(t),(2.2)

qu(t) = 0 for all u < t,(2.3)
t∑

t′=1

qt(t
′) =

t∑

t′=1

at(t
′),(2.4)

t∑

t′=1

qu(t′) ≤
t∑

t′=1

au(t′) for all u.(2.5)
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Constraint (2.2) states that the total amount of work performed at time t cannot ex-
ceed the amount of work that can be accomplished with r(t) amount of resource. Con-
straint (2.3) states that no work can be performed after its deadline. Constraint (2.4)
states that all work must be performed by the respective deadlines. Constraint (2.5)
states that work cannot be performed before it has arrived.

A more general version of the ORMP stated above incorporates a productivity
function ηt(r) which represents the amount of work that can be performed at time t
with r amount of resource. Thus the ORMP stated above has productivity function
ηt(r) = r for all t and r. The ORMP with productivity function ηt(r) is the same as
the ORMP stated above, except that constraint (2.2) is replaced with

T∑

u=1

qu(t) ≤ ηt(r(t)).(2.6)

It is clear that as long as ηt is nondecreasing for all t, R has the feasibility monotonic-
ity property. It will be stated clearly which results hold for the ORMP with productivity
function ηt(r) = r and which results hold for more general productivity functions.

The decision maker has to make a sequence of decisions (r(t), q(t)) over time, using
information as it becomes available. Because the decision maker has no information
about future arrivals, decision (r(t), qt(t), . . . , qT (t)) can depend on past arrivals only
and not on any arrivals after time t. Thus algorithms are required to be online.
Because the objective is to minimize the maximum amount of resource allocated at
any time during the planning period, the algorithm evaluation criteria of the ORMP
are the same as those of the OMMP. Thus it seems that the ORMP fits into the
framework of the OMMP, except that the OMMP includes only a single decision
r(t) ∈ R+ at each time t, whereas the ORMP includes both resource quantity decision
r(t) ∈ R+ and resource allocation decision q(t) ∈ R

T
+ at each time t. However, it is

clear that one should give preference to available work with earlier deadlines above
work with later deadlines in the allocation q of the chosen amounts of resource r.
This decision rule for the allocation of the chosen amounts of resource r is called the
earliest deadline first rule (EDF). Specifically, the EDF rule works as follows. For
any time t and any chosen amount of resource r(t), qu(t) is determined inductively
by qu(t) = 0 for all u < t, and

qu(t) = min

{
t∑

τ=1

au(τ)−
t−1∑

τ=1

qu(τ), ηt(r(t))−
u−1∑

v=t

qv(t)

}
(2.7)

for all u ≥ t. It is easy to see that for any instance ω and any feasible solution (r, q),
the solution (r, q′), where q′ denotes the resource allocation decisions according to the
EDF rule, is both feasible and has the same objective value as solution (r, q). Because
EDF performs at least as well as any other allocation rule, attention is restricted to
algorithms that use the EDF rule. Thus a solution is specified by r only, and the
ORMP is a special case of the OMMP.

It follows from the definition of the EDF rule that constraints (2.6) (or (2.2)),
(2.3), and (2.5) cannot be violated by the EDF rule. Thus the only constraint that
can be violated by the EDF rule is (2.4); that is, the algorithm can fail to perform all
work by the deadlines, in which case the algorithm is infeasible.

The problem parameter β of interest for the ORMP is the length T of the
time horizon. Note that ρ∗T is nondecreasing in T , because for any instance ωT =
(a(1), . . . , a(T )) of length T there is an instance ωT+1 = (0, a(1), . . . , a(T )) of length
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T + 1, such that the optimal value with perfect information is the same for both
instances, v∗(ωT ) = v∗(ωT+1), and for any feasible solution r = (r(1), . . . , r(T + 1))
for ωT+1, the solution r′ = (r′(1), . . . , r′(T )) for ωT with r′(t) = r(t + 1) for all
t ∈ {1, . . . , T} is feasible, and max{r′(1), . . . , r′(T )} ≤ max{r(1), . . . , r(T + 1)}.

The version of the ORMP in which all deadlines are equal to the planning horizon
T is called the single deadline ORMP, and the version with different deadlines is called
the multiple deadline ORMP.

2.3. HLBP. In this section we define the HLBP, which is another interesting
problem that is a special case of the OMMP.

Definition 2.4 (HLBP). Work arrives over time and has to be performed using
a set of m machines. The machines can be ordered in a linear hierarchy, that is, the
machines can be indexed with the integers 1 through m, so that machine j ∈ {1, . . . ,m}
is at least as versatile as any machine i ∈ {1, . . . , j}. Each quantity of work has a
specification of the least versatile machine on which the work can be performed. That
is, if a quantity of work requires at least machine i for its completion, then the work can
be assigned to any one or more than one of machines i, . . . ,m. The quantities of work
that arrive as well as the specifications of their least versatile machines become known
only at the time of arrival. At a given set of decision points, indexed with t = 1, . . . , T ,
the decision maker decides how to assign to the eligible machines the work that has
arrived since the previous decision point. The objective is to minimize the maximum
amount of work assigned to any machine. Let ai(t) ∈ R+ denote the amount of
work that arrives at time t that requires at least machine i, with i ∈ {1, . . . ,m}
and t ∈ {1, . . . , T}, and let a(t) ≡ (a1(t), . . . , am(t)). Let qi(t) ∈ R+ denote the
amount of work assigned to machine i at time t, and let q(t) ≡ (q1(t), . . . , qm(t)) and
q = (q(1), . . . , q(T )). Thus q(t) denotes the decision made at time t. For q to be
feasible, q(t) must satisfy the following for all t:

m∑

j=i

qj(t) ≥
m∑

j=i

aj(t) for all i.(2.8)

Let

ri(t) ≡
t∑

τ=1

qi(τ)(2.9)

denote the total amount of work assigned to machine i up to time t. Let

r(t) ≡ max{r1(t), . . . , rm(t)}(2.10)

denote the maximum amount of work assigned to any machine up to time t, and let
r ≡ (r(1), . . . , r(T )). Clearly, max{r(1), . . . , r(T )} = r(T ).

As in the OMMP, algorithms are required to be online because the decision maker
has no information about future arrivals. Because the objective is to minimize the
maximum amount of work assigned to any machine, max{r1(T ), . . . , rm(T )} ≡ r(T ) =
max{r(1), . . . , r(T )}, the algorithm evaluation criteria of the HLBP are the same as
those of the OMMP. Similarly to the ORMP, it seems that the HLBP fits into the
framework of the OMMP, except that the OMMP describes a decision r(t) ∈ R+ at
each time t, whereas the HLBP describes a work assignment decision q(t) ∈ R

m
+ at

each time t. However, without loss of optimality one can obtain a decision q from r as
follows. Intuitively it is clear that for any chosen value of r(t), which is the maximum
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amount of work assigned to any machine up to time t, one should assign work to the
least versatile machine which qualifies for that work, and which has less than amount
r(t) of work assigned to it, until an amount r(t) of work has been assigned to that
machine or all the work has been assigned and, if any work remains, one continues to
assign it in this fashion. This decision rule for the assignment of work is called the
least versatile first (LVF) rule. Specifically, the LVF rule works as follows. For any
time t and any chosen value of r(t), qi(t) is determined inductively by

qi(t) ≡ min






i∑

j=1

aj(t)−
i−1∑

j=1

qj(t), r(t)−
t−1∑

τ=1

qi(τ)




(2.11)

for all i = 1, . . . ,m. It is easy to see that for any instance ω and any feasible solution
q, the solution q′ obtained by choosing ri(t) ≡

∑t
τ=1 qi(τ), and then determining q′

according to the LVF rule, is both feasible and has as good an objective value as
solution q. Thus, for any given r, the LVF rule performs at least as well as any other
work assignment rule. Therefore, attention is restricted to algorithms that use the
LVF rule so that a solution is specified by r only. With the LVF rule, it is easy to see
that R has the feasibility monotonicity property. Thus we have established that the
HLBP is a special case of the OMMP.

Although r(t) is treated as a decision from here on, it is clear that one can assume
without loss of optimality that r(t) satisfies (2.10). It follows from the definition of the
LVF rule that no work is assigned to a machine for which the machine is not eligible
and that

∑t
τ=1 qi(τ) ≤ r(t) for all i and all t. Thus a solution r, with q determined

by the LVF rule, is feasible if and only if

m∑

j=1

qj(t) =

m∑

j=1

aj(t)(2.12)

for all t; that is, the LVF rule assigns all the work. Thus the system (2.8) of Tm
constraints can be replaced with the system (2.12) of T constraints.

The problem parameter β of interest for the HLBP is the length T of the time
horizon as well as the number m of machines; thus β = (T,m). Note that ρ∗T,m is
nondecreasing in T and in m because for any instance ωT,m = (a(1), . . . , a(T )) of
length T with m machines there is an instance ωT+1,m = (0, a(1), . . . , a(T )) of length
T +1 with m machines, and there is an instance ωT,m+1 = (a′(1), . . . , a′(T )) of length
T with m + 1 machines, with a′1(t) = 0 and a′i+1(t) = ai(t) for all i ∈ {1, . . . ,m}
and all t ∈ {1, . . . , T}, such that v∗(ωT,m) = v∗(ωT+1,m) = v∗(ωT,m+1); and for any
feasible solution for ωT+1,m or ωT,m+1 there is a feasible solution for ωT,m with at
least as good an objective value.

3. An optimal algorithm. In this section we introduce a simple parameterized
algorithm, called the α-policy, with parameter αβ and competitive ratio αβ , provided
that it is feasible. The intuition behind the α-policy is as follows. Suppose that
at time t, the minimum value over all instances ω ∈ Ωβ which start with the part
ωt of the instance observed so far, of the optimal value with perfect information,
is vβ(ωt). (It is easy to compute vβ(ωt) for both the ORMP and the HLBP, as is
shown in sections 4.1 and 4.2.) If one wants to choose r(t) in such a way that it
is guaranteed that the eventual objective value will not exceed the optimal value
with perfect information by more than a factor of α, then one must choose r(t) ≤
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αvβ(ωt). However, if one chooses α or r(t) too small, the resulting solution may not be
feasible.

We show that with an appropriate choice of parameters αβ , the α-policy has as
good a competitive ratio as any other deterministic algorithm, and that under mild
conditions an optimal parameter value exists. Hence, the α-policy is optimal.

For any partial instance ωt ∈ Ωt
β , let Ωβ(ωt) ≡ {ω̃ ∈ Ωβ : ω̃t = ωt} denote the

set of all instances in Ωβ with first t elements equal to ωt. Let

vβ(ωt) ≡ inf
ω̃∈Ωβ(ωt)

v∗(ω̃)

denote the best value with perfect information over all instances in Ωβ which start
with ωt.

Definition 3.1 (α-policy). An α-policy is an algorithm πα ∈ ΠDO, with param-
eters αβ ∈ [1,∞) for each β ∈ B, such that for any instance ω ∈ Ωβ and any t,

πα(ω)(t) ≡ αβvβ(ωt).

Recall that, for any instance ω ∈ Ωβ and any t, vβ(ωt) ≤ v∗(ω). Thus, for any
instance ω ∈ Ωβ and any t, πα(ω)(t) ≤ αβv∗(ω), and hence

vπα(ω) ≡ max
{
πα(ω)(1), . . . , πα(ω)(T )

}
≤ αβv

∗(ω).

Therefore, if πα(ω) is feasible for all ω ∈ Ωβ , then ρπα

β ≤ αβ . It follows from the

definition of vβ(ωt) that if v∗(ω) > 0 and πα(ω) is feasible for all ω ∈ Ωβ , then this
bound is tight, and thus ρπα

β = αβ .
Note that the feasibility monotonicity property implies that if πα1(ω) ∈ R(ω) for

some ω ∈ Ω and some α1 ∈ [1,∞), then πα2
(ω) ∈ R(ω) for all α2 ≥ α1.

Next we show that for any algorithm π ∈ ΠDO, there is an α-policy, with appro-
priate parameters αβ , that performs as well as π.

Theorem 3.2. For any algorithm π ∈ ΠDO, if ρπβ < ∞, then the α-policy πα
with parameter αβ = ρπβ achieves the same competitive ratio, ρπα

β = ρπβ.
Proof. Choose parameter αβ = ρπβ . We show that the α-policy leads to feasible

solutions for all instances ω ∈ Ωβ by showing that πα(ω)(t) ≥ π(ω)(t) for all ω ∈ Ωβ

and all t. This is shown by contradiction; suppose that πα(ω)(t) < π(ω)(t) for some
ω ∈ Ωβ and some t. Choose any instance ω′ ∈ Ωβ(ωt) such that

v∗(ω′) < vβ(ωt) +
π(ω)(t)− πα(ω)(t)

αβ

⇒ αβv
∗(ω′) < αβvβ(ωt) + π(ω)(t)− πα(ω)(t)

= π(ω)(t) = π(ω′)(t)
≤ vπ(ω′).

The last equality follows because instances ω and ω′ have the same history up to time
t, and π is an online algorithm. It follows that vπ(ω′) > ρπβv

∗(ω′), which contradicts
algorithm π having competitive ratio ρπβ < ∞. Hence πα(ω)(t) ≥ π(ω)(t) for all
ω ∈ Ωβ and all t, and thus it follows from feasibility monotonicity and ρπβ < ∞
that the α-policy with αβ = ρπβ leads to feasible solutions for all ω ∈ Ωβ . Therefore
ρπα

β ≤ αβ = ρπβ . Also, πα(ω)(t) ≥ π(ω)(t) for all ω ∈ Ωβ and all t implies that
ρπα

β ≥ ρπβ . Thus ρπα

β = ρπβ .
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Corollary 3.3. To determine ρ∗β (and ρ∗), it is sufficient to consider only the
α-policy. That is,

ρ∗β = inf
α≥1

ρπα

β .

Also,

ρ∗β = inf
{
α ≥ 1 : ρπα

β <∞
}
,

where inf ∅ =∞.
However, the α-policy with parameter αβ = ρ∗β may not be feasible for all ω ∈ Ωβ ,

in which case there is no optimal algorithm, as stated in Corollary 3.4.
Corollary 3.4. If there exists an algorithm that is optimal for instances in Ωβ,

and ρ∗β <∞, then
1. ρ∗β is the least parameter for which the α-policy is feasible for instances in

Ωβ, and ρ
∗
β is therefore the optimal parameter for the α-policy, and

2. the α-policy with parameter αβ = ρ∗β is optimal for instances in Ωβ among
all deterministic online algorithms.

Next it is natural to ask under which conditions an optimal algorithm exists, that
is, under which conditions the α-policy with αβ = ρ∗β is feasible. Proposition 3.5
shows that if R(ω) is closed for all ω ∈ Ωβ , then the set {α ≥ 1 : ρπα

β <∞} of feasible
α-values is closed, and thus the α-policy with αβ = ρ∗β is feasible.

Proposition 3.5. If ρ∗β < ∞ and for some ω ∈ Ωβ, R(ω) is closed, then
πρ∗

β
(ω) ∈ R(ω). Thus, if R(ω) is closed for all ω ∈ Ωβ, then the α-policy with

parameter αβ = ρ∗β is feasible for all ω ∈ Ωβ.
Proof. Consider ω ∈ Ωβ . Choose any sequence {αn} such that αn > ρ∗β for

all n and αn → ρ∗β as n → ∞. Thus παn(ω) = (αnvβ(ω1), . . . , αnvβ(ωT )) →
(ρ∗βvβ(ω1), . . . , ρ∗βvβ(ωT )) = πρ∗

β
(ω) as n → ∞. It follows from Corollary 3.3 and

feasibility monotonicity that παn
(ω) ∈ R(ω) for all n. Then it follows from R(ω)

being closed that πρ∗
β
(ω) ∈ R(ω).

4. Optimal competitive ratios. The results in section 3 are all existential in
nature. They do not show how to compute ρ∗β , and therefore the optimal parameters
αβ , for the α-policy. In this section we show how the optimal parameters for the
α-policy can be computed, first for the ORMP in section 4.1, then for the HLBP in
section 4.2, and then we show how some of these results generalize for the OMMP in
section 4.3.

4.1. ORMP. In this section we investigate the application of the α-policy to
the ORMP, including the calculation of the optimal competitive ratios and optimal
parameters for the α-policy, ρ∗T and ρ∗. (The problem parameter β of interest for the
ORMP is T .)

Recall that, for a given instance ω ∈ ΩT , the decisions under the α-policy are
given by πα(ω)(t) ≡ αT vT (ωt). To implement the α-policy, one has to determine the
optimal value of αT , that is, ρ∗T , as well as vT (ωt). These two issues are addressed
next.

4.1.1. Calculation of vT (ω
t). It is easy to compute vT (ωt) ≡ inf ω̃∈ΩT (ωt) v

∗(ω̃)
for the ORMP. The optimal value v∗(ω) with perfect information can be computed
for any ω using Proposition 4.1. Next, for any partial instance ωt, the best instance
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ω̃ ∈ ΩT that starts with ωt can be determined, and vT (ωt) can be computed, as shown
in Proposition 4.4.

Proposition 4.1. For any instance ω = (a(1), . . . , a(T )) of the ORMP with
nondecreasing productivity function ηt(r), the optimal value v∗(ω) with perfect infor-
mation is given by

v∗(ω) = inf

{
r ≥ 0 :

j∑

t=i

ηt(r) ≥
j∑

t=i

j∑

u=t

au(t) ∀ i, j ∈ {1, . . . , T}, i ≤ j
}
,

where inf ∅ =∞.
The sum

∑j
t=i ηt(r) is the total amount of work that can be done between time

periods i and j inclusive, while the sum
∑j

t=i

∑j
u=t au(t) is the total amount of work

that arrives at or after time i and is due at or before time j. Clearly, for feasibility
the former sum must be at least as great as the latter for all pairs i, j. The proof of
Proposition 4.1 consists of a straightforward verification that this requirement is not
only necessary but also sufficient for feasibility.

Corollary 4.2. For any instance ω = (a(1), . . . , a(T )) of the ORMP with
productivity function ηt(r) = r, the optimal value v∗(ω) with perfect information is
given by

v∗(ω) = max
{i,j∈{1,...,T} : i≤j}

{
1

j − i+ 1

j∑

t=i

j∑

u=t

au(t)

}
.

For any ω = (a(1), . . . , a(T )), ω′ = (a′(1), . . . , a′(T )), we denote ω ≤ ω′ if au(t) ≤
a′u(t) for all t and u.

Corollary 4.3. The optimal value v∗(ω) with perfect information of the ORMP
with productivity function ηt(r) is nondecreasing; that is, for any ω, ω′ ∈ ΩT with
ω ≤ ω′, it holds that v∗(ω) ≤ v∗(ω′).

It follows from Corollary 4.3 that for any partial instance ωt = (a(1), . . . , a(t)),
instance (a(1), . . . , a(t), 0, . . . , 0) ∈ ΩT has the best optimal value v∗(ω̃) with perfect
information among all ω̃ ∈ ΩT that start with ωt. This result makes it easy to
compute vT (ωt) ≡ infω∈ΩT (ωt) v

∗(ω).
Proposition 4.4. For any partial instance ωt = (a(1), . . . , a(t)) of the ORMP

with productivity function ηt(r), vT (ωt) = v∗(a(1), . . . , a(t), 0, . . . , 0). Specifically, for
the ORMP with nondecreasing productivity function ηt(r),

vT (ωt) = inf




r ≥ 0 :

j∑

τ=i

ητ (r) ≥
min{j,t}∑

τ=i

j∑

u=τ

au(τ) ∀ i ∈ {1, . . . , t}, j ∈ {i, . . . , T}





and for the ORMP with productivity function ηt(r) = r,

vT (ωt) = max
{i∈{1,...,t},j∈{i,...,T}}





1

j − i+ 1

min{j,t}∑

τ=i

j∑

u=τ

au(τ)




 .

Corollary 4.3 and Proposition 4.4 lead to the following result.
Corollary 4.5. For any partial instances ωt1, ω

t
2 ∈ Ωt

T of the ORMP with
productivity function ηt(r), with ω

t
1 ≤ ωt2, it holds that vT (ωt1) ≤ vT (ωt2). Specifically,
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for any instance ω ∈ ΩT , vT (ωt) is nondecreasing in t. It follows that for any α-policy
and any instance ω ∈ ΩT , πα(ω)(t) ≡ αT vT (ωt) is nondecreasing in t.

Thus the α-policy takes full advantage of resource that has already been allocated,
since it allocates at least as much at time t+ 1 as at time t.

4.1.2. Optimal parameter values. Next we address the determination of the
optimal value of αT . For any ω ∈ Ω, the feasible region R(ω) is determined by linear
constraints (2.2), (2.3), (2.4), and (2.5). Thus R(ω) is a polyhedron and is closed.
Therefore it follows from Corollary 3.4 and Proposition 3.5 that the optimal value of
αT is ρ∗T and that the α-policy with parameter αT = ρ∗T is feasible and optimal among
all deterministic online algorithms. (It is shown in section 5.2, Proposition 5.3, that
if the productivity function ηt is concave for all t, then the α-policy with parameters
αT = ρ∗T is optimal among all randomized online algorithms.)

First we show that, to determine ρ∗T for the multiple deadline ORMP, it is suffi-
cient to consider the single deadline ORMP. This result simplifies the calculation of
ρ∗T .

We introduce the following notation to distinguish between the single deadline
ORMP and the multiple deadline ORMP. Consider the function θ : Ω �→ Ω that
postpones the deadlines of all work to the end of the time horizon. That is, for
any instance ω = (a1(1), a2(1), . . . , aT (T )) ∈ ΩT of the multiple deadline ORMP,
θ(ω) = (a′1(1), a′2(1), . . . , a′T (T )), where

a′u(t) =

{
0 if u < T,∑T

v=t av(t) if u = T.

When considering the single deadline ORMP, we simplify the notation slightly by
letting a(t) ∈ R+ denote the amount of work arriving at time t (with deadline T ) and
letting q(t) ∈ R+ denote the amount of work performed at time t.

Recall that ΩT denotes the set of instances of length T for the multiple deadline
ORMP. Note that the set of instances of length T for the single deadline ORMP
is given by θ(ΩT ) ⊂ ΩT . Also note that, for any instance θ(ω), the set of feasible
solutions of the single deadline ORMP is the same as the set R(θ(ω)) of feasible
solutions for the same instance of the multiple deadline ORMP. In addition, for any
instance θ(ω), the optimal value with perfect information of the single deadline ORMP
is equal to the optimal value v∗(θ(ω)) with perfect information for the same instance
of the multiple deadline ORMP. The following corollary for the single deadline ORMP
follows from Proposition 4.1 and Corollary 4.2.

Corollary 4.6. For any instance ω = (a(1), . . . , a(T )) of the single deadline
ORMP, the optimal value v∗(ω) with perfect information is given by the following:
With nondecreasing productivity function ηt(r),

v∗(ω) = inf

{
r ≥ 0 :

T∑

t=i

ηt(r) ≥
T∑

t=i

a(t) ∀ i ∈ {1, . . . , T}
}

and with productivity function ηt(r) = r,

v∗(ω) = max
{i∈{1,...,T}}

{
1

T − i+ 1

T∑

t=i

a(t)

}
.

It follows from Proposition 4.4 that, for any partial instance θ(ω)t, the best value
with perfect information, over all instances in θ(ΩT ) of the single deadline ORMP
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that start with θ(ω)t, is equal to the best value vT (θ(ω)t) with perfect information,
over all instances in ΩT of the multiple deadline ORMP that start with θ(ω)t.

Corollary 4.7. For any partial instance ωt = (a(1), . . . , a(t)) of the single
deadline ORMP with nondecreasing productivity function ηt(r),

vT (ωt) = inf

{
r ≥ 0 :

T∑

τ=i

ητ (r) ≥
t∑

τ=i

a(τ) ∀ i ∈ {1, . . . , t}
}

and for the single deadline ORMP with productivity function ηt(r) = r,

vT (ωt) = max
{i∈{1,...,t}}

{
1

T − i+ 1

t∑

τ=i

a(τ)

}
.

Thus, for any instance θ(ω) ∈ θ(ΩT ) of the single deadline ORMP, the α-policy
prescribes exactly the same decisions for the single deadline ORMP as for the multiple
deadline ORMP:

πα(θ(ω))(t) ≡ αT vT (θ(ω)t).

Also note that, for all ω ∈ ΩT , v∗(θ(ω)) ≤ v∗(ω), and vT (θ(ω)t) ≤ vT (ωt) for all
t ∈ {1, . . . , T}.

We want to show that ρ∗T is the same for the multiple deadline ORMP and the
single deadline ORMP, and thus that the optimal parameter αT is the same for the
multiple deadline ORMP and the single deadline ORMP. That is, we want to show
that

ρ∗T = inf
α≥1

inf
{
ρ ≥ 1 : vπα(ω) ≤ ρv∗(ω) ∀ ω ∈ ΩT

}

= inf
α≥1

inf
{
ρ ≥ 1 : vπα(ω) ≤ ρv∗(ω) ∀ ω ∈ θ(ΩT )

}
.

The first equality follows from Corollary 3.3, and it remains to establish the second
equality. We do that by recalling that ρ∗T is nondecreasing in T , and we show in
Theorem 4.9 that if α ∈ (ρ∗T−1, ρ

∗
T ), so that the α-policy with parameter α is infeasi-

ble for some instance ω ∈ ΩT , then the α-policy with parameter α is also infeasible
for instance θ(ω) ∈ θ(ΩT ). Thereafter, Theorem 4.10 establishes the second equality,
and thus that ρ∗T is the same for the multiple deadline ORMP and the single dead-
line ORMP. The performance of the α-policy on instances in ΩT−1 enters into the
evaluation, and we introduce the following notation for that purpose.

Consider the function ϑ : Ω �→ Ω that removes all work with deadline equal to T .
That is, for any instance ω = (a1(1), a2(1), . . . , aT (T )) ∈ ΩT , ϑ(ω) = (a′′1(1), a′′2(1), . . . ,
a′′T−1(T − 1)), where a′′u(t) = au(t) for all t ∈ {1, . . . , T − 1} and u ∈ {t, . . . , T − 1}.
Note that for any ω ∈ ΩT , ϑ(ω) ∈ ΩT−1. Thus, for any ω ∈ ΩT , the α-policy
prescribes decisions πα(ϑ(ω))(t) = αT−1vT−1(ϑ(ω)t) for ϑ(ω) ∈ ΩT−1. For any in-
stance ω = (a1(1), a2(1), . . . , aT (T )) ∈ ΩT , let ω̃ = (ã1(1), ã2(1), . . . , ãT (T )) ∈ ΩT

be given by ãu(t) = au(t) for all t ∈ {1, . . . , T − 1} and u ∈ {t, . . . , T − 1}, and
ãT (t) = 0 for all t ∈ {1, . . . , T}. Note that ω̃ ≤ ω. Thus, if ηt(r) ≥ 0 for all
r, t ≥ 0, then v∗(ϑ(ω)) = v∗(ω̃) ≤ v∗(ω), and vT−1(ϑ(ω)t) = vT (ω̃t) ≤ vT (ωt) for all
t ∈ {1, . . . , T − 1}.

For any r ∈ R
T
+, let rT−1 denote the first T − 1 components of r.
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Lemma 4.8. For the ORMP with productivity function ηt(r), any ω ∈ ΩT , and
any r ∈ R

T
+, r ∈ R(θ(ω)), and rT−1 ∈ R(ϑ(ω)) imply that r ∈ R(ω).

Proof. Consider any instance ω = (a1(1), a2(1), . . . , aT (T )), θ(ω) = (a′1(1),
a′2(1), . . . , a′T (T )), and ϑ(ω) = (a′′1(1), a′′2(1), . . . , a′′T−1(T − 1)). Consider any r such
that r ∈ R(θ(ω)) and rT−1 ∈ R(ϑ(ω)). As usual, available work is performed in EDF
order. Let wu(t) ≡ au(1)−qu(1)+au(2)−qu(2)+ · · ·+au(t), w′T (t) ≡ a′T (1)−q′T (1)+
a′T (2)− q′T (2) + · · ·+ a′T (t), and w′′u(t) ≡ a′′u(1)− q′′u(1) + a′′u(2)− q′′u(2) + · · ·+ a′′u(t)
denote the remaining amount of work at time t with deadline u for instances ω, θ(ω),
and ϑ(ω), respectively.

It is shown by induction on t that wu(t) = w′′u(t) and qu(t) = q′′u(t) for all t =

1, . . . , T −1, u = t, . . . , T −1, and w′T (t) =
∑T

u=t wu(t) and q′T (t) =
∑T

u=t qu(t) for all
t = 1, . . . , T . The hypothesis holds for t = 1. Suppose that the hypothesis holds for t.
Note that qt(t) = q′′t (t) = w′′t (t) = wt(t) from the assumption that rT−1 ∈ R(ϑ(ω)).
Then wu(t+ 1) = wu(t)− qu(t) + au(t+ 1) = w′′u(t)− q′′u(t) + a′′u(t+ 1) = w′′u(t+ 1) for
all u = t+1, . . . , T −1. Because available work is performed in EDF order, qu(t+1) =
q′′u(t+ 1) for all u = t+ 1, . . . , T − 1. Also, w′T (t+ 1) = w′T (t)− q′T (t) + a′T (t+ 1) =∑T

u=t wu(t)−∑T
u=t qu(t) +

∑T
u=t+1 au(t+ 1) =

∑T
u=t+1 (wu(t)− qu(t) + au(t+ 1)) =

∑T
u=t+1 wu(t+ 1), and the hypothesis has been established.

Recall that the EDF rule ensures that constraints (2.6), (2.3), and (2.5) are sat-
isfied. Thus, to show that r ∈ R(ω), it remains to verify that solution r satisfies (2.4)
for instance ω. From the assumption that rT−1 ∈ R(ϑ(ω)), it follows that rT−1 sat-
isfies (2.4) for ϑ(ω), and thus it follows from the hypothesis established above that
r satisfies (2.4) for ω, for all t = 1, . . . , T − 1. It remains to be shown that r satis-
fies (2.4) for ω at t = T . From the assumption that r ∈ R(θ(ω)) and the induction
hypothesis, it follows that wT (T ) = w′T (T ) ≤ ηT (r(T )), and thus r satisfies (2.4) for
ω at t = T .

Theorem 4.9. Suppose that the productivity function ηt(r) is nondecreasing. If
the α-policy with parameter α gives an infeasible solution for some instance ω and
a feasible solution for instance ϑ(ω), then the α-policy with parameter α gives an
infeasible solution for instance θ(ω).

Proof. Consider any ω ∈ ΩT . Recall that vT−1(ϑ(ω)t) ≤ vT (ωt), and thus
πα(ϑ(ω))(t) = αvT−1(ϑ(ω)t) ≤ αvT (ωt) = πα(ω)(t), for all t ∈ {1, . . . , T − 1}. From
the assumption that πα(ϑ(ω)) ∈ R(ϑ(ω)) and from feasibility monotonicity, it follows
that πα(ω)T−1 ∈ R(ϑ(ω)). From the assumption that πα(ω) ∈ R(ω) and the con-
trapositive of the result in Lemma 4.8, it follows that πα(ω) ∈ R(θ(ω)). Recall that
vT (θ(ω)t) ≤ vT (ωt), and thus πα(θ(ω))(t) = αvT (θ(ω)t) ≤ αvT (ωt) = πα(ω)(t), for
all t ∈ {1, . . . , T}. It follows from feasibility monotonicity and πα(ω) ∈ R(θ(ω)) that
πα(θ(ω)) ∈ R(θ(ω)). Thus the α-policy with parameter α gives an infeasible solution
for instance θ(ω).

Next, Theorem 4.10 establishes that ρ∗T is the same for the multiple deadline
ORMP and the single deadline ORMP.

Theorem 4.10. Suppose that the productivity function ηt(r) is nondecreasing.
Then

ρ∗T = inf
α≥1

inf
{
ρ ≥ 1 : vπα(ω) ≤ ρv∗(ω) ∀ ω ∈ θ(ΩT )

}
.

That is, to determine ρ∗T (and ρ∗), it is sufficient to consider only the α-policy and
only the instances in θ(ΩT ).
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Proof. Corollary 3.3 established that

ρ∗T = inf
α≥1

inf
{
ρ ≥ 1 : vπα(ω) ≤ ρv∗(ω) ∀ ω ∈ ΩT

}
.

Let

ρθT ≡ inf
α≥1

inf
{
ρ ≥ 1 : vπα(ω) ≤ ρv∗(ω) ∀ ω ∈ θ(ΩT )

}
.

Note that, because θ(ΩT ) ⊂ ΩT , it follows that ρθT ≤ ρ∗T . Also note that, similar to
ρ∗T , ρθT is nondecreasing in T . We show by induction on T that ρθT = ρ∗T . For T = 1,
θ(Ω1) = Ω1, and thus ρθ1 = ρ∗1. Suppose that ρθT−1 = ρ∗T−1. Then ρ∗T−1 = ρθT−1 ≤
ρθT ≤ ρ∗T . Thus, if ρ∗T−1 = ρ∗T , then ρθT = ρ∗T .

Otherwise, if ρ∗T−1 < ρ∗T , then consider any α ∈ (ρ∗T−1, ρ
∗
T ). Then there exists

an ω ∈ ΩT such that the α-policy with parameter α gives an infeasible solution
for instance ω, i.e., πα(ω) ∈ R(ω). Also, the α-policy with parameter α gives a
feasible solution for instance ϑ(ω), i.e., πα(ϑ(ω)) ∈ R(ϑ(ω)), because α > ρ∗T−1 and
ϑ(ω) ∈ ΩT−1. Then it follows from Theorem 4.9 that πα(θ(ω)) ∈ R(θ(ω)), and thus
vπα(θ(ω)) = ∞. Hence {ρ ≥ 1 : vπα(ω) ≤ ρv∗(ω) ∀ω ∈ θ(ΩT )} = ∅. Thus by
feasibility monotonicity infα<ρ∗

T
inf{ρ ≥ 1 : vπα(ω) ≤ ρv∗(ω) ∀ω ∈ θ(ΩT )} = ∞.

Next consider any α > ρ∗T . It follows from Theorem 3.2 and feasibility monotonicity
that vπα(ω) = αv∗(ω) for all ω ∈ ΩT , and thus for all ω ∈ θ(ΩT ) ⊂ ΩT . Hence,
noting that v∗(ω) > 0 for some ω ∈ θ(ΩT ), it follows that inf{ρ ≥ 1 : vπα(ω) ≤
ρv∗(ω) ∀ω ∈ θ(ΩT )} = α. Thus ρθT = infα>ρ∗

T
inf{ρ ≥ 1 : vπα(ω) ≤ ρv∗(ω) ∀ω ∈

θ(ΩT )} = infα>ρ∗
T
α = ρ∗T .

Next we show how ρ∗T is given by the optimal value of a linear program for the
ORMP with a linear productivity function.

Theorem 4.10 simplifies the calculation of ρ∗T by establishing that it is sufficient
to consider the single deadline ORMP. Theorem 4.12 further simplifies the calculation
of ρ∗T by establishing that the parameter αT is too small if and only if there exists an
instance ω = (a(1), . . . , a(T )) such that the total amount of resource allocated under

the α-policy, αT
∑T

t=1 vT (ωt), is less than the total amount of work to be performed,∑T
t=1 a(t). Such instances can be identified with a linear program, as shown later.

Theorem 4.12 follows directly from Lemma 4.11.
Lemma 4.11. Suppose that the α-policy with parameter αT gives an infeasible

solution with instance ω′ = (a′(1), . . . , a′(T )) ∈ ΩT . Then there exists an instance
ω = (a(1), . . . , a(T )) such that

αT

T∑

t=1

vT (ωt) <

T∑

t=1

a(t).(4.1)

Proof. Let q′(t) denote the amount of work performed at time t on instance ω′.
Let τ ≡ max{t :

∑t
l=1 q

′(l) =
∑t

l=1 a
′(l)}. Since ω′ is infeasible, τ < T . For t > τ ,

q′(t) = αT vT (ω′t), so if τ = 0, we have obtained the desired inequality with ω = ω′.
If τ > 0, then the part of instance ω′ before τ does not contribute to the solution

being infeasible. Define ω = (a(1), . . . , a(T )) by

a(t) =

{
0 if t ≤ τ,

a′(t) if t > τ.

Note that ω ≤ ω′, so vT (ωt) ≤ vT (ω′t) for all t.
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Since
∑T

t=1 q
′(t) <

∑T
t=1 a

′(t) and
∑τ

t=1 q
′(t) =

∑τ
t=1 a

′(t), it follows that∑T
t=τ+1 q

′(t) <
∑T

t=τ+1 a
′(t). Thus

αT

T∑

t=τ+1

vT (ωt) ≤ αT

T∑

t=τ+1

vT (ω′t) =

T∑

t=τ+1

q′(t) <

T∑

t=τ+1

a′(t) =

T∑

t=τ+1

a(t).

For t ≤ τ , it follows from the definition of ω that vT (ωt) = a(t) = 0. Thus,

αT
∑T

t=1 vT (ωt) <
∑T

t=1 a(t).
Theorem 4.12. Parameter αT for the α-policy is too small (αT < ρ∗T ) if and

only if there exists an instance ω = (a(1), . . . , a(T )) such that αT
∑T

t=1 vT (ωt) <∑T
t=1 a(t). Also,

ρ∗T = inf




ρ ∈ [1,∞) : ρ

T∑

t=1

max
{i∈{1,...,t}}





1

T − i+ 1

t∑

j=i

a(j)






≥
T∑

t=1

a(t) ∀ (a(1), . . . , a(T )) ∈ R
T
+

}
.(4.2)

The α-policy provides the optimal solution with perfect information for the zero
instance ω = (0, . . . , 0). Thus, to determine ρ∗T , one can restrict attention to instances

(a(1), . . . , a(T )) ∈ R
T
+ for which

∑T
t=1 a(t) > 0. It follows from (4.2) that ρ∗T is

determined by instances (a(1), . . . , a(T )) ∈ R
T
+ that minimize

T∑

t=1

max
{i∈{1,...,t}}





1

T − i+ 1

t∑

j=i

a(j)
∑T

k=1 a(k)




 .

It follows that one can restrict attention to instances (a(1), . . . , a(T )) ∈ R
T
+ for which∑T

t=1 a(t) = 1.
Corollary 4.13. The optimal competitive ratio ρ∗T for the ORMP can be cal-

culated by solving the following linear program (LP) with decision variables a(t) and
x(t), t ∈ {1, . . . , T}:

(LP) Minimize
T∑

t=1

x(t)

subject to

T∑

t=1

a(t) = 1,

x(t) ≥ 1

T − i+ 1

t∑

j=i

a(j) ∀ t ∈ {1, . . . , T}, ∀ i ∈ {1, . . . , t},(4.3)

a(t) ≥ 0 ∀ t ∈ {1, . . . , T}.
Proof. In an optimal solution (a∗, x∗) of the LP, a∗ = (a∗(1), . . . , a∗(T )) represents

a worst-case instance of length T for the α-policy, and each x∗(t) represents the
corresponding value of vT (a∗t). Also, it follows from (4.2) that

ρ∗T = inf

{
ρ ∈ [1,∞) : ρ

T∑

t=1

x∗(t) ≥ 1

}
.
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Fig. 4.1. Incidence of active constraints at optimality for T = 50.

That is, ρ∗T = max{1, 1/∑T
t=1 x

∗(t)}. Actually, ρ∗T = 1/
∑T

t=1 x
∗(t), as shown next.

It is easily checked that (a, x) with a(t) = 1/T and x(t) = t/T 2 is a feasible solution for

the LP. Thus
∑T

t=1 x
∗(t) ≤ ∑T

t=1 t/T
2 = (1 + 1/T )/2. Hence ρ∗T = 1/

∑T
t=1 x

∗(t) ≥
2/(1 + 1/T ) ≥ 1.

There are 2T decision variables, but quadratically many constraints, because of
the T (T + 1)/2 allocation constraints (4.3). As the number of periods T increases,
working with the full LP becomes prohibitive, in terms of memory requirements as
well as computation times. Fortunately, most of the allocation constraints are inactive
at an optimal solution, which suggests that a cutting plane method may provide an
effective solution approach. To determine a good initial set of constraints, we analyzed
the active allocation constraints for the instance with T = 50. In Figure 4.1, each
grid cell (t, i) corresponds to an allocation constraint from (4.3:t, i), and each of the
black dots shows an active allocation constraint at optimality.

Let γ(t) ≡ arg max{i∈{1,...,t}}{
∑t

j=i a(j)/(T − i + 1)}. Then the black dots in
Figure 4.1 also can be viewed as a map of γ(t) versus t. (Note that γ(t) is a set valued
function.) Although the precise pattern of γ(t) versus t is quite complicated, it does
follow a crude pattern. For 1 ≤ t ≤ δT ≈ T/3, γ(t) = 1. This means that for the
first approximately T/3 time periods t, the optimum value vT (ωt) of the truncated
instance ωt is the amount of resource required to do all the work that has arrived
since the first time period. For larger t, the slightly smaller amount of work that
has arrived since a later time period γ(t), divided by the smaller value T − γ(t) + 1,
provides a larger bound on the required resource. As t → T , the value of γ(t) → T
also. This means that in a worst-case instance, so much work arrives in the last time
periods that the amount of resource required is determined by the few most recent
work arrivals only.

By estimating δ and lower and upper bounds on γ(t), we extrapolated the pattern
in Figure 4.1 to larger values of T and thereby identified relatively small subsets of
allocation constraints, which we hoped would contain all the active allocation con-
straints for an optimal solution. We solved the relaxed LP. Then we checked the
remaining allocation constraints to see if our guess was correct. If not, we added
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Table 4.1
Values of ρ∗T for the ORMP.

T ρ∗T
1 1
2 4/3
3 3/2
4 44/27
5 1.71329
6 1.77778
7 1.82765
8 1.86880
9 1.90547

10 1.93576
25 2.14951
50 2.26470
75 2.31800

100 2.35061
200 2.41585
300 2.44663
400 2.46592
500 2.47956
750 2.501833

all the violated allocation constraints that were initially left out, and repeated the
procedure. For T ≤ 200, no cut generation was necessary, but for T > 200, several
rounds of cut generation were needed prior to finding the optimal solution.

Table 4.1 gives the values of ρ∗T for some values of T , as determined by the LP.

4.1.3. Asymptotic behavior. Sometimes it is interesting to determine ρ∗ =
supβ∈B ρ

∗
β . Thus, for the ORMP, we are interested in ρ∗ = supT∈Z+

ρ∗T . As pointed
out in section 2.2, ρ∗T is nondecreasing in T , and thus ρ∗ = limT→∞ ρ∗T . It is convenient
to study ρ∗ with a continuous time model for the ORMP, as in Kleywegt et al. [14].
Also, by Theorem 4.10, to determine ρ∗, it is sufficient to consider the single deadline
version of the ORMP.

In the continuous time model, t ∈ [0, 1]. An instance is given by an integrable
function a : [0, 1] �→ [0,∞), with a(t) denoting the rate at which work (with deadline 1)

arrives at time t. Let Ω denote the set of all such instances. Thus A(t) ≡ ∫ t
0
a(τ) dτ

is the total amount of work that has arrived by time t. A solution is given by an
integrable function r : [0, 1] �→ [0,∞), with r(t) denoting the rate at which resources
are allocated at time t. Let W (t) denote the amount of unfinished work at time t.
Thus W satisfies the differential equation

dW

dt
(t) =

{
a(t)− r(t) if W (t) > 0,
max{a(t)− r(t), 0} if W (t) = 0

with boundary condition W (0) = 0. A solution r is feasible for an instance a if

W (1) = 0, for which it is necessary that
∫ 1

0
a(t) dt ≤ ∫ 1

0
r(t) dt. The value of a

solution r for an instance a is supt∈[0,1] r(t) if r is feasible for a, and the value is ∞
if r is not feasible for a. Algorithms are defined similar to those for the discrete time
ORMP. It is easy to verify that, for any instance a, the set R(a) of feasible solutions
is convex, and it will follow from Theorem 5.2 that it is sufficient to restrict attention
to deterministic algorithms.
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For any instance a, the optimal value v∗(a) with perfect information is given by

v∗(a) = sup
γ∈[0,1)

1

1− γ
∫ 1

γ

a(t) dt.

As before, at denotes the instance a truncated at time t, and the optimal value v∞(at)
with perfect information among all completions of truncated instance at is given by

v∞(at) = sup
γ∈[0,t)

1

1− γ
∫ t

γ

a(x) dx = sup
γ∈[0,t)

A(t)−A(γ)

1− γ ≡ sup
γ∈[0,t)

ft(γ).

The α-policy allocates resource at rate

rα(t) = αv∞(at).(4.4)

For the α-policy with parameter α to be feasible, it is necessary that

∫ 1

0

a(t) dt ≤
∫ 1

0

rα(t) dt = α

∫ 1

0

v∞(at) dt

for all instances a. Suppose the α-policy with parameter α∞ gives an infeasible
solution with instance a′, that is, W ′(1) > 0. Let τ ≡ sup{t ∈ [0, 1] : W ′(t) = 0}.
Let

a(t) =

{
0 if t ∈ [0, τ),
a′(t) if t ∈ [τ, 1].

Then, similar to Lemma 4.11, it follows that

α∞
∫ 1

0

v∞(at) dt <

∫ 1

0

a(t) dt.

Thus, for the α-policy with parameter α to be feasible, it is necessary and sufficient
that

∫ 1

0

a(t) dt ≤ α

∫ 1

0

v∞(at) dt(4.5)

for all instances a. Therefore

ρ∗ = inf

{
ρ ∈ [1,∞) : ρ

∫ 1

0

sup
γ∈[0,t)

1

1− γ
∫ t

γ

a(y) dy dt ≥
∫ 1

0

a(t) dt ∀ a ∈ Ω

}
.

(4.6)

Thus ρ∗ can be calculated by solving the following optimal control problem with
integrable controls a(t) and x(t), t ∈ [0, 1]:

Minimize

∫ 1

0

x(t) dt

subject to

∫ 1

0

a(t) dt = 1

x(t) ≥ 1

1− γ
∫ t

γ

a(y) dy ∀ t ∈ [0, 1], ∀ γ ∈ [0, t),

a(t) ≥ 0 ∀ t ∈ [0, 1].(4.7)
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Rewriting (4.5) gives

ρ∗ ≥
∫ 1

0
a(t) dt

∫ 1

0
v∞(at) dt

(4.8)

for all instances a such that
∫ 1

0
a(t) dt > 0. To obtain a lower bound on ρ∗, one can

substitute particular instances a into (4.8). Consider instances a : [0, 1] �→ [0,∞) that
are continuous and nondecreasing. Consider any continuous nondecreasing extension
a : (−∞, 1] �→ [0,∞), so that limt→−∞ a(t) = 0. Then, for any t ∈ (0, 1), it follows
from a being continuous that ft is differentiable, and it follows from a being nonde-
creasing that ft is at first nondecreasing and then nonincreasing on (−∞, t), and ft
attains a maximum at a point γ(t) ∈ (−∞, t), where f ′t(γ) = 0. That is, for any
t ∈ (0, 1), γ(t) is a solution of

A(t) = A(γ) + (1− γ)a(γ) ≡ g(γ).(4.9)

It follows from a being nondecreasing that g is nondecreasing. Also, A is nonde-
creasing, and thus, although the solution of (4.9) is not necessarily unique, γ can
be chosen to be nondecreasing. Note that γ(t) > 0 for t sufficiently close to 1.
If γ(t) < 0 for some t ∈ (0, 1), let t′ be a crossing point of γ(t) = 0, that is,
γ(t) ≤ 0 for all t < t′ and γ(t) ≥ 0 for all t > t′; otherwise, let t′ ≡ 0. Then,
for all t < t′, v∞(at) = supγ∈[0,t) ft(γ) = ft(0) = A(t). Also, for all t > t′,
v∞(at) = ft(γ(t)) = [A(t)−A(γ(t))]/[1− γ(t)] = a(γ(t)). Hence,

∫ 1

0

v∞(at) dt =

∫ t′

0

A(t) dt+

∫ 1

t′
a(γ(t)) dt.

Therefore,

ρ∗ ≥
∫ 1

0
a(t) dt

∫ t′
0
A(t) dt+

∫ 1

t′ a(γ(t)) dt
.

For example, consider a linear arrival rate a(t) = t. Then A(t) = t2/2, γ(t) =

1−√1− t2, t′ = 0, and thus ρ∗ ≥ (
∫ 1

0
t dt)/(

∫ 1

0

(
1−√1− t2) dt) = 0.5/(1− π/4) ≈

2.3298 (Kleywegt et al. [14]). As another example, one can consider a(t; k) = ek(1−t)
1/k

.
In the context of the HLBP, Bar-Noy, Freund, and Naor [6] arrive at the same optimal
control problem to determine ρ∗HLBP . Using a function similar to a(t; k) they prove
a lower bound ρ∗HLBP ≥ e. They also showed that this bound is tight by demon-
strating an algorithm with a competitive ratio of e in the continuous model. Thus,
ρ∗ = limT→∞ ρ∗T = e for the single deadline version of the ORMP. Applying Theo-
rem (4.10), we conclude that the same ρ∗ value applies to the ORMP with multiple
deadlines.

Convergence to the limit e is quite slow, as shown earlier in Table 4.1. For
example, values such as ρ∗50 ≈ 2.26470 and ρ∗100 ≈ 2.35061 offer considerably better
performance than e.

4.2. HLBP. In this section we present optimality results for the HLBP; we
investigate the application of the α-policy to the HLBP, including the calculation of
the optimal competitive ratios and optimal parameters for the α-policy, ρ∗T,m and
ρ∗. (The problem parameter β of interest for the HLBP is (T,m).) We show that if
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T ≥ m, then ρ∗T,m for the HLBP is equal to ρ∗m for the ORMP, but if T < m, then
ρ∗T,m for the HLBP can be strictly between ρ∗T and ρ∗m for the ORMP.

As before, for a given instance ω ∈ ΩT,m, the decisions under the α-policy are
given by πα(ω)(t) ≡ αT,mvT,m(ωt). To implement the α-policy, one has to determine
the optimal value of αT,m, that is, ρ∗T,m, as well as vT,m(ωt). These two issues are
addressed next.

4.2.1. Computing vT,m(ωt). Similar to the ORMP, it is easy to compute
vT,m(ωt) ≡ infω∈ΩT,m(ωt) v

∗(ω) for the HLBP. The optimal value v∗(ω) with per-
fect information can be computed for any ω using Proposition 4.14. Next, for any
partial instance ωt, the best instance ω̃ ∈ ΩT,m that starts with ωt can be determined,
and vT,m(ωt) can be computed, as shown in Proposition 4.16.

Proposition 4.14. For any instance ω = (a(1), . . . , a(T )) of the HLBP, the
optimal value v∗(ω) with perfect information is given by

v∗(ω) = max
{i∈{1,...,m}}





1

m− i+ 1

T∑

t=1

m∑

j=i

aj(t)




 .

The proof of Proposition 4.14 is similar to that of Proposition 4.1 and is omitted.
Corollary 4.15. The optimal value v∗(ω) with perfect information for the

HLBP is nondecreasing; that is, for any ω, ω′ ∈ ΩT,m with ω ≤ ω′, it holds that
v∗(ω) ≤ v∗(ω′).

It follows from Corollary 4.15 that for any partial instance ωt = (a(1), . . . , a(t)),
instance (a(1), . . . , a(t), 0, . . . , 0) has the best optimal value v∗(ω̃) with perfect infor-
mation among all ω̃ ∈ ΩT,m that start with ωt. This leads to the following result,
which lets us compute vT,m(ωt) ≡ inf ω̃∈ΩT,m(ωt) v

∗(ω̃).
Proposition 4.16. For any partial instance ωt = (a(1), . . . , a(t)) ∈ Ωt

T,m of the

HLBP, vT,m(ωt) = v∗(a(1), . . . , a(t), 0, . . . , 0). That is,

vT,m(ωt) = max
{i∈{1,...,m}}





1

m− i+ 1

t∑

τ=1

m∑

j=i

aj(τ)




 .

Note that vT1,m(ωt) = vT2,m(ωt) for any T1, T2 ≥ t and any ωt. Corollary 4.15
and Proposition 4.16 lead to the following result, which is used to compute ρ∗T,m.

Corollary 4.17. For any partial instances ωt1, ω
t
2 ∈ Ωt

T,m with ωt1 ≤ ωt2, it

holds that vT,m(ωt1) ≤ vT,m(ωt2). Specifically, for any instance ω ∈ ΩT,m, vT,m(ωt)
is nondecreasing in t. It follows that, for any α-policy and any instance ω ∈ ΩT,m,
πα(ω)(t) ≡ αT,mvT,m(ωt) is nondecreasing in t.

4.2.2. Optimal parameter values. Next we address the determination of the
optimal value of αT,m. For any ω ∈ Ω, the feasible region R(ω) is determined by
linear constraints (2.8), (2.9), and (2.10). Thus R(ω) is a polyhedron, and is closed.
Therefore it follows from Corollary 3.4 and Proposition 3.5 that the optimal value of
αT,m is ρ∗T,m and that the α-policy with parameter αT,m = ρ∗T,m is feasible and optimal
among all deterministic online algorithms. (It is shown in section 5.2, Proposition 5.4,
that the α-policy with parameters αT,m = ρ∗T,m is optimal among all randomized
online algorithms.)

Next we show how ρ∗T,m is given by the optimal value of an integer program and
by a linear program in the case with T ≥ m. For any instance ω = (a(1), . . . , a(T )) ∈
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ΩT,m and any machine i, let

τ(i) ≡ max




t :

i∑

j=1

aj(t) > 0






denote the last time that work arrives for which machine i is eligible. τ(i) = 0 if there
is no such time. Then the maximum amount of work that can be assigned to machine
i under the α-policy is αT,mvT,m(ωτ(i)), and thus the maximum amount of work
that can be assigned under the α-policy is αT,m

∑m
i=1 vT,m(ωτ(i)). In Lemma 4.18

we show that, if the parameter αT,m is too small, then there exists an instance ω =
(a(1), . . . , a(T )) such that the maximum amount of work that can be assigned under
the α-policy, αT,m

∑m
i=1 vT,m(ωτ(i)), is less than the total amount of work to be

performed,
∑T

t=1

∑m
i=1 ai(t).

Lemma 4.18. Suppose that the α-policy with parameter αT,m gives an infeasible
solution with instance ω′ ∈ ΩT,m. Then there exists an instance ω = (a(1), . . . , a(T )) ∈
ΩT,m such that

αT,m

m∑

i=1

vT,m(ωτ(i)) <

T∑

t=1

m∑

i=1

ai(t),(4.10)

where τ(i) ≡ max{t :
∑i

j=1 aj(t) > 0}.
Proof. Instance ω is constructed from ω′ by discarding work that does not con-

tribute to infeasibility. This is done by inductively constructing a sequence of instances
ωm, . . . , ω1. Let aij(t) denote the amount of work in instance ωi that arrives at time

t that requires at least machine j. As before, ωi,t denotes the first t components of
instance ωi, and vT,m(ωi,0) ≡ 0. Let qij(t) denote the amount of work assigned to

machine j at time t under the α-policy with parameter αT,m and for instance ωi. Let

τ i(j) ≡ max{t :
∑j

k=1 a
i
k(t) > 0} denote the last time in instance ωi that work ar-

rives for which machine j is eligible, with τ i(j) ≡ 0 if
∑T

t=1

∑j
k=1 a

i
k(t) = 0. We know

that
∑T

t=1

∑m
j=1 q

′
j(t) <

∑T
t=1

∑m
j=1 a

′
j(t), so we will create a sequence of instances

where
∑T

t=1 qj(t) = αT,mvT,m(ωτ(j)) for each j = m, . . . , 1. Specifically, it is shown
that

T∑

t=1

i−1∑

j=1

qij(t) + αT,m

m∑

j=i

vT,m(ωi,τ
i(j)) <

T∑

t=1

m∑

j=1

aij(t)(4.11)

for all i = m, . . . , 1, which implies (4.10) with ω = ω1.
Let

t(m) ≡ min




t
′ :

m∑

j=1

q′j(t
′) <

m∑

j=1

a′j(t
′)




 .

Such a t′ must exist because the α-policy with parameter αT,m gives an infeasible
solution with instance ω′.

Since at time t(m) the allocation r(t(m)) is insufficient to complete all work
available at t(m), it must be that machine m is being “fully used”; i.e., q′m(t(m)) =

αT,mvT,m(ω′t(m))−∑t(m)
t=1 q

′
m(t).
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Thus,

t(m)∑

t=1

m−1∑

j=1

q′j(t) + αT,mvT,m(ω′t(m)) <

t(m)∑

t=1

m∑

j=1

a′j(t).

Instance ωm is obtained from ω′ by discarding work arriving after time t(m); that is,
amj (t) = 0 for all j and all t > t(m), and amj (t) = a′j(t) for all j and all t ≤ t(m).
Hence τm(m) = t(m), and

T∑

t=1

m−1∑

j=1

qmj (t) + αT,mvT,m(ωm,τ
m(m)) <

T∑

t=1

m∑

j=1

amj (t),

which shows (4.11) for i = m.
As an induction hypothesis, assume that (4.11) holds for some i ∈ {2, . . . ,m}.

Let

t(i− 1) ≡ max

{
t :

t∑

τ=1

qii−1(τ) = αT,mvT,m(ωi,t)

}

if such a t exists; otherwise t(i − 1) ≡ 0. Note that t(i − 1) is the latest time that
machine i− 1 did the maximum amount of work it could, so later work that requests
machines i−1 or lower does not contribute to the infeasibility of the instance. Instance
ωi−1 is obtained from ωi by discarding work arriving after time t(i− 1) that requests
machines j ≤ i − 1; that is, ai−1

j (t) = 0 for all j ≤ i − 1 and t > t(i − 1), and

ai−1
j (t) = aij(t) for all other j and t.

In the new instance, machine i − 1 is fully used, so we have
∑T

t=1 q
i−1
i−1(t) =

αT,mvT,m(ωi,t(i−1)). Note that the total amount of work done by machines 1 through
i− 1 was reduced by the amount actually done after time t(i− 1), so we have

T∑

t=1

i−2∑

j=1

qi−1
j (t) + αT,mvT,m(ωi,t(i−1)) =

T∑

t=1

i−1∑

j=1

qij(t)−
T∑

t=t(i−1)+1

i−1∑

j=1

aij(t).

The final ingredients in the proof are inequalities relating vT,m for the various
instances and truncated instances under consideration. Note that ωi−1 ≤ ωi implies
ωi−1,t ≤ ωi,t as well as τ i−1(j) ≤ τ i(j). In addition, we know that τ i−1(i−1) ≤ t(i−1).
Putting all of this together with Corollary 4.17 gives

vT,m(ωi−1,τ i−1(j)) ≤ vT,m(ωi−1,τ i(j)) ≤ vT,m(ωi,τ
i(j))

and

vT,m(ωi−1,τ i−1(i−1)) ≤ vT,m(ωi−1,t(i−1)) ≤ vT,m(ωi,t(i−1)).
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Therefore, we can establish the induction hypothesis as follows:

T∑

t=1

i−2∑

j=1

qi−1
j (t) + αT,m

m∑

j=i−1

vT,m(ωi−1,τ i−1(j))

≤
T∑

t=1

i−2∑

j=1

qi−1
j (t) + αT,mvT,m(ωi,t(i−1)) + αT,m

m∑

j=i

vT,m(ωi,τ
i(j))

=
T∑

t=1

i−1∑

j=1

qij(t)−
T∑

t=t(i−1)+1

i−1∑

j=1

aij(t) + αT,m

m∑

j=i

vT,m(ωi,τ
i(j))

<
T∑

t=1

m∑

j=1

aij(t)−
T∑

t=t(i−1)+1

i−1∑

j=1

aij(t)

=

T∑

t=1

m∑

j=1

ai−1
j (t).

Theorem 4.19. Parameter αT,m for the α-policy is too small (αT,m < ρ∗T,m) if
and only if there exists an instance ω = (a(1), . . . , a(T )) ∈ ΩT,m such that

αT,m
∑m

i=1 vT,m(ωτ(i)) <
∑T

t=1

∑m
i=1 ai(t). Also,

ρ∗T,m = inf




ρ ∈ [1,∞) : ρ

m∑

i=1

max
{j∈{1,...,m}}





1

m− j + 1

τ(i)∑

t=1

m∑

k=j

ak(t)






≥
T∑

t=1

m∑

i=1

ai(t) ∀ (a(1), . . . , a(T )) ∈ R
Tm
+

}
.(4.12)

The α-policy provides the optimal solution with perfect information for the zero
instance ω = (0, . . . , 0). Thus, to determine ρ∗T,m, one can restrict attention to in-

stances (a(1), . . . , a(T )) ∈ R
Tm
+ for which

∑T
t=1

∑m
i=1 ai(t) > 0. It follows from (4.12)

that ρ∗T,m is determined by instances (a(1), . . . , a(T )) ∈ R
Tm
+ that minimize

m∑

i=1

max
{j∈{1,...,m}}





1

m− j + 1

τ(i)∑

t=1

m∑

k=j

ak(t)
∑T

t′=1

∑m
i′=1 ai′(t

′)




 .

It is also clear that one can restrict attention to instances (a(1), . . . , a(T )) ∈ R
Tm
+ for

which
∑T

t=1

∑m
i=1 ai(t) = 1.

Corollary 4.20. The optimal competitive ratio ρ∗T,m for HLBP can be calculated
by solving the following integer linear program (IP) with decision variables ai(t), x(t),
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yi, and zi(t), i ∈ {1, . . . ,m}, t ∈ {1, . . . , T}:

(IP) Minimize

m∑

i=1

yi

subject to

T∑

t=1

m∑

i=1

ai(t) = 1,

x(t) ≥ 1

m− i+ 1

t∑

τ=1

m∑

j=i

aj(τ) ∀ i, ∀ t,

yi ≥ x(t) + zi(t)− 1 ∀ i, ∀ t,

zi(t) ≥
i∑

j=1

aj(t) ∀ i, ∀ t,

ai(t) ≥ 0 ∀ i, ∀ t,
yi ≥ 0 ∀ i,

zi(t) ∈ {0, 1} ∀ i, ∀ t.
Proof. In an optimal solution (a∗, x∗, y∗, z∗) of the IP, a∗ = (a∗(1), . . . , a∗(T ))

represents a worst-case instance in ΩT,m for the α-policy. Without loss of generality
we can assume that x∗(t) = vT,m(a∗(t)), which is at most 1 for all t. It follows from
Corollary 4.17 that x∗(t) is nondecreasing in t, and thus each y∗i is equal to x∗(t) for
the largest value of t for which z∗i (t) = 1; that is, y∗i represents the corresponding
value of vT,m(a∗(τ(i))). Also, it follows from (4.12) that

ρ∗T,m = inf

{
ρ ∈ [1,∞) : ρ

m∑

i=1

y∗i ≥ 1

}
.

That is, ρ∗T,m = max {1, 1/∑m
i=1 y

∗
i }. Actually, ρ∗T,m = 1/

∑m
i=1 y

∗
i , as shown next. If

T ≥ m, then it is easily checked that (a, x, y, z) with

ai(i) = 1/m for i ∈ {1, . . . ,m},
ai(t) = 0 otherwise,

x(t) =

{
t/m2 for t ≤ m,
1/m for t ≥ m,

yi = i/m2 for i ∈ {1, . . . ,m},
zi(t) =

{
1 for t ≤ i,
0 for t > i

is a feasible solution for the IP. Thus
∑m

i=1 y
∗
i ≤

∑m
i=1 i/m

2 = (1+1/m)/2. Similarly,
if T < m, then it is easily checked that (a, x, y, z) with

am−T+t(t) = 1/T for t ∈ {1, . . . , T},
ai(t) = 0 otherwise,

x(t) = t/T 2 for t ∈ {1, . . . , T},
yi =

{
0 for i ∈ {1, . . . ,m− T},
(i−m+ T )/T 2 for i ∈ {m− T + 1, . . . ,m},

zi(t) =

{
1 for t ≤ i−m+ T ,
0 for t > i−m+ T
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Table 4.2
Values of ρ∗T,m for the HLBP.

T m ρ∗T,m

2 4 4/3
2 5 4/3
2 6 4/3
3 4 3/2
3 5 1.511629
3 6 1.511629
3 9 1.520549
3 14 1.522063
3 19 1.522063
4 5 1.629631
4 6 1.629631
4 7 1.630138
4 8 1.630138

is a feasible solution for the IP. Thus
∑m

i=1 y
∗
i ≤

∑m
i=m−T+1(i − m + T )/T 2 =

∑T
t=1 t/T

2 = (1 + 1/T )/2. Therefore ρ∗T,m = 1/
∑m

i=1 y
∗
i ≥ 2/(1 + 1/min{T,m})

≥ 1.
Table 4.2 gives the values of ρ∗T,m for some values of T and m, as determined by

the IP.
There are a total of 2Tm + T + m decision variables and 3Tm + 1 constraints,

so the IP grows fairly rapidly. Next it is shown that if T ≥ m, then ρ∗T,m for the
HLBP is equal to ρ∗m for the ORMP, which can be computed with the LP given in
section 4.1.2. First, Lemma 4.21 shows that, to determine ρ∗T,m, one can restrict
attention to instances in which at most one machine is requested in each time period
and in which machines are requested from least versatile to most versatile.

Lemma 4.21. Suppose that the α-policy with parameter αT,m gives an infeasible
solution with instance ω′ = (a′(1), . . . , a′(T )) ∈ ΩT,m. Then there exists an instance
ω̂ = (â(1), . . . , â(λ)) ∈ Ωλ,m such that the following hold:

1. For each t, let m′(t) ≡ min {i : a′i(t) > 0} (ignoring all t such that
∑

i a
′
i(t) =

0). Then λ ≡ |{m′(1), . . . ,m′(T )}| ≤ min{T,m}.
2. For all t ∈ {1, . . . , λ}, âi(t) > 0 for exactly one i.
3. Let m̂(t) ≡ min {i : âi(t) > 0} ; that is, m̂(t) is the unique i such that âi(t) >

0. Then m̂ is strictly increasing.
4. We have

αT,m

m∑

i=1

vλ,m(ω̂τ̂(i)) <

λ∑

t=1

âm̂(t)(t),

where τ̂(i) ≡ max{t :
∑i

j=1 âj(t) > 0}.
Proof. It was shown in Lemma 4.18 that if the α-policy with parameter αT,m

gives an infeasible solution with instance ω′ ∈ ΩT,m, then there exists an instance
ω = (a(1), . . . , a(T )) ∈ ΩT,m such that

αT,m

m∑

i=1

vT,m(ωτ(i)) <

T∑

t=1

m∑

i=1

ai(t).

For each t, let m(t) ≡ min {i : ai(t) > 0} denote the least versatile machine requested
at time t (simply ignore all t such that

∑m
i=1 ai(t) = 0). For each t, let ãm(t)(t) ≡
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∑m
i=1 ai(t), and ãi(t) = 0 for all i = m(t); that is, at each time t, all the work

requests machine m(t). Note that, for each i, τ̃(i) = τ(i), and for all i and all t,∑m
j=i ãj(t) ≤

∑m
j=i aj(t). Thus it follows that vT,m(ω̃τ̃(i)) ≤ vT,m(ωτ(i)) for all i.

Also,
∑T

t=1

∑m
i=1 ãi(t) =

∑T
t=1

∑m
i=1 ai(t), from which we have

αT,m

m∑

i=1

vT,m(ω̃τ̃(i)) <

T∑

t=1

m∑

i=1

ãi(t).

It follows from the construction of ω̃ that m̃(t) ≡ min {i : ãi(t) > 0} = m′(t);
that is, m̃(t) = m′(t) is the unique i such that ãi(t) > 0. For each t ∈ {1, . . . , λ}, let

i(t) be the tth smallest element in {m̃(1), . . . , m̃(T )}. Let âi(t)(t) ≡
∑T

τ=1 ãi(t)(τ), and
âi(t) = 0 for all i ∈ {1, . . . ,m} and all t ∈ {1, . . . , λ} with i = i(t). Thus m̂(t) = i(t),
which is by definition strictly increasing in t. For any i, j ∈ {1, . . . ,m},
τ̂(i)∑

t=1

m∑

k=j

âk(t) =

λ∑

t=1

i∑

k=j

âk(t) =

T∑

t=1

i∑

k=j

ãk(t) =

τ̃(i)∑

t=1

i∑

k=j

ãk(t) ≤
τ̃(i)∑

t=1

m∑

k=j

ãk(t)

and thus

vλ,m(ω̂τ̂(i)) = max
{j∈{1,...,m}}





1

m− j + 1

τ̂(i)∑

t=1

m∑

k=j

âk(t)






≤ max
{j∈{1,...,m}}





1

m− j + 1

τ̃(i)∑

t=1

m∑

k=j

ãk(t)






= vT,m(ω̃τ̃(i)).

Therefore

αT,m

m∑

i=1

vλ,m(ω̂τ̂(i)) ≤ αT,m
m∑

i=1

vT,m(ω̃τ̃(i)) <

T∑

t=1

m∑

i=1

ãi(t) =

λ∑

t=1

âm̂(t)(t).

It follows from Lemma 4.21 that if the α-policy with parameter αT,m gives
an infeasible solution with instance ω′ ∈ ΩT,m, then there exists an instance ω =
(a(1), . . . , a(m)) ∈ Ωm,m such that ai(t) = 0 for all i = t, and

αT,m

m∑

i=1

vm,m(ωi) <

m∑

i=1

ai(i).

This observation leads to Theorem 4.22.
Theorem 4.22. Parameter αT,m, with T ≥ m, for the α-policy is too small

(αT,m < ρ∗T,m) if and only if there exists an instance ω = (a(1), . . . , a(m)) ∈ Ωm,m

such that ai(t) = 0 for all i = t, and αT,m
∑m

i=1 vm,m(ωi) <
∑m

i=1 ai(i). Also, for
T ≥ m,

ρ∗T,m = ρ∗m,m = inf




ρ ∈ [1,∞) : ρ

m∑

i=1

max
{j∈{1,...,i}}





1

m− j + 1

i∑

k=j

a(k)






≥
m∑

i=1

a(i) ∀ (a(1), . . . , a(m)) ∈ R
m
+




 .(4.13)
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Corollary 4.23 follows by comparing (4.13) and (4.2).
Corollary 4.23. For T ≥ m, ρ∗T,m for the HLBP is equal to ρ∗m for the ORMP,

which can be computed with the LP.

4.2.3. Asymptotic behavior. For the HLBP, we are interested in ρ∗ =
supT∈Z+,m∈Z+

ρ∗T,m, as well as ρ∗∞,m ≡ supT∈Z+
ρ∗T,m, and ρ∗T,∞ ≡ supm∈Z+

ρ∗T,m.
As pointed out in section 2.3, ρ∗T,m is nondecreasing in T and m, and thus ρ∗ =
limm→∞ ρ∗m,m. Thus it follows from Corollary 4.23 that ρ∗ for the HLBP is equal
to ρ∗ for the ORMP, which is equal to e. It also follows that supT∈Z+

ρ∗T,m =
limT→∞ ρ∗T,m = ρ∗m,m, which is equal to ρ∗m for the ORMP. Also, supm∈Z+

ρ∗T,m =
limm→∞ ρ∗T,m; however, this asymptotic behavior is not well understood yet, except
for the bounds limm→∞ ρ∗T,m ≥ ρ∗T for the ORMP, and limm→∞ ρ∗T,m ≤ ρ∗ = e. By
using a discrete time, continuous machine model of the HLBP, it can be shown that
limm→∞ ρ∗2,m = ρ∗2 = 4/3. It also follows from a comparison of Tables 4.1 and 4.2 that
limm→∞ ρ∗T,m > ρ∗T for some T . We conjecture that limm→∞ ρ∗T,m < limm→∞ ρ∗T+1,m,
which would imply that limm→∞ ρ∗T,m < ρ∗ = e for all T .

4.3. Generalizations for the OMMP. In this section we briefly show how
some of the results in section 4.1 for the ORMP can be generalized for the OMMP.

Let θ : Ω �→ Ω be any function such that for any ω ∈ ΩT , θ(ω) ∈ ΩT . For any
partial instance θ(ω)t, let Ωθ

T (θ(ω)t) denote the set of all instances in θ(ΩT ) with first
t elements equal to θ(ω)t. Let

vθT (θ(ω)t) ≡ inf
ω∈Ωθ

T
(θ(ω)t)

v∗(ω).

Assume that vθT (θ(ω)t) ≤ vT (ωt) for all t ∈ {1, . . . , T}.
Let ϑ : Ω �→ Ω be any function such that for any ω ∈ ΩT , ϑ(ω) ∈ ΩT−1. For

any partial instance ϑ(ω)t, t ≤ T − 1, let Ωϑ
T (ϑ(ω)t) denote the set of all instances in

ϑ(ΩT ) with first t elements equal to ϑ(ω)t. Let

vϑT (ϑ(ω)t) ≡ inf
ω∈Ωϑ

T
(ϑ(ω)t)

v∗(ω).

Assume that vϑT (ϑ(ω)t) ≤ vT (ωt) for all t ∈ {1, . . . , T − 1}.
Thus both θ and ϑ map an instance ω to instances θ(ω) and ϑ(ω) that are

“smaller” than ω. As before, for any r ∈ R
T
+, rT−1 denotes the first T − 1 com-

ponents of r.
Definition 4.24 (extensibility property). We say that (R, θ, ϑ) has the extensi-

bility property if, for any ω ∈ ΩT and any r ∈ R
T
+, r ∈ R(θ(ω)) and rT−1 ∈ R(ϑ(ω))

imply that r ∈ R(ω).
Intuitively, the extensibility property states that although instances θ(ω) and

ϑ(ω) are smaller than ω, together the feasibility of a solution r for θ(ω) and rT−1 for
ϑ(ω) are sufficient to establish the feasibility of r for ω.

Theorem 4.25 follows along the lines of Theorem 4.9.
Theorem 4.25. Suppose that (R, θ, ϑ) has the extensibility property. If the α-

policy with parameter α gives an infeasible solution for some instance ω and a feasible
solution for instance ϑ(ω), then the α-policy with parameter α gives an infeasible
solution for instance θ(ω).

Next it is shown that if (R, θ, ϑ) has the extensibility property, then to determine
ρ∗T , it is sufficient to consider only the instances in the image θ(ΩT ) of θ.
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Theorem 4.26. Suppose that (R, θ, ϑ) has the extensibility property and that ρ∗T
is nondecreasing in T . Then

ρ∗T = inf
α≥1

inf
{
ρ ≥ 1 : vπα(ω) ≤ ρv∗(ω) ∀ ω ∈ θ(ΩT )

}
.

That is, to determine ρ∗T (and ρ∗), it is sufficient to consider only the α-policy and
only the instances in θ(ΩT ).

5. Randomized algorithms. So far we have analyzed only deterministic algo-
rithms. However, for some problems, randomized algorithms can have better competi-
tive ratios than deterministic algorithms (Motwani and Raghavan [16] and Hoogeveen
and Vestjens [11]), and we investigate that possibility here. First, we show that a ran-
domized algorithm can have better competitive ratios for the OMMP than any deter-
ministic algorithm. Second, we show that if the feasible set R(ω) is convex for all ω,
then randomized algorithms do not have better competitive ratios than deterministic
algorithms.

5.1. Randomized algorithms may have better competitive ratios. We
give an example of an OMMP for which a randomized algorithm has a better com-
petitive ratio than any deterministic algorithm. The example is for an ORMP with
strictly convex productivity function η.

Proposition 5.1. Consider the single deadline ORMP with a stationary produc-
tivity function of the form ηt(r) = crp, c > 0, p > 1, for all t. For this problem there
exists a randomized algorithm π ∈ ΠRO such that vπ(ω) < vπα(ω) for every ω ∈ Ω2,
ω > 0.

The idea is to choose a randomized algorithm π that prescribes almost the same
decisions as the α-policy, except that it randomly chooses to do ±ε extra work in
the first time period and ∓ε extra work in the second time period, where ε is a
sufficiently small value. The solution is still feasible since the total amount of work
performed is the same, and the maximum amount of work performed will be equal
to the maximum amount under the α-policy, ∓ε. When one takes η−1 to determine
the amount of resource required to perform the work, and averages over the +ε and
−ε outcomes, one gets a number that is lower than the maximum amount of resource
under the α-policy, due to the strict convexity of η.

5.2. A sufficient condition for optimality of deterministic algorithms.
In this section we present a sufficient condition for the (deterministic online) α-policy
to be optimal among all randomized online algorithms for the OMMP. Thereafter we
apply the result to show that the α-policy is optimal among all randomized online
algorithms for the ORMP with concave productivity functions ηt as well as for the
HLBP.

Theorem 5.2. Suppose that R(ω) is convex for all ω ∈ Ωβ. For any algorithm
π ∈ ΠRO, if ρπβ < ∞, then the α-policy with parameter αβ = ρπβ achieves the same
competitive ratio, ρπα

β = ρπβ.
Proof. We show that the α-policy with parameter αβ = ρπβ leads to feasible

solutions for all instances ω ∈ Ωβ by showing that πα(ω)(t) ≥ E[π(ω)(t)] for all
ω ∈ Ωβ and all t. For this, we mimic the first part of the proof of Theorem 3.2,
replacing π(ω)(t) with E[π(ω)(t)].

Because ρπβ < ∞, it holds for all ω ∈ Ωβ that π(ω)[R(ω)] = 1; that is, with
probability 1, the solution (π(ω)(1), . . . , π(ω)(T )) is in R(ω). Then, because R(ω) is
convex and E[π(ω)(t)] ≤ ρπβ <∞ for all ω ∈ Ωβ and all t, the solution (E[π(ω)(1)], . . . ,
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E[π(ω)(T )]) is in R(ω). Thus it follows from feasibility monotonicity that
(πα(ω)(1), . . . , πα(ω)(T )) ∈ R(ω); that is, the α-policy with αβ = ρπβ leads to fea-
sible solutions for all ω ∈ Ωβ . Therefore ρπα

β ≤ αβ = ρπβ . Also, it follows from the
definition of the α-policy and ρπβ <∞ that ρπα

β ≥ ρπβ . Thus ρπα

β = ρπβ .
Next we show that the α-policy is optimal among all randomized online algorithms

for the ORMP with quasi-concave productivity functions ηt, as well as for the HLBP.
These results follow directly from applying Theorem 5.2 to the ORMP and the HLBP.
Recall that for any quasi-concave function f : R

n �→ R and for any l, the set {x ∈
R
n : f(x) ≥ l} is convex.
Proposition 5.3. If the ORMP productivity functions ηt are quasi-concave for

all t, then
1. the set of feasible solutions R(ω) is convex for all ω, and
2. the α-policy with parameters αT = ρ∗T is optimal among all randomized online

algorithms.
Proposition 5.4. For the HLBP,
1. the set of feasible solutions R(ω) is convex for all ω, and
2. the α-policy with parameters αT,m = ρ∗T,m is optimal among all randomized

online algorithms.

6. Conclusions and further research. The α-policy theory developed in this
paper is a powerful tool for finding worst-case optimal algorithms for online min-max
problems. It makes analysis easier by turning optimization questions into feasibility
questions and by focusing on properties such as feasibility monotonicity and extensi-
bility.

Our work suggests several questions and possible extensions. For the ORMP, the
solutions to the LP show that the convergence of ρ∗T to ρ∗ is quite slow. It would
be nice to have a theoretical explanation of this. For the HLBP, the asymptotic
values of ρ∗T,m as m→∞ are not known. Given the slow convergence for the ORMP,
and the computational limitations of the IP, it may be difficult to make inferences
about asymptotic values from known values of ρ∗T,m. The HLBP can be generalized
to nonlinear server hierarchies [6] such as rooted in-trees and general partial orders.
Values of ρ∗T,m for these cases are unknown.

If the future is completely unknown, and the decision maker is risk-averse, then
the online criterion optimized in this paper would be quite appropriate. If future
arrivals are known in distribution, the problem would become a Markov decision
process and could be attacked with dynamic programming methods. We suspect that
the most realistic models would involve an intermediate level of information. It would
be interesting to see whether an algorithm which is a blend of the α-policy and other
algorithms could perform well on such a model or whether altogether new algorithms
are needed.

Appendix A. Proof of Lemma 2.2.
Lemma 2.2. If β is known beforehand, then

ρ∗ = sup
β∈B

ρ∗β .

Proof. It remains to be shown that

ρ∗ ≡ inf
π∈ΠRO

sup
β∈B

ρπβ ≤ sup
β∈B

inf
π∈ΠRO

ρπβ ≡ ρ̂.

If ρ̂ =∞, the result follows immediately. Suppose ρ̂ <∞. Thus infπ∈ΠRO ρπβ ≤ ρ̂ <∞
for all β. Hence, for any β ∈ B and any ε > 0, there exists an algorithm πεβ ∈ ΠRO
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such that ρ
πε
β

β < ρ̂+ε. Choose algorithm πε to be the same as algorithm πεβ if ω ∈ Ωβ .

Because β is known in advance, πε is an online algorithm. Then ρπ
ε

β < ρ̂ + ε for all

β ∈ B. Thus supβ∈B ρ
πε

β ≤ ρ̂ + ε, and hence infπ∈ΠRO supβ∈B ρ
π
β ≤ ρ̂ + ε for any

ε > 0. Therefore infπ∈ΠRO supβ∈B ρ
π
β ≤ ρ̂.

Appendix B. Proposition B.1.
Proposition B.1. For the ORMP, if the productivity function ηt is upper semi-

continuous for all t ∈ {1, . . . , T}, then the set of feasible solutions R(ω) is closed for
all instances ω ∈ ΩT .

Proof. Consider any instance ω ∈ ΩT , and any limit point r̂ = (r̂(1), . . . , r̂(T ))
of R(ω). It is to be shown that r̂ ∈ R(ω). Because of the EDF assignment of
resources to work, the only constraint that may be violated by solution r̂ is (2.4).
Consider any ε > 0. Because ηt is upper semicontinuous, there exists δt > 0 such that
ηt(r̂(t)) > ηt(r(t))− ε/T for all r(t) with |r̂(t)− r(t)| < δt. Let δ ≡ min{δ1, . . . , δT }.
There exists rδ = (rδ(1), . . . , rδ(T )) ∈ R(ω) such that ‖r̂ − rδ‖ < δ. Thus |r̂(t) −
rδ(t)| < δt and ηt(r̂(t)) > ηt(r

δ(t)) − ε/T for all t. Let ŵu(t) (wδu(t)) denote the
amount of work with deadline u waiting at time t to be performed under solution r̂
(rδ) and EDF assignment, after the arrivals at time t have taken place, but before
any work has been performed at time t. Let Ŵu(t) ≡ ŵ1(t) + · · · + ŵu(t), and let
W δ
u(t) ≡ wδ1(t)+ · · ·+wδu(t). It is shown by induction on t that Ŵu(t) < W δ

u(t)+εt/T
for all t, u ∈ {1, . . . , T}, and that ŵu(t) = 0 for all u < t. For t = 1, Ŵu(1) =
a1(1) + · · · + au(1) = W δ

u(1) < W δ
u(1) + ε/T . As an induction hypothesis, suppose

that Ŵu(t) < W δ
u(t) + εt/T for all u ∈ {1, . . . , T}. For all u < t, wδu(t) = 0 because

rδ ∈ R(ω), and thus for all u < t, Ŵu(t) < W δ
u(t)+εt/T = εt/T . Hence, for all u < t,

ŵu(t) < εt/T for all ε > 0. Thus ŵu(t) = 0 for all u < t, Ŵu(t) = 0, and Ŵu(t+ 1) =
0 < W δ

u(t + 1) + ε(t + 1)/T for all u < t. Consider u ≥ t. If Ŵu(t) ≤ ηt(r̂(t)), then
Ŵu(t+1) = at+1(t+1)+· · ·+au(t+1) ≤W δ

u(t+1) < W δ
u(t+1)+ε(t+1)/T . Otherwise,

if Ŵu(t) > ηt(r̂(t)), then Ŵu(t+ 1) = Ŵu(t)−ηt(r̂(t)) +at+1(t+ 1) + · · ·+au(t+ 1) <
W δ
u(t)+εt/T −ηt(rδ(t))+ε/T +at+1(t+1)+ · · ·+au(t+1) ≤W δ

u(t+1)+ε(t+1)/T ,
and the induction hypothesis has been established. Hence ŵu(t) = 0 for all u < t,
and therefore r̂ ∈ R(ω).

Appendix C. Proof of Proposition 4.1.
Proposition 4.1. For any instance ω = (a(1), . . . , a(T )) of the ORMP with non-

decreasing productivity function ηt(r), the optimal value v∗(ω) with perfect informa-
tion is given by

v∗(ω) = inf

{
r ≥ 0 :

j∑

t=i

ηt(r) ≥
j∑

t=i

j∑

u=t

au(t) ∀ i, j ∈ {1, . . . , T}, i ≤ j
}
,

where inf ∅ =∞.
Proof. Let

γ∗(ω) ≡ inf

{
r ≥ 0 :

j∑

t=i

ηt(r) ≥
j∑

t=i

j∑

u=t

au(t) ∀ i, j ∈ {1, . . . , T}, i ≤ j
}
.

It follows from the productivity function ηt(r) being nondecreasing for all t that
v∗(ω) ≥ γ∗(ω). It remains to show that v∗(ω) ≤ γ∗(ω). If γ∗(ω) = ∞, the result
follows immediately. Otherwise, fix any ε > 0. It follows from the definition of
γ∗(ω) that for any ε > 0 there exists an rε ≥ 0 such that rε < γ∗(ω) + ε and
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∑j
t=i ηt(r

ε) ≥ ∑j
t=i

∑j
u=t au(t) for all i, j ∈ {1, . . . , T}, i ≤ j. Consider the solution

that makes rε amount of resource available at each time t. Let w(t) denote the total
amount of work waiting to be processed after the arrivals at time t have taken place,
but before any processing at time t. Thus if w(t) ≤ ηt(rε), then all w(t) amount of
work is performed at time t. Otherwise, if w(t) > ηt(r

ε), then ηt(r
ε) amount of work

is performed at time t, according to the EDF rule. Hence this solution never uses
more than rε amount of resource at a time. The solution is feasible and has objective
value rε < γ∗(ω) + ε if and only if all work is completed by the deadlines, which is
established next.

For any time t, let /(t) denote the last time τ ∈ {1, . . . , t} that there is no work
with deadlines less than or equal to t waiting to be processed after the processing at
time τ has taken place. If there is no such time τ ∈ {1, . . . , t}, then let /(t) = 0 (which
will turn out never to be the case). Thus the objective is to show that /(t) = t, which
implies that all work with deadlines less than or equal to t has been processed at the
end of time t. Suppose /(t) < t. Then the amount of work with deadlines less than or
equal to t that has to be processed in {/(t)+1, . . . , t} is

∑t
τ=&(t)+1

∑t
u=τ au(τ), which

is less than or equal to
∑t

τ=&(t)+1 ητ (rε) from the definition of rε. However, from the

definition of /(t), there is work with deadlines less than or equal to t remaining at
the end of each of the times in {/(t) + 1, . . . , t}, and thus from the definition of the
solution with the EDF rule,

∑t
τ=&(t)+1 ητ (rε) amount of work with deadlines less than

or equal to t is processed in {/(t)+1, . . . , t}. Thus the amount of work with deadlines
less than or equal to t that is processed in {/(t) + 1, . . . , t} is at least as much as the
amount that needs to be processed to finish all such work by time t. Thus all work is
finished by the deadlines, and v∗(ω) ≤ rε < γ∗(ω) + ε for arbitrary ε > 0. Therefore
v∗(ω) ≤ γ∗(ω).

Appendix D. Proof of Lemma 4.8.
Lemma 4.8. For the ORMP with productivity function ηt(r), (R, θ, ϑ) has the

extensibility property.
Proof. Consider any instance ω = (a1(1), a2(1), . . . , aT (T )), θ(ω) = (a′1(1),

a′2(1), . . . , a′T (T )), and ϑ(ω) = (a′′1(1), a′′2(1), . . . , a′′T−1(T − 1)). Consider any r such
that r ∈ R(θ(ω)) and rT−1 ∈ R(ϑ(ω)). As usual, available work is performed in EDF
order. Let wu(t) ≡ au(1)−qu(1)+au(2)−qu(2)+ · · ·+au(t), w′T (t) ≡ a′T (1)−q′T (1)+
a′T (2)− q′T (2) + · · ·+ a′T (t), and w′′u(t) ≡ a′′u(1)− q′′u(1) + a′′u(2)− q′′u(2) + · · ·+ a′′u(t).

It is shown by induction on t that wu(t) = w′′u(t) and qu(t) = q′′u(t) for all t =

1, . . . , T − 1, u = t, . . . , T − 1, and w′T (t) =
∑T

u=t wu(t) and q′T (t) =
∑T

u=t qu(t) for
all t = 1, . . . , T . Clearly the hypothesis holds for t = 1. Suppose the hypothesis
holds for t. Note that qt(t) = q′′t (t) = w′′t (t) = wt(t) from the assumption that
rT−1 ∈ R(ϑ(ω)). Then wu(t+ 1) = au(1)− qu(1) + · · ·+ au(t+ 1) = a′′u(1)− q′′u(1) +
· · · + a′′u(t + 1) = w′′u(t + 1) for all u = t + 1, . . . , T − 1. Because available work
is performed in EDF order, qu(t + 1) = q′′u(t + 1) for all u = t + 1, . . . , T − 1. Also,

w′T (t+1) = w′T (t)−q′T (t)+a′T (t+1) =
∑T

u=t wu(t)−∑T
u=t qu(t)+

∑T
u=t+1 au(t+1) =

∑T
u=t+1 (wu(t)− qu(t) + au(t+ 1)) =

∑T
u=t+1 wu(t+1), and the hypothesis has been

established.
From the assumption that rT−1 ∈ R(ϑ(ω)), it follows that constraints (2.6),

(2.3), (2.4), and (2.5) are satisfied by ϑ(ω) and rT−1 and thus by ω and r for all
t = 1, . . . , T − 1. It remains to be shown that constraints (2.6), (2.3), (2.4), and (2.5)
are satisfied by ω and r at t = T . From the hypothesis and the assumption that
r ∈ R(θ(ω)), it follows that wT (T ) = w′T (T ) ≤ ηT (r(T )), and thus constraints (2.6),
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(2.3), (2.4), and (2.5) are satisfied by ω and r at t = T .

Appendix E. Proof of Proposition 5.1. The proof of Proposition 5.1 is based
on the use of a strictly convex productivity function with the ORMP. It is important
to the proof that our techniques for determining the optimal competitive ratio ρ∗T can
be adapted for a certain class of such functions. Those results are presented in the
next section, which is followed by the proof of Proposition 5.1.

E.1. Other productivity functions for the ORMP. In section 4.1.2, the
determination of the optimal competitive ratio for the ORMP applied only to the
case with ηt(r) = r for all t = 1, . . . , T . In general, the analysis does not easily extend
to other productivity functions, though there are a few easy cases. Assume that ηt is
increasing and therefore invertible.

The general equation for q(t) is

q(t) = ηt(αT vT (ωt)).

To “solve” for αT as we did in section 4.1.2, we would like to factor it out of the sum

T∑

t=1

ηt(αT vT (ωt)),

which is not possible in general, even if ηt = η is stationary.
It is possible, however, for stationary productivity functions that satisfy η(kr) =

f(k)η(r) for some function f(k) and all k, r > 0. This class of functions includes
functions of the form η(r) = crp, where p > 0 (with f(k) = kp). In these cases, we
have

T∑

t=1

η(αT vT (ωt)) = f(αT )

T∑

t=1

η(vT (ωt)).

Note that for these productivity functions, which are stationary and nondecreas-
ing, one can derive from Proposition 4.1 that

vT (ωt) = η−1

(
max

{i∈{1,...,t}}
1

T − i+ 1

t∑

t=i

a(t)

)
.

Therefore, η(vT (ωt)) is just the maximization expression in the parentheses above.
If f is invertible (as it is for this class of functions), then one can write

αT ≥ f−1

( ∑T
t=1 a(t)

∑T
t=1 max{i∈{1,...,t}} 1

T−i+1

∑t
τ=i a(τ)

)
.

Assuming f−1 is monotonically increasing (as it is for this class of functions), one can
still use the LP formulation to find the optimal value of ρ∗T :

ρ∗T = f−1

(
1

optimal solution of LP

)
.

In particular, this means that any stationary linear productivity function (η(r) =
cr) has the same ρ∗T values as previously determined. For a stationary productivity
function of the form η(r) = crp, ρ∗T is the pth root of the reciprocal of the optimal
LP value. We know from [6] that the limiting LP value reciprocal is ρ∗ = e, which
means that as p → ∞, the corresponding value of ρ∗ goes to 1. Similarly, as p → 0,
the corresponding value of ρ∗ increases without bound.



588 HUNSAKER, KLEYWEGT, SAVELSBERGH, AND TOVEY

Table E.1
Algorithm π for Proposition 5.1 (ε = a(1)/15).

Decision 1
Period 1 Period 2

a(1) ≤ a(2) η−1
(
4
3
a(2) − ε

)

3ε ≤ a(2) < a(1) η−1
(
2
3
a(1) + ε

)
η−1

(
2
3
a(1) + 2

3
a(2) − ε

)

a(2) < 3ε η−1
(
2
3
a(1) + ε

)

Decision 2
Period 1 Period 2

η−1
(
4
3
a(2) + ε

)

η−1
(
2
3
a(1) − ε

)
η−1

(
2
3
a(1) + 2

3
a(2) + ε

)

η−1
(
2
3
a(1) − ε

)

E.2. Proof of Proposition 5.1.
Proposition 5.1. Consider the single deadline ORMP with a stationary produc-

tivity function of the form ηt(r) = crp, c > 0, p > 1, for all t. For this problem there
exists a randomized algorithm π ∈ ΠRO such that vπ(ω) < vπα(ω) for every ω ∈ Ω2,
ω > 0.

Proof. Note that η(r) = crp with c > 0 and p > 1 is strictly convex and strictly
increasing on [0,∞).

It follows from section E.1 that for η of this form, ρ∗2 = f−1(4/3), where f(k) = kp,
so the optimal α-policy (and thus the optimal deterministic algorithm) will allocate
f−1(4/3)η−1(a(1)/2) = η−1(2a(1)/3) in the first time period. Similarly, the opti-
mal α-policy allocates max

{
η−1 ((4/3)(a(1) + a(2))/2) , η−1 (4a(2)/3)

}
in the second

time period.
To show that the α-policy is not optimal among all randomized online algorithms

for this problem, we construct a randomized algorithm π that achieves a better value
than the α-policy on any instance.

Algorithm π randomly chooses one of two decisions, each with probability 1/2.
If Decision 1 is chosen, more work than under the α-policy is done in the first time
period, and if decision 2 is chosen, less work than under the α-policy is done in the
first time period. Specifically, algorithm π allocates resources according to Table E.1,
with ε = a(1)/15.

Next we prove that π is always feasible and results in a better value than the
α-policy.

First note that the work attempted under algorithm π in the first time period, by
which we mean η of the resource allocated, is at most 2a(1)/3+ε = 2a(1)/3+a(1)/15 <
a(1), so π does not attempt to do work before it arrives. We consider the following
three cases that come up in the second time period: a(2) ≥ a(1), 3ε ≤ a(2) < a(1),
and a(2) < 3ε.

Consider the first two cases together. It is easy to see that in these two cases,
the total work attempted is the same as the total work attempted under the α-policy.
Since we already showed that all work attempted in the first time period is actually
accomplished, this means that algorithm π is feasible for both of these two cases (since
the α-policy is feasible).

We claim that in both these cases, the maximum resource allocation occurs in



ONLINE ALGORITHMS FOR MINIMAX RESOURCE SCHEDULING 589

the second time period. Recall that this statement is true for the α-policy. Therefore,
our only concern is Decision 1: specifically, the possibility that adding ε work to
the first time period gives a greater total than subtracting ε work from the second
time period. Thus it will suffice to show that η(vT (ω2)), whose value depends on
whether a(2) ≥ a(1), is at least 2ε more than η(vT (ω1)), which is always 2a(1)/3. If
a(2) ≥ a(1), then η(vT (ω2)) = 4a(2)/3 and we have

4

3
a(2)− 2

3
a(1) ≥ 4

3
a(1)− 2

3
a(1) =

2

3
a(1) >

2

15
a(1) = 2ε.

If 3ε ≤ a(2) < a(1), then η(vT (ω2)) = 2a(1)/3 + 2a(2)/3 and we have

2

3
a(1) +

2

3
a(2)− 2

3
a(1) =

2

3
a(2) ≥ 2

3
(3ε) = 2ε.

Therefore, the value of algorithm π on any instance in which a(1) ≤ a(2), is the
expected value of the second time period’s allocation, which is

1

2
η−1

(
4

3

(a(1) + a(2))

2
+ ε

)
+

1

2
η−1

(
4

3

(a(1) + a(2))

2
− ε
)
< η−1

(
4

3

(a(1) + a(2))

2

)
,

where we have strict inequality because of the strict concavity of η−1 (due to the
strict convexity of η). Thus, the expected value of algorithm π is always less than the
value of the α-policy.

Similarly, if 3ε ≤ a(2) < a(1), the value of algorithm π is

1

2
η−1

(
4

3
a(2) + ε

)
+

1

2
η−1

(
4

3
a(2)− ε

)
< η−1

(
4

3
a(2)

)
,

so algorithm π has a better value in this case as well.
It now remains to consider the third case: a(2) < 3ε. For feasibility, note that

Decision 1 allocates more at both times than Decision 2, so it suffices to show that
Decision 2 allocates enough resources to meet the deadline. The total work attempted
is

2

(
2

3
a(1)− ε

)
=

4

3
a(1)− 2ε =

4

3
a(1)− 2

15
a(1)

=
18

15
a(1) = a(1) +

3

15
a(1) ≥ a(1) + a(2).

This shows that at least as much work is attempted as is available, and the work
attempted in the first time period does not exceed a(1), so the algorithm is feasible.

Now note that the value of algorithm π in this case is

1

2
η−1

(
2

3
a(1) + ε

)
+

1

2
η−1

(
2

3
a(1)− ε

)
< η−1

(
2

3
a(1)

)
.

So the value of algorithm π is strictly less than the first time period’s allocation by
the α-policy, which must be no more than the value of the α-policy (since the second
time period’s allocation is at least as great as the first time period’s).

So, in all three cases, algorithm π has a value strictly less than the α-policy, which
completes the proof.
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Abstract. We study certain projections of binary linear codes onto larger fields. These pro-
jections include the well-known projection of the extended Golay [24, 12, 8] code onto the hexacode
over GF(4) and the projection of the Reed–Muller code R(2, 5) onto the unique self-dual [8, 4, 4] code
over GF(4). We give a characterization of these projections, and we construct several binary linear
codes which have best known optimal parameters, for instance, [20, 11, 5], [40, 22, 8], [48, 21, 12], and
[72, 31, 16]. We also relate the automorphism group of a quaternary code to that of the corresponding
binary code.
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1. Introduction. The construction of good binary (linear) codes from shorter
codes has been widely studied by coding theorists. One of the main reasons in this
direction is to lower the decoding complexity of the original code. The (u|u + v)
construction [17], the projection of Z4-linear codes onto nonlinear binary codes [14],
and the projection of codes over GF(pm) onto codes over GF(p) are such examples.
Each of these constructions applies to a large class of binary codes.

We recall a projection construction that is quite different from those mentioned
above. In the mid 1980s the third author [18] showed that the Golay code of length
24 (as well as the ternary Golay code of length 12) can be easily constructed from
the Hexacode of length 6 over GF(4) (resp., the tetracode of length 4 over GF(3)). It
was expected [18, p. 565] that one can construct, in a somewhat analogous fashion,
good large binary codes whose decoding can be reduced, in part, to the decoding of
a good quaternary code. However, only a few codes had the above type of projection
construction.

Recently Gaborit, Kim, and Pless [12, 16] showed that the three singly even self-
dual binary [32, 16, 8] codes and three of the five doubly even self-dual [32, 16, 8] codes
have a similar projection. The construction of Amrani and Be’ery [1] of binary Reed–
Muller codes is also an interesting generalization of a projection. These projections
regard a binary linear code of length 4m as a set of 4×m arrays and then project these
arrays onto a quaternary code of lengthm. A projection onto GF(16) was suggested by
Esmaeili, Gulliver, and Khandani [10] to investigate whether the [48, 24, 12] quadratic
residue code has such a projection.

The purpose of our paper is to give a uniform characterization of these projec-
tions. We provide many examples of binary linear codes having these projections.
In particular, we construct several binary linear codes that have best known optimal
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parameters, for instance, [20, 11, 5], [40, 22, 8], [48, 21, 12], and [72, 31, 16]. We also re-
late the automorphism group of a quaternary code to that of the corresponding binary
code. Sections 2 and 3 survey the basic facts about projections onto GF(4) and addi-
tive codes over GF(4). In section 4 we characterize which binary linear codes have a
projection onto GF(4). In section 5 we apply results of section 4 to extremal binary
self-dual codes, and section 6 discusses a projection onto GF(16). Finally, in section 7
we construct two codes having the best known parameters [48, 21, 12] and [72, 31, 16].

2. Projection. We begin with the projection of binary linear codes into quater-
nary codes (i.e., codes over GF(4)) as explained in [18]. Consider a 4×m array with
zeros and ones in it. Label the four rows with the elements of GF(4): 0, 1, ω, ω. Recall
that ω = ω2, ω2 = ω, and ω = 1 +ω. If we take the inner product of a column of our
array with the row labels, we obtain an element of GF(4). In this way we have a cor-
respondence between binary vectors of length 4m and quaternary vectors of length m.
For example, let v = (1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0,
1, 1, 0) be the binary vector of length 32. Then

v =

1 2 3 4 5 6 7 8
0 1 0 1 0 0 0 0 0
1 0 0 0 0 1 0 1 1
ω 1 0 0 1 0 1 0 1
ω 1 0 1 1 1 1 1 0

1 0 ω 1 ω 1 ω ω

corresponds to (or projects onto) the quaternary vector w = (1, 0, ω, 1, ω, 1, ω, ω) of
length 8. We denote this projection by Proj(v) = w. The columns of such an array
associated with vector v will be referred to as the columns of v and the top row of
the array will be referred to as the top row of v. Note that Proj is a GF(2)-linear
map from the set of binary vectors of length 4m to the set of quaternary vectors of
length m.

Let the parity of a column be either even or odd, respectively, if an even or an
odd number of ones exists in the column. Define the parity of the top row in a similar
fashion. Thus the first column of the 4× 8 array of the above vector has odd parity,
and the rest have even parity. The top row also has even parity. By a quaternary
additive code C4 of length m we mean a set of vectors in GF(4)m that is closed under
addition.

Definition 2.1. Let S be a set of binary vectors of length 4m and C4 a quater-
nary additive code of length m. Then S is said to have projection O onto C4 if the
following conditions are satisfied:

(P1) For any vector v ∈ S, Proj (v) ∈ C4. Conversely, for any vector w ∈ C4, all
vectors v such that Proj (v) = w are in S.

(P2) The columns of the array of any vector of S are either all even or all odd.
(P3) The parity of the top row of the array of any vector of S is the same as the

column parity of the array.

It is easy to see that the above set S is in fact a binary linear code of length 4m.
It is well known [18] that the extended Golay [24, 12, 8] code has projection O onto
the [6, 3, 4] Hexacode. The main advantage of this projection is its ability to decode
a binary code by decoding the projected code. Generally this lowers the decoding
complexity. Hard decision decoding by hand using this projection was done in [18]
and soft decision decoding was done by several authors [7, 21, 22, 23].
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The Reed–Muller [32, 16, 8] code R(2, 5) has a similar projection [12]. We define
such a projection, called projection E, as follows.

Definition 2.2. Using the same notation as Definition 2.1, S is said to have
projection E onto C4 if conditions (P1) and (P2), as well as the following third con-
dition (P3′), are satisfied:

(P3′) The parity of the top row of the array of any vector of S is always even.

3. Introduction to additive codes over GF(4). In this section we give some
basic definitions and preliminaries related to additive codes, and we refer the reader
to [4, 11] for more details. As before, an additive code C4 over GF (4) of length n is an
additive subgroup of GF(4)n. As C4 is a free GF(2)-module, it has size 2k for some
0 ≤ k ≤ 2n. We call C4 an (n, 2k) code. It has a basis, as a GF(2)-module, consisting
of k basis vectors; a generator matrix of C4 will be a k × n matrix with entries in
GF(4) whose rows form a basis of C4. Interest in additive codes over GF(4) has arisen
because of their correspondence to quantum codes, as described in [4]. There is a
natural inner product arising from the trace map. If we let GF(4) = {0, 1, ω, ω},
where ω = ω2 = 1 + ω, the trace map Tr : GF(4)→ GF(2) is given by

Tr(x) = x+ x2.

In particular Tr(0) = Tr(1) = 0 and Tr(ω) = Tr(ω) = 1. The conjugate of x ∈ GF(4),
denoted x, is the image of x under the Frobenius automorphism; hence, 0 = 0, 1 = 1,
and ω = ω. We now define the trace inner product of two vectors x = (x1x2 · · ·xn)
and y = (y1y2 · · · yn) in GF(4)n to be

x�y =

n∑

i=1

Tr(xiyi).

Example 3.1. Let G6 be the [6, 3, 4] hexacode whose generator matrix as a linear
GF(4)-code is

[
1 0 0 1 ω ω
0 1 0 ω 1 ω
0 0 1 ω ω 1

]
.

This is also an additive (6, 26, 4) code; thinking of G6 as an additive code, we see that
it has generator matrix





1 0 0 1 ω ω
ω 0 0 ω ω ω
0 1 0 ω 1 ω
0 ω 0 ω ω ω
0 0 1 ω ω 1
0 0 ω ω ω ω



 .

If C4 is an additive code, its dual, denoted C⊥4 , is the additive code {x ∈ GF(4)n |
x�c = 0 for all c ∈ C4}. If C4 is an (n, 2k) code, then C⊥4 is an (n, 22n−k) code. As
usual, C4 is self-orthogonal if C4 ⊆ C⊥4 and self-dual if C4 = C⊥4 . In particular, if
C4 is self-dual, C4 is an (n, 2n) code. The code G6 in Example 3.1 is self-dual as an
additive code. (Any GF(4)-linear code that is self-orthogonal under the Hermitian
inner product is a self-orthogonal additive code under the trace inner product.)

As usual, the weight wt(c) of c ∈ C4 is the number of nonzero components of c.
The minimum weight d of C4 is the smallest weight of any nonzero codeword in C4.
If C4 is an (n, 2k) additive code of minimum weight d, C4 is called an (n, 2k, d) code.
We say C4 is Type II if C4 is self-dual and all codewords have even weight. It can
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be shown that Type II codes of length n exist if and only if n is even [11]. If C4 is
self-dual but some codeword has odd weight (in which case the code cannot be GF(4)
linear), we say the code is Type I (see [20, section 4.2]). There exists a bound on the
minimum weight of an additive self-dual code [20, Theorem 33]. If dI and dII are the
minimum distances of additive self-dual Type I and Type II codes, respectively, of
length n > 1, then

dI ≤





2
⌊
n
6

⌋
+ 1 if n ≡ 0 (mod 6),

2
⌊
n
6

⌋
+ 3 if n ≡ 5 (mod 6),

2
⌊
n
6

⌋
+ 2 otherwise,

(3.1)

dII ≤ 2
⌊n

6

⌋
+ 2.(3.2)

A code that meets the appropriate bound is called extremal. Note that (3.2) is the
same as saying that d = 2m + 2 if n = 6m + 2(i − 1), with i = 1, 2, or 3. Type
II codes meeting the bound dII have a unique weight enumerator. This property is
not true for Type I extremal codes. A self-dual (with respect to the Hermitian inner
product) linear code over GF(4) also satisfies bound (3.2), and an extremal code is a
[6m, 3m, 2m+ 2] code.

We say that two additive codes C4 and C′4 are equivalent provided there is a
map sending the codewords of C4 onto the codewords of C′4, where the map consists
of a permutation of coordinates, followed by a scaling of coordinates by elements
of GF(4), possibly followed by conjugation of some of the coordinates. Notice that
permuting coordinates, scaling coordinates, and conjugating some coordinates of a
self-orthogonal (or self-dual) code do not change self-orthogonality (or self-duality).
The automorphism group of C4, denoted Aut(C4), consists of all bijections on code-
words in C4 to codewords in C4, which permute coordinates, scale coordinates, and
conjugate coordinates.

4. Projection of binary linear codes onto GF(4). In this section we char-
acterize binary linear codes of length 4m having projection O or projection E onto
GF(4). We let C (resp., C′) be the set of binary vectors satisfying (P2) and (P3)
(resp., (P2) and (P3′)). A standard counting argument shows that C (resp., C′) is
a linear [4m, 3m] code. If we look at all the vectors in C that project to the zero
vector, we obtain a subcode of C, which we denote D. The subcode D is generated
by all even sums of weight 4 vectors, all of whose ones appear in the same column
together with the one additional vector f1 = (1000 1000 · · · 1000 1000) if m is odd,
or f2 = (1000 1000 · · · 1000 0111) if m is even. Similarly C′ has such a subcode
D, which contains f1 when m is even and contains f2 when m is odd. A counting
argument again shows that D has dimension m.

Lemma 4.1. Let D and C ( C′) be defined as above. Let v1 and v2 be two vectors
in C (resp., C′) such that v1 �≡ v2 (mod D). Then Proj (v1) �= Proj (v2).

It easily follows that there is a one-to-one correspondence between the cosets of
D in C (C′) and GF(4)m given by Proj(v +D) = Proj(v).

Lemma 4.2. Let C2 be a binary linear subcode of C that also contains the subcode
D. Suppose that there are r linearly independent vectors vm+1, . . . ,vm+r in C2 such
that any nontrivial linear combination of them is not in D. Then Proj (vm+1), . . . ,
Proj (vm+r) are linearly independent over GF (2).

We can now give a characterization of a binary linear code C2 of length 4m that has
either projection O or projection E onto an additive code over GF(4). The following
results are easy to prove and will be used in future arguments.
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Proposition 4.3. Let C2 be a binary linear [4m, k, d] code with projection O (or
projection E) onto an additive code C4 over GF (4). Then

1. d ≤ d(D) ≤ 8, where d(D) is the minimum weight of D, and C4 has dimension
r = k −m ≥ 0 over GF (2);

2. there exist (k−m) linearly independent vectors vm+1, . . . ,vm+(k−m) = vk of
C2 whose projection forms a basis for C4 as an additive code;

3. the vectors in part 2 above can be chosen so that wt(vi) = 2wt(Proj (vi)) for
i = m+ 1, . . . , k, and wt(vi ∩vj) ≡ Proj (vi) �Proj (vj) (mod 2) for m+ 1 ≤
i, j ≤ k, i �= j.

Proof. We prove only the projection O case. Clearly d ≤ d(D) ≤ 8, as D
is a subcode of C2. Since C2 has dimension k and D has dimension m, we know
there exist k −m linearly independent vectors vm+1, . . . ,vm+(k−m) = vk in C2 such
that any nontrivial linear combination of them is not in D. Hence, by Lemma 4.2,
Proj(vm+1), . . . ,Proj(vk) are linearly independent over GF(2). Therefore C4 has di-
mension k−m over GF(2) with basis {Proj(vm+1), . . . ,Proj(vk)}. This proves parts
1 and 2.

We can assume that the columns of the above k−m linearly independent vectors
vm+1, . . . ,vk all have even parity by adding f1(m : odd) or f2(m : even) to those
vectors of odd column parity. Furthermore, we may assume that the top row of
each vector vm+1, . . . ,vk consists of zeros of length m by adding proper codewords
from D. Hence, the columns of any vector from vm+1, . . . ,vk have only one of the
following four forms: (0000), (0011), (0101), (0110). Thus for m + 1 ≤ i, j ≤ k, and
i �= j, wt(vi ∩ vj) ≡ Proj(vi) � Proj(vj) (mod 2) and wt(vi) = 2wt(Proj(vi)), i =
m+ 1, . . . , k. This proves part 3.

We give an explicit construction of a binary linear code, which has projection O
or projection E onto a given additive code C4. Suppose now that C4 is an additive
(m, 2r) code, and let Ĉ4 be the binary linear [4m, r] code obtained from C4 by replacing
each GF (4) component with a 4-tuple in GF(2)4 as follows : 0 → 0000, 1 → 0011,
ω → 0101, ω → 0110.

Construction O: ρO(C4) = Ĉ4 + D, where D contains f1 when m is odd and f2
when m is even.

Construction E: ρE(C4) = Ĉ4 + D, where D contains f2 when m is odd and f1
when m is even.

The above constructions were known [11] for additive self-dual codes. The next
result follows from Proposition 4.3.

Corollary 4.4. Let C4 be an additive (m, 2r) code with 0 ≤ r ≤ 2m. Then,

1. ρO(C4) and ρE(C4) are binary linear [4m,m + r] codes having projection O
and projection E onto C4, respectively.

2. Any binary linear code having projection O or projection E onto C4 can be
constructed in this way.

Next we consider the natural question of whether two equivalent additive codes
could be constructed from two inequivalent binary linear codes via projection O or
projection E. We label the positions in a 4-tuple with the integers 1, 2, 3, and 4.
With this notation, under the above mapping of each GF(4) component to a 4-tuple
in GF(2)4, the multiplication of x ∈ GF(4) by ω corresponds to the cycle permutation
(234) of each binary 4-tuple of x. Also the conjugation of x ∈ GF(4) corresponds to the
transposition (34) of the binary 4-tuple of x. Trivially the permutation of coordinates
of additive codes corresponds to the column permutation of their associated binary
arrays. Hence we have shown the following.
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Table 4.1
Projection of binary linear codes onto GF (4).

(m, r) Linear codes Parameters for binary codes Highest minimum

over GF(4) [3] via construction O or E weight dB [3]

(7, 8) [7, 4, 3] [28, 15, 6] dB = 6

(8, 10) [8, 5, 3] [32, 18, 6] dB = 6− 7

(9, 12) [9, 6, 3] [36, 21, 6] dB = 7− 8

(10, 14) [10, 7, 3] [40, 24, 6] dB = 7− 8

(7, 6) [7, 3, 4] [28, 13, 7] dB = 8

(8, 8) [8, 4, 4] [32, 16, 8] dB = 8

(9, 10) [9, 5, 4] [36, 19, 8] dB = 8

(10, 12) [10, 6, 4] [40, 22, 8] dB = 8

(11, 14) [11, 7, 4] [44, 25, 8] dB = 8− 9

(12, 16) [12, 8, 4] [48, 28, 8] dB = 8− 10

(13, 18) [13, 9, 4] [52, 31, 8] dB = 8− 10

(14, 20) [14, 10, 4] [56, 34, 8] dB = 8− 10

(15, 22) [15, 11, 4] [60, 37, 8] dB = 8− 10

(16, 24) [16, 12, 4] [64, 40, 8] dB = 9− 11

(17, 26) [17, 13, 4] [68, 43, 8] dB = 9− 12

Lemma 4.5. Let C4 and C′4 be additive codes that are equivalent via maps defined
in section 3. Then ρO(C4) and ρO(C′4) are equivalent by some coordinate permutation.
Similarly ρE(C4) and ρE(C′4) are equivalent.

Corollary 4.6. Let C4 be an additive code. The automorphism group of C4 is
isomorphic to a subgroup of the automorphism group of ρO(C4) (resp., ρE(C4)).

4.1. Examples.

Example 4.7. Let P5 be the Pentacode [21], an additive self-dual (5, 25, 3) code
over GF(4). Ran and Snyders [21, Lemma 4] showed that a binary linear [20, 10, 5]
code P b20 has projection O onto P5. If we define P c20 = ρE(P5), then P c20 is also a
binary linear [20, 10, 5] code. The software package Magma [5] was used to show that
P b20 and P c20 have the same weight distribution and isomorphic automorphism groups
of order 1920 and that they are not equivalent. We remark that P b20 and P c20 have
minimum weight, which is one less than the optimal [3] binary [20, 10, 6] codes.

Example 4.8. Consider the case when m = 5. There exists a linear [5, 3, 3] code
C4 over GF(4) [3]. It has parameters (5, 26, 3) as an additive code. By Corollary 4.4,
ρO(C4) and ρE(C4) are both binary linear [20, 11] codes. It is not difficult to prove that
the minimum weights of these binary codes is 5. It is known [3] that binary [20, 11, 5]
codes are optimal. Hence we have shown that some such codes have projection O or
projection E.

Example 4.9. Let C4 be any additive (m, 2r, 3) code, where m ≥ 6. Then ρO(C4)
and ρE(C4) have minimum weight 6. In this way we obtain optimal binary [28, 15, 6]
codes having projection O or projection E onto a linear [7, 4, 3] code over GF(4).
See Table 4.1 for more codes, where the fourth column denotes the highest minimum
weight of the corresponding binary [n, k] code together with the theoretical upper
bound.

Example 4.10. Consider the case when m = 10. There exists a linear [10, 6, 4]
code C4 over GF(4) [3]. It has parameters (10, 212, 4) as an additive code. By Corol-
lary 4.4, both ρO(C4) and ρE(C4) are binary linear [40, 22] codes. We want to show
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that the minimum weight of these binary codes is 8 in order to obtain optimal [3]
binary [40, 22, 8] codes. Without loss of generality, let w be a codeword in C4 whose
first four coordinates are nonzero. Such a vector w necessarily exists, as the minimum
weight of C4 is 4. Then in the case of even parity columns, the columns corresponding
to the nonzero coordinates each contain two 1’s. In the case of odd parity columns,
there is at least one 1 in every column. Hence the minimum weight of ρO(C4) and
ρE(C4) is 8. We have shown that there exist binary optimal [40, 22, 8] codes that have
projection O or projection E.

Generalizing this example, let C4 be any additive (m, 2r, 4) code, where m ≥ 7.
Then (i) if m = 7, the minimum weight of ρO(C4) and ρO(C4) is 7 and (ii) if m ≥ 8,
the minimum weight of ρO(C4) and ρO(C4) is 8. We get several optimal binary codes
having projection O or projection E on C4. See Table 4.1 for more examples.

5. Projections of binary self-dual codes onto GF(4). In this section, we
characterize binary self-dual codes of length 8k that have either projection O or pro-
jection E. The following proposition will be useful when we determine which binary
self-dual codes have projection O or projection E.

Proposition 5.1. Let C2 be a binary self-dual [4m, 2m, d] code with projection
O (or projection E) onto a quaternary additive code C4. Then

1. m is even.
2. C4 has dimension m over GF (2).
3. C4 is a self-dual code under the trace inner product. Furthermore when C2 is
doubly even, C4 is even.

Proof. We prove the claim only for projection O. By definition, D is a subcode
of C2. We take f1 or f2 in D, depending on (P3). Since C2 is self-dual, wt(f1) and
wt(f2) are even. As wt(f1) = m and wt(f2) = m+ 2, it follows that m is even. This
proves part 1. Part 2 follows from part 1 of Proposition 4.3. Part 3 follows from part
3 of Proposition 4.3.

We can say a little more about the relationship between the automorphism group
of an even additive code C4 and its associated binary linear code in the case when the
binary linear code is self-orthogonal.

Proposition 5.2. Let C4 be an even additive (m, 2r) code that lifts to a self-
orthogonal binary linear code C2 of length 4m via construction O or E given above.
Then Aut(C2) contains a subgroup of order 2r, which is not induced by a subgroup of
Aut(C4).

Proof. We consider only construction E, as the proof for construction O is similar.
Let v be a vector of Ĉ4 whose columns have even parity. We associate a unique
coordinate permutation pv with the vector v in the following way. If a column of
v contains all 1’s or all 0’s, then every position in that column is fixed under pv.
If a column of v contains exactly two 1’s, then the permutation pv interchanges
the coordinate positions in that column which contain 1’s and also interchanges the
coordinate positions which contain 0’s. For instance, the permutation associated with
the vector

v =





0 0 0 0 0 0
0 0 1 0 1 0
1 0 1 1 0 0
1 0 0 1 1 0





is given by the coordinate permutation (1, 2)(3, 4)(9, 12)(10, 11)(13, 14)(15, 16)(17, 19)
(18, 20). We claim that such a coordinate permutation leaves the code invariant and



598 JON-LARK KIM, KEITH E. MELLINGER, AND VERA PLESS

Table 5.1
Automorphism group orders of some self-dual codes.

C |Aut(C)| |Aut(ρE(C))| |Aut(ρO(C))|
G6 24 · 33 · 5 210 · 33 · 5 210 · 33 · 5 · 7 · 11 · 23
C1 27 · 32 215 · 32 · 5 · 7 215 · 32
C2 24 · 3 · 7 212 · 3 · 7 212 · 3 · 7
C3 27 · 32 · 7 215 · 32 · 5 · 7 · 31 215 · 32 · 7

hence is part of the full automorphism group of the binary linear code ρE(C4). Hence,
we need to show that the image of any codeword under such a permutation is still in
the code.

Let w be any binary codeword in ρE(C4) with even column parity and let pv be
a permutation associated with vector v as above. If w is fixed under pv, then we are
done. Otherwise, we consider the columns of w whose coordinates are not fixed under
pv. Let ci be any such column of w. Then ci contains exactly two 1’s and, since this
column of w is not fixed under pv, we know that ci meets the corresponding column
of v in exactly one position. Because of the self-orthogonality condition, there must
be another column of w, say cj , with the same property. Letting di,j be the element
of the subcode D with all 1’s in the ith and jth columns and 0’s everywhere else, we
see that the action of pv on the ith and jth columns of w is the same as adding di,j to
w. We conclude that the image of the codeword w under the coordinate permutation
pv is equal to w + d, where d is some element of D.

Now let u be any binary codeword in ρE(C4) with odd column parity. Any such
vector can be written as f1 +w for some vector w with even column parity. Hence,
it is sufficient to check that the image of f1 under pv is still in the code C2. Since
C4 is an even code, the action of pv on f1 will only permute the positions in an even
number of columns of f1. Let dv be the element of D that has all 1’s in the columns
where v has weight 2. Then, one can easily check that the image of f1 under the
permutation pv is equal to f1 + v + dv.

Hence, we have shown that the permutation pv leaves the code ρE(C4) invariant.
Note that any nontrivial permutation as described above does not permute columns,
but does permute the top position of any column on which it does not act triv-
ially. This shows that every such permutation cannot be induced from an element
of Aut(C4). Since the number of codewords of Ĉ4 is exactly 2r, this completes the
proof.

Note that the action of a permutation pv on a particular column can be viewed
as an element of the Klein 4 group, that is, a cycle permutation corresponding to
(1,2)(3,4), (1,3)(2,4), or (1,4)(2,3). This observation can be used to show that for any
two permutations pv1 and pv2 , the composition gives the permutation pv1+v2 .

Corollary 5.3. Let C4 be an even additive (m, 2r) code that lifts to a self-
orthogonal binary linear code C2 of length 4m via construction O or E given above.
Then 2r · |Aut(C4)| divides |Aut(C2)|.

We note that this result about automorphism groups partially explains the size
of the automorphism groups of the binary codes given in Table 5.1, which originally
appeared in [11, section 5, p. 149].1 Here, G6 is the (6, 26, 4) hexacode, and C1, C2,
and C3 are the three (8, 28, 4) Type II codes. Note that the orders of the binary
linear codes all satisfy the relationship given in the corollary above. In fact, the entire
automorphism group is completely determined for those cases in which the binary

1Table reprinted with permission of the American Mathematical Society, Providence, RI.
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code is singly even. This is the case for only one of the doubly even codes, namely
ρE(C2).

5.1. Examples. In the following we consider an extremal Type II self-dual [8k,
4k, 4

⌊
n
24

⌋
+ 4] code.

Example 5.4. When k = 1 we get the unique Hamming [8, 4, 4] code H3. Let i2
be the self-dual linear [2, 1, 2] code over GF(4) with generator matrix [1 1]. Then the
set of vectors satisfying conditions (P1), (P2), and (P3) with C4 = i2 in Definition 2.1
gives H3. In other words, H3 has projection O onto i2.

Example 5.5. When k = 2, there are exactly two Type II [16, 8, 4] binary codes
A8 ⊕ A8 and E16 in the notation of [19]. By using exactly two Type II additive
quaternary (4, 24, 2) codes from [15, Table 1] or [13], we see that A8 ⊕ A8 and E16

have projection E onto (4, 24, 2) codes. The Type I [16, 8, 4] binary code F16 has
projection E onto the Type I (4, 24, 2) code from [15, Table 2] or [13].

Example 5.6. When k = 3, it is well known [18] that the extended Golay code
has projection O onto the hexacode. If we consider projection E onto the hexacode,
we get the Type I [24, 12, 6] code [12].

Example 5.7. When k = 4, we consider the five Type II [32, 16, 8] codes given
in [6]. Several authors [1, 11, 12, 24] are interested in a projection construction for
some of these codes. It is known [11, Example 5.4] that applying construction E to
the three Type II additive (8, 28, 4) codes produces three of these five, i.e., 2g16, 8f4,
and r32 in the notation of [6].

It is claimed in [24] that the extended quadratic residue code q32 has projection
O onto a quaternary linear [8, 4, 4] code B given by Yuan, Chen, and Ma [24, p. 410].
In an example, they construct a singly even [32,16,8] code, which they claim is the
quadratic residue code. However, the latter code is doubly even. Their example
contains a weight 14 vector, which was claimed to be in q32. We note that the code B
in [24, p. 410] is equivalent to the unique linear self-dual [8, 4, 4] code over GF(4) with
generator matrix of the binary Hamming [8, 4, 4] code. So the set of vectors in [24,
Definition 1] is actually r32, one of the three Type I [32, 16, 8] codes given in [8].

Furthermore we prove here that q32 does not have projection E onto an additive
code over GF(4). It is easy to see that Type II [32, 16, 8] codes do not have projection
O.

Proposition 5.8. Exactly three Type II [32, 16, 8] codes out of the five Type II
codes, namely 2g16, 8f4, and r32, have projection E onto the three Type II additive
(8, 28, 4) codes.

Proof. Let C2 be one of the five Type II [32, 16, 8] codes which have projection
E onto one of the three Type II additive (8, 28, 4) codes. Then by part 1 and part 2
of Corollary 4.4, we note that at most three Type II [32, 16, 8] codes are constructed.
From the discussion in Example 5.7, these three codes are in fact 2g16, 8f4, and r32.
This completes the proof.

There is an alternative way to prove Proposition 5.8. Suppose that C2 is one of
the five Type II [32, 16, 8] codes which have projection E onto one of the three Type
II additive (8, 28, 4) codes. By Proposition 4.3, C2 contains the set D0 of all even
sums of weight 4 vectors with all four 1’s in a column. The set D0 gives rise to an
octet, that is, a weight 4 coset of C2 containing exactly eight weight 4 vectors (see [8,
p. 1328]). As codes q32 and 16f2 have no octets while codes 2g16, 8f4, and r32 have
one or more [8], the above proposition follows.

Example 5.9. For k = 5, there are at most 19 Type II [40, 20, 8] codes having
projection E onto additive (10, 210, 4) codes, as there are exactly 19 Type II (10, 210, 4)
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codes given in [2, 11].

6. Projections of binary codes onto GF(16). So far we have investigated
projections of binary linear codes onto GF(4) using arrays with four rows. It is natural
to consider a generalization to arrays with more rows. In this case we need other field
extensions of GF(2) apart from GF(4). Esmaeili, Gulliver, and Khandani [10] first
studied a projection of binary linear codes onto GF(16) as follows.

Let GF(16) be generated by α such that α4 + α + 1 = 0, where α is a primitive
element of GF(16). We write a binary vector of length 6m as a 6 ×m array whose
rows are indexed by 0, 1, α, α2, α3, β, where β = α12 = 1 + α + α2 + α3. As before,
we take the inner product of a column of our array with the row labels, producing
an element of GF(16). It is easy to see that for any element x in GF(16), there are
exactly two columns of odd parity and two columns of even parity which project to x.
For example, let x = α4. Then (111000)t, and its complement are two odd columns
projecting to α4. Similarly (011000)t, and its complement are two even columns
projecting to α4.

Now we can define projection O and projection E onto GF(16) as we defined them
onto GF(4) in section 2. It is clear that the binary [48, 24, 12] quadratic residue code
q48 does not have projection O or projection E onto any additive code over GF(4)
since the minimum weight of q48 is greater than 8. It is also shown [10, Theorem 2]
by computer search that q48 does not have projection O onto any linear code over
GF(16). We show this without a computer search. Suppose that q48 has projection O
or projection E onto an additive code of length 8 over GF(16). Then q48 would have
a subcode generated by all even sums of weight 6 vectors, all of whose ones appear in
the same column. This subcode gives rise to a weight 6 coset of q48 containing exactly
eight weight 6 vectors. However, it is known [9, Table I] that there is no such coset of
q48. Therefore q48 cannot have projection O or projection E onto any additive code
of length 8.

Furthermore we can prove that any [48, 24, 12] binary code C2 does not have
projection O or projection E onto an additive code of length 8 over GF(16). If it did,
then C2 would be projected onto an additive (8, 216, d ≥ 6) code C16 over GF(16). It
is well known [3, p. 299] that any q-ary (n,M, d) code has at most qn−d+1 vectors in
it. Applying this to C16 we get 216 ≤ 168−d+1, so d ≤ 5. This is a contradiction.

Proposition 6.1. No binary [48, 24, 12] code has projection O or projection E
onto GF (16).

7. Projections of codes with large minimum weight. We note that projec-
tion O and projection E are very useful when the minimum weight of the binary code
is at most 8. In what follows, we generalize projection E so that we can construct a
binary [48, 21, 12] code and a [72, 31, 16] code which both have a projection onto an
additive GF(4) code. Interestingly, these codes are optimal [3].

Apart from the projection of a binary 4-tuple to an element of GF(4) from sec-
tion 2, we recall two other maps TOP and PAR defined in [1, p. 2562]. TOP is the
mapping of a binary 4-tuple (v1, v2, v3, v4) to v1. PAR is the mapping of a binary
4-tuple (v1, v2, v3, v4) to v1 + v2 + v3 + v4. Both of these maps are linear. We extend
these maps onto a 4×m binary array, operating on every column of the array.

Under this notation, we define a projection as follows.
Definition 7.1. Let S be a set of binary vectors of length 4m written as 4×m

arrays as before. Let P and T be binary codes of length m and let C4 be a quaternary
additive code of length m. Then S is said to have projection G onto C4 if the following
conditions are satisfied:
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(G1) For any vector v ∈ S, Proj (v) ∈ C4. Conversely, for any vector w ∈ C4, all
vectors v such that Proj (v) = w are in S.

(G2) PAR of any vector of S is in P.
(G3) TOP of any vector of S is in T .

We call codes P and T a parity code and a top code, respectively.
Taking the parity code as the repetition [m, 1,m] code and the top code as the

even [m,m − 1, 2] code, projection G is the same as projection E. Now we give
properties of projection G. Since its proof is similar to that of Proposition 4.3, we
omit the details.

Proposition 7.2. Let C2 be a binary linear [4m, k, d] code with projection G
onto an additive code C4 over GF (4). Let P be a parity code with dimension k1 and
T a top code with dimension k2. Then

1. C4 has dimension r = k − (k1 + k2) ≥ 0 over GF (2).
2. There exist r linearly independent vectors vk1+k2+1, . . . ,vk1+k2+r = vk of C2
whose projection forms a basis for C4 as an additive code.

We remark that part 3 of Proposition 4.3 does not hold in general.

7.1. Examples.
Example 7.3. It was shown in Theorem 1 and Corollary 2 of [1] that the binary

Reed–Muller R(r,m) code, where r ≥ 1 and m > r + 1, has a projection onto R(r −
1,m− 2) over GF(4). This fact can be described in terms of projection G by taking
C2 = R(r,m), C4 = R(r − 1,m − 2), P = R(r − 2,m − 2), and T = R(r,m − 2). In
the case of the first-order Reed–Muller R(1,m) code for m > 2, we understand P as
the zero code of length 2m−2.

Example 7.4. We will construct a binary [48, 21, 12] code having projection G
onto the unique self-dual additive (12, 212, 6) code over GF(4) called the dodecacode [4,
11]. For the top code, we consider a binary optimal [12, 8, 3] code, which is easy to
construct. We also take the repetition [12, 1, 12] code as the parity code. Then by
Proposition 7.2 we construct a binary [48, 21, 12] code having projection G onto the
dodecacode. See Table 7.1 for the generator matrix of the binary [48, 21, 12] code and
Table 7.2 for its weight distribution. This code has an automorphism group of order
2 generated by the following transposition found by Magma:

(1, 29)(2, 31)(3, 30)(4, 32)(5, 33)(6, 36)(7, 35)(8, 34)(9, 25)(10, 26)(11, 28)
(12, 27)(13, 21)(14, 24)(15, 22)(16, 23)(37, 45)(38, 48)(39, 46)(40, 47)

Example 7.5. We can similarly construct a binary [72, 31, 16] code having pro-
jection G onto the quaternary linear [18, 9, 8] code S18 [20]. We take as the top code
a binary [18, 12, 4] code and as the parity code the repetition code of length 18. Then
by Proposition 7.2 we get a binary [72, 31, 16] code having projection G onto S18.

7.2. Decoding. We sketch a hard decision decoding algorithm for binary linear
codes having projection G. The decoding idea is analogous to the syndrome decoding
algorithm [12] and, generally, the decoding algorithm given in [16].

Let C2 have projection G onto C4 with the parity code P and the top code T . In
order to make the situation simple we assume that P is the repetition code of proper
length. Suppose v is a received vector. First we compute the parities of the columns
of v and take the majority parity among them. We regard the columns of v with
this parity as correct columns. Then we project v onto a vector w over GF(4). We
find a closest codeword x in C4 to w by solving a syndrome equation with respect
to H4, the parity check matrix of C4. See [16] for more details. We then lift x to a
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Table 7.1
Generator matrix of the binary [48, 21, 12] code.





1111 0000 0000 0000 0000 0000 0000 0000 1111 1111 0000 0000
0000 1111 0000 0000 0000 0000 0000 0000 1111 0000 1111 0000
0000 0000 1111 0000 0000 0000 0000 0000 1111 0000 0000 1111
0000 0000 0000 1111 0000 0000 0000 0000 0000 1111 1111 0000
0000 0000 0000 0000 1111 0000 0000 0000 0000 1111 0000 1111
0000 0000 0000 0000 0000 1111 0000 0000 0000 0000 1111 1111
0000 0000 0000 0000 0000 0000 1111 0000 1111 1111 1111 0000
0000 0000 0000 0000 0000 0000 0000 1111 1111 0000 1111 1111
1000 0111 0111 0111 0111 0111 0111 0111 1000 1000 0111 0111
0000 0000 0000 0000 0000 0000 0011 0011 0011 0011 0011 0011
0000 0000 0000 0000 0000 0000 0101 0101 0101 0101 0101 0101
0011 0011 0011 0011 0011 0011 0000 0000 0000 0000 0000 0000
0101 0101 0101 0101 0101 0101 0000 0000 0000 0000 0000 0000
0000 0000 0000 0011 0101 0110 0000 0000 0000 0011 0101 0110
0000 0000 0000 0101 0110 0011 0000 0000 0000 0101 0110 0011
0011 0110 0101 0000 0000 0000 0011 0110 0101 0000 0000 0000
0101 0011 0110 0000 0000 0000 0101 0011 0110 0000 0000 0000
0000 0000 0000 0011 0110 0101 0101 0110 0011 0000 0000 0000
0000 0000 0000 0101 0011 0110 0011 0101 0110 0000 0000 0000
0011 0101 0110 0000 0000 0000 0000 0000 0000 0110 0101 0011
0110 0011 0101 0000 0000 0000 0000 0000 0000 0011 0110 0101





.

Table 7.2
Weight distribution of the binary [48, 21, 12] code.

Weights No. Weights No. Weights No. Weights No.
0 1 18 56832 26 203264 34 3072
12 2065 20 374012 28 373142 36 1884
14 2944 22 201984 30 56192 40 4
16 49254 24 722548 32 49953 44 1

binary vector v′. There are often several choices for v′. When the syndrome of v′

with respect to H, the parity check matrix of T , is zero, we take v′ as a codeword of
C2. Otherwise we go back to the previous step, finding a closest codeword in C4 to
w by solving another syndrome equation. We repeat this step until we get a binary
vector v′ whose syndrome with respect to H is zero.

We can apply this algorithm to the second-order Reed–Muller code R(2,m), as it
has projection G with the repetition code as the parity code. We remark that a soft
decision decoding for the first-order Reed–Muller code R(1,m) was explained in [1].
It appears that a soft decision decoding for binary linear codes having projection G
is possible in a similar fashion; see [1, 7, 10, 21, 22, 23, 24]. It would be interesting to
find a fast hard or fast soft decision decoding algorithm for projection G.
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1. Introduction. Everyone has encountered situations where there is more than
one way to accomplish some task and where it may be desirable to change strategies
from time to time depending on the outcome of various actions. In trying to contact
a colleague, for example, one might first try telephoning, and depending on the result,
telephone again later or perhaps try sending electronic mail. A dating strategy for
someone who is seeking a mate might call for trying a new prospect, or retrying an
old one, if things are going badly with the current one. In these situations, if one
knows the best first move from any state, one can behave optimally.

Suppose you are invited to play the following game. Tokens begin on vertices 2
and 5 of a path connecting vertices 0, . . . , 5 (see Figure 1). A valuable gift awaits you
if either token reaches vertex 3. At any time you may pay $1 and point to a token;
that token will then make a random move (with equal probability to its left or right
neighboring vertex if it has two neighbors, otherwise to its only neighbor). Which
token should you move first?

0 1 2 3 4 5

Fig. 1. What’s the fastest way to the gift?

It is not difficult to see that by moving the token at 2 first, then switching per-
manently to the other if the game does not end immediately, your expected cost to
reach the prize is $3; this is the unique optimal strategy. Contrast this with a similar

∗Received by the editors May 28, 2002; accepted for publication (in revised form) February 26,
2003; published electronically July 30, 2003.

http://www.siam.org/journals/sidma/16-4/40834.html
†Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

(dumitriu@math.mit.edu).
‡School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160 (tetali@math.

gatech.edu).
§Bell Labs, Lucent Technologies, Inc., 2C-365, Murray Hill, NJ 07974-0636 (pw@lucent.com).

604



ON PLAYING GOLF WITH TWO BALLS 605

“loyal” game in which you must choose one token and stick with it. Then, choosing
the token at vertex 5 costs $4 on average, and choosing the other token costs $5 on
average.

Now fix any graph G with distinguished target node t, and write u ≤ v if, in
the first-described game with tokens at u and v, there is an optimal strategy which
calls for moving the token at u first. Is this relation transitive—that is, if u ≤ v and
v ≤ w, does that imply u ≤ w? (Note that two tokens may occupy the same vertex;
in fact there is no loss or gain of generality if each token has its own graph and its
own target).

In the loyal game, the corresponding statement is trivially true because there is
a quantity (the expected length of a random walk from u to t, or the hitting time)
which measures the desirability of choosing the token at u, regardless of where the
other token may be.

When one is permitted to switch tokens the situation becomes more subtle.
Nonetheless, it does turn out that there is a measure of first-move desirability which
can be applied to a single token, and therefore transitivity does hold. This measure
(our function γ) is polynomial-time computable, and it is related both to what Markov
decision theorists know as the Gittins index of a single-armed bandit and to expected
hitting times in a different Markov chain. The development here, however, will be
mostly self-contained.

The main theorem will be stated in a more general, but by no means the most
general, form. The graph is replaced by two (or more) “Markov systems,” one for each
token; each system consists of a finite-state Markov chain with a starting state and a
target state, and a positive real move-cost at each state. Further generalizations are
considered along the way.

2. Markov systems. We call the pieces from which we construct our games
Markov systems. A Markov system S = 〈V, P,C, s, t〉 consists of a state space V
(which will be assumed finite unless otherwise specified), a transition matrix P =
{pu,v} indexed by V , a positive real move-cost Cv for each state v, a starting state
s, and a target state t. We will assume usually that t is accessible (ultimately) from
every state in V .

The cost of a “trip” v(0), . . . , v(k) on S is the sum
∑k−1
i=0 Cv(i) of the costs of the

exited states. The (finite) expected cost of a trip from v to the target t is denoted
Ev[S], with the subscript sometimes omitted when the trip begins at s. Since we
never exit the target state, we may arbitrarily set Ct = 0 and pt,t = 1.

3. Games and strategies. The games we consider are all played by a single
player against a “bank” and consist of a series of moves chosen and paid for by
the player, with random effect. We imagine that the player is forced to play until
termination, which occurs mercifully in finite expected time.

The cost E[G] of a game G is the minimum expected cost (to the player) of playing
G, taken over all possible strategies. A strategy which achieves expected cost E[G] is
said to be optimal.

Let S1, . . . ,Sk be k Markov systems, each of which has a token on its starting state
and an associated cost function Ci. A simple multitoken Markov game S1◦S2◦· · ·◦Sk
consists of a succession of steps in which we choose one of the k tokens, which takes
a random step in its system (i.e., according to its Pi). After choosing a token i (on
state u, say), we pay the cost Ci(u) associated with the state u of the system Si whose
token we have chosen. As soon as one of the tokens reaches its target state for the
first time, we stop.
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We define the terminator Tg as the Markov system 〈{s, t}, P, g, s, t〉, where ps,t=1.
The terminator always hits its target in exactly one step, at cost g. The token vs.
terminator game, in which we play a simple two-token game of systems S (for some
S) and Tg (for some g), will play a critical role in the analysis of general Markov
games.

It will also be useful to define the join G = G1�G2� · · ·�Gn of games G1, . . . ,Gn as
follows: at each step the player chooses one of the n games, then pays for and makes
a move in that game. G terminates when any of its component games is finished. We
will employ the join in order to analyze the Markov game S1 ◦ S2 ◦ · · · ◦ Sk.

Throughout the paper, we will be using (sometimes without making explicit ref-
erence to) the following two classical theorems from the general theory of Markov
game strategies; the reader is referred to [6] for more detail.

The first theorem enables us to look for optimal strategies in a finite set.
Theorem 3.1. Every Markov game (in our sense) has a pure optimal strategy.
From a given state u of a Markov game, an action α produces an immediate

expected cost Cu(α) and a probability distribution {pu,·} of new states. (Note that in
the present context, a state of a Markov game consisting of k Markov systems would
be a specific configuration of the k tokens, and an action would correspond to the
choice of a particular token to move.) Thus a strategy σ which takes action α at the
state u satisfies

Eu[σ] = Cu(α) +
∑

v

pu,v(α)Ev[σ] .

If among all possible actions at state u, α minimizes the right-hand side of this
expression, σ is said to be consistent at u.

Theorem 3.2. A strategy σ is optimal if and only if it is consistent at every
state.

Proof. Let τ be an optimal strategy and U the set of states v on which Ev[τ ]−Ev[σ]
attains its minimal value x. Since t /∈ U , we can find a state u ∈ U from which some
state not in U can be reached in one step by τ . But then, if α is the action taken by
τ at u,

Eu[σ] = Eu[τ ] + x = Cu(α) +
∑

v

pu,v(α)(Ev[τ ] + x) < Cu(α) +
∑

v

pu,v(α)Ev[σ],

contradicting the fact that σ is consistent at u.

4. The grade. We say that an optimal player is indifferent among some set of
moves if for each of those moves there is an optimal strategy which employs it. Going
back to the token vs. terminator game from the preceding section, we define the grade
γ(S) of a system S = 〈V, P,C, s, t〉 to be the unique value of g at which an optimal
player is indifferent between the two possible first moves in the game Gg = S◦Tg. Thus,
γ(S) is the least value of g such that if, at any time, we can pay g to quit the system
S, we are still willing to try one move in S. (To be consistent with our notation below,
we should be denoting γ(S) by γs(S), indicating the start state of the game.)

To see that γ = γ(S) is a well-defined quantity, we will make use of Theorem 3.1.
Any pure strategy σ is defined by the set Q(⊂ V ) of states in which it chooses to
move in Tg. Suppose S is run until either t or a state in Q is reached; let the first
event be represented by R, and let X be the final cost of the run in S. Put p = Pr[R],
A = E[X|R], and B = E[X|¬R]. Then

E[σ] = pA+ (1−p)(B+g),



ON PLAYING GOLF WITH TWO BALLS 607

i.e., E[σ] is linear in g for fixed strategy σ. Optimizing over σ, it follows that E[Gg]
is the maximum of a set of linear functions and is therefore continuous in g. For g
less than the cost of the first move, E[Gg] = g (because we choose to move in Tg). On
the other hand, if g exceeds the expected cost Ev[S] from any state v, then we will
always choose to move in S, hence E[Gg] = Es[S]. Figure 2 illustrates a typical shape
for the graph of E[Gg].

g

E[Gg]

γ(S)

γ(S)

E[S]

Fig. 2. The expected cost of Gg = S ◦ Tg.

The grade of S is marked on the figure as the highest value of g at which the
strategy “play in Tg” is optimal, i.e., the coordinate of the top end of the line segment
of slope 1.

We use γu(S) or just γu (when S is fixed except for its starting state) to denote
the grade of Su = 〈V, P,C, u, t〉. Hence we can formulate the following theorem.

Theorem 4.1. A strategy for S◦Tg is optimal if and only if it chooses S whenever
the current state u of S satisfies γu < g and it chooses Tg whenever γu > g.

Remark 4.2. Note that in system S = 〈V, P,C, s, t〉 there is positive probability of
moving from s to a state of strictly lower grade. Otherwise, in the token vs. terminator
game S ◦ T (γ(S)) the strategy of paying for the first move in S and then terminating
would be optimal, yet more costly than terminating immediately.

5. An optimal strategy for the simple multitoken game. The surprising
and fundamental discovery of Gittins, first proved by Gittins and Jones [2], was that
in many Markov games, options could be “indexed” separately and then numerically
compared to determine an optimal strategy. This is indeed the case for our games,
the index being the “grade” defined above.

Theorem 5.1. A strategy for the game G = 〈S1 ◦ · · · ◦ Sn〉 is optimal if and only
if it always plays in a system whose current grade is minimal.

Proof. We will employ a modified version of the very elegant proof given by
Weber [5] for Gittins’ theorem. Our “grade” differs from the Gittins index in several
minor respects, among them that our games terminate and our costs are not subject
to discounting (about which more later). These differences are not sufficient to regard
the grade as other than a special case, or variation, of the Gittins index.

The proof will proceed using a sequence of easy lemmas. We begin by considering
a “reward game” Si(g) based on the system Si, in which we play and pay as in S
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but may quit at any time; as incentive to play, however, there is a reward of g at the
target which we may claim when and if the target is reached.

Lemma 5.2. Si(γ(Si)) is a fair game (that is, the expectation E[Si(γ(Si))] = 0)
and a strategy for Si(γ(Si)) is optimal if and only if the player quits whenever his
current state u satisfies γu > g and plays on when γu < g.

Proof. The reward game is no different from a terminator game S ◦ Tγ(Si) in
which the player is provided with an initial stake of γ(Si), hence the characterization
of optimality follows from Theorem 4.1. Since quitting immediately is among the
optimal strategies, E[Si(γ(Si))] = 0.

Suppose the game Si(γu(Si)) is amended in the following teasing manner: when-
ever the player reaches a state u with γu > g, the reward at the target is boosted up
to γu—just enough to tempt the player to continue. (Note that the reward is never
lowered.) It might seem that this game, which we will denote simply by S ′i, is better
than fair, but we have the following lemma.

Lemma 5.3. S ′i is fair, and a strategy for S ′i is optimal if and only if the player
never quits when the current grade is below the current reward value.

Proof. To see that E[S ′i] = 0, note that a session with S ′i can be broken up into
a series of smaller games, each ending either upon reaching a state U whose grade
exceeds the current reward value, or upon reaching the final target. Since each of these
games is fair, so is S ′i. Note that the antipodal strategies of quitting immediately, and
of playing until the target is hit, are in particular both optimal.

Now we consider the join G′ := S ′1� · · ·�S ′n, in which we play the teaser game of
our choice, paying as we go, until we quit or hit one of the targets (in which case we
claim the current reward at that target).

Lemma 5.4. G′ is a fair game.
Proof. Any combination (simultaneous, sequential, or interleaved) of the inde-

pendent fair games S ′1, . . . ,S ′n is still fair. The join G′ can be no better than such a
combination, since it differs only in having additional restrictions on the player; hence
it is at best fair. However, G′ cannot be worse than fair, since, e.g., the player can
simply quit at the start or play one game to its finish and ignore the others.

Among the strategies for G′ is one we call the “Gittins strategy” Γ: always play
from a system which is currently of minimal grade. This is the strategy we claim is
optimal for the original game G, but first we observe two properties of Γ relative to
the game G′.

Lemma 5.5. The Gittins strategy Γ is optimal for G′.
Proof. If a move by Γ results in the grade of a component game S ′i dropping below

its reward value, then since its grade has just gone down it is now the unique lowest-
grade component and therefore Γ will again move that token. Hence no component
system will ever be stranded in a state u with γu less than the reward on target ti,
thus all the components S ′i are played optimally.

Lemma 5.6. Of all strategies for G′ which play until a target is hit, Γ reaps the
smallest expected reward at the end. In other words, if the move-costs are waived, then
Γ actually is the worst (in terms of reward collected) possible nonquitting strategy for
G′. Furthermore, among nonquitting strategies which are optimal for the unaltered
game G′, Γ is the only one with this property.

Proof. Imagine that the course of each individual system Si is fixed. Then each
teaser game S ′i terminates, if played all the way to its target, with a certain reward
gi (equal to the largest γu over all states u hit en route). Every nonquitting strategy
will claim one of the rewards gi at the end, but the Gittins strategy gets the smallest
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one; the reason is that if it collected a nonminimal reward (say gj) when teaser game
S ′i, i �= j, was headed for a final reward of gi < gj , then at the time of termination
of G′ the reward for S ′i was gi or less, hence γu(Si) ≤ gi where u is its last state.
But this is impossible because the final run of plays of Sj began at a state v where
γv(Sj) = gj or more, and Γ should have preferred to play in Si at that time. From
the proof it is clear that Γ is unique in the sense of the last assertion in the statement
of the lemma.

We are finally ready to show that Γ is optimal for the original game G. For any
nonquitting strategy ∆ for G′, let C(∆) be its expected cost and R(∆) its expected
reward; thus E[∆] = R(∆)− C(∆) ≤ 0 since G′ is fair. But then since E[Γ] = 0,

C(Γ) = R(Γ) ≤ R(∆) ≤ C(∆),

so Γ incurs the least cost among all nonquitting strategies for G′, and this says exactly
that it is optimal for G.

If ∆ is also optimal for G, then the above inequalities are both tight, hence
Lemmas 5.5 and 5.6 both hold for ∆. If ∆ is not a Gittins strategy, then we may
assume that ∆ makes a non-Gittins move already at the start of the game, playing
S2 even though S1 has smaller grade. This will not necessarily cause it to miss the
smallest reward in G′, because there may be 0 probability of that system hitting its
target immediately and ∆ can return to S1 before it’s too late. However, it follows
from Remark 4.2 above that there is always a positive probability that any system
will reach its target along a path whose grade is strictly declining. If this is fated to
happen to both S1 and S2, then ∆ will either end up accepting the larger reward of
S2 (thus failing to have minimal reward) or leave one of the systems in a “grade below
reward” state (thus failing to be optimal for G′).

We conclude that ∆ is optimal for G if and only if it is a Gittins strategy, and
the proof of Theorem 5.1 is complete.

6. The grade and the Gittins index. Both the history and the range of
applicability of the Gittins index are rather complex subjects; the reader is referred to
Gittins’ modestly written book [1] for some appreciation of the former. It appears that
the mathematical and statistical communities took some time to appreciate that the
notorious “multi-armed bandit” problem had been solved; then they took additional
time to find new, cleaner proofs and to uncover some very nice disguised consequences.
The experience of this paper’s authors suggests that the Gittins index is still not widely
known in the mathematical community, especially among researchers in combinatorics
and in the theory of computing. We hope to make a start at rectifying the situation
with this work.

Framed in our terms, the circumstances to which the Gittins index was originally
applied comprise a collection of Markov systems S1, . . . ,Sn such as those we have
considered but without target states and with rewards instead of costs. When a
system is chosen (say at time t) a (possibly random) nonnegative and uniformly
bounded reward Rt, dependent on the state of that system, is collected. The object
is to maximize

∑∞
t=0 βtRt, where β is a “discount” strictly between 0 and 1.

“Gittins’ theorem” asserts the existence of an index depending on system and
state whose maximization at each stage produces an optimal strategy. Readers are
referred to [7] and [4] as well as [2], [5] and Gittins’ book [1] for various proofs.

The discount β is ubiquitous in Markov decision theory and in economics, finan-
cial, and actuarial research as well. It is necessary in the multi-armed bandit formu-
lation to make the objective function finite. Discounts are less natural and familiar to
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pure mathematicians and are obviated in our presentation, where the presence of ter-
minating targets keeps things finite. The elimination of discounts, particularly in the
context of job scheduling problems, is discussed in section 6.2 of [1]; one approach,
which can be used to deduce Theorem 5.1 from Gittins’ theorem, is to let targets
represent cycling states of zero reward and allow the discount factor to approach 1.

One benefit of our formulation is its natural application to the problem of min-
imizing the time needed to reach a goal, for example, for some token on a graph to
reach a target node via random walk. As a result we can represent our “grade” γ as
a hitting time, or more generally a hitting cost.

Let S = 〈V, P,C, s, t〉 be a Markov system and let U ⊂ V \{s, t}. Define a new
system S �U = 〈U ∪ {s, t}, P ′, C, s, t〉 by putting

p′u,s = pu,s +
∑

v∈V \{U∪{s,t}}
pu,v

and p′u,w = pu,w for w ∈ U and u ∈ U . In effect, S �U is the restriction of S to U ,
where the state-marking token is sent back to s whenever it tries to leave U .

Theorem 6.1. With S and U as above, γs(S) ≤ Es[S � U ], with equality if U
contains all states of grade lower than γs and no states of grade higher than γs.

Proof. Let σ be the strategy for playing the “reward game” S(γs(S)) which entails
playing until the target is hit or some state v ∈ V \U is reached, in which case the
game is terminated. Since S(γs(S)) is a fair game, σ has nonpositive expectation.
Suppose we are permitted to restart a new S(γs(S)) and continue with strategy σ,
whenever there is a voluntary termination. The resulting sequence of games still has
nonpositive expectation but is equivalent to playing the reward game S � U(γs(S))
until the target is hit. Since this will always result in collecting γs(S) at the end, the
expected total move-cost must be at least γs(S).

On the other hand, we know from Theorem 4.1 that σ is optimal (thus has zero
expected reward) when U fulfills the additional conditions; in that case we get that
the expected total move-cost is precisely γs(S).

Note that the U = ∅ case yields the rather obvious fact that γx ≤ Ex[S] for all x.
It might be argued that Theorem 6.1 is circular since it reduces computing the

grade to computing a hitting cost, but only if we know which states have grade less
than γs, and which have grade more than γs. However, in the next section we use the
theorem recursively to compute grades one by one.

7. Computing the grade. Like (most variations of) the Gittins index, our
“grade” can be determined in time bounded by a polynomial in the length of descrip-
tion of a system S. We will now present and analyze an algorithm which calculates
the grade γu of all the states u of S, one state at a time.

Let U be the set of states in V whose grades have already been calculated. We
add one more state to U , namely, the state of smallest grade in V \U . Let N(U)
denote the set of states x in V \U that are reachable directly from a state in U (i.e.,
N(U) := {v ∈ V |pu,v > 0 for some u ∈ U}).

As before, Ex[S]—the “hitting cost”—denotes the expected cost of a trip to t
from x.

The algorithm is given in pseudocode below.
1. U = {t}, γt = 0;
2. While V \U �= φ

(a) CheckedStates = φ;
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(b) While CheckedStates �= N(U)
i. Choose v ∈ N(U)\CheckedStates;
ii. Let P ′ = {p′u,v} be the transition matrix obtained from P = {pu,v}

in the following way:
• P ′ disregards all states not in U ∪ {v};
• p′u,v = pu,v +

∑
w∈V \{U∪{v}} pu,w ∀u ∈ U ∪ {v};

• p′u,u′ = pu,u′ ∀u ∈ U ∪ {v} and u′ ∈ U .
iii. Compute hv = Ev[S ′], where S ′ = 〈U,P ′, C, v, t〉;
iv. CheckedStates = CheckedStates ∪{v};

(c) Find x such that hx = min{hv : v ∈ CheckedStates};
(d) U = U ∪ {x}, γ(x) = hx.

It is evident from Theorem 6.1 that if the selected state x always has minimum
grade among the states in V \U , then the algorithm correctly computes the grades of
all states in V .

We first note that a minimum grade x /∈ U is indeed to be found among the
neighbors of U , because Remark 4.2 implies that there is a path of decreasing grade
from x to t.

It remains only to establish that if v ∈ V \U is not of minimum grade, then
hv = Ev[S ′] is at least as large as γv. But this is exactly the content of Theorem 6.1
of the preceding section.

Let us now analyze the running time for the algorithm.
Let n be the initial number of states. At step i, N(U) has O(n−i) states. For any

state in N(U), the greatest workload is done to compute Ev(P
′). It involves solving

an (i+1)×(i+1) system of equations; this can be done by an LU factorization followed
by a backward substitution, and it represents O(i3) work. Therefore, we can compute
all the grades in O(

∑n
i=1(n−i)i3) = O(n5) time.

8. States of maximum grade. If the starting state of system S has maximum
grade, then “never quitting” is an optimal strategy for the token vs. terminator game
S ◦ Tγ . Hence we have the following lemma.

Lemma 8.1. Let z be a state of maximum grade in a system S. Then γz = Ez[S].
The converse of Lemma 8.1 fails for the uninteresting reason that states of higher

grade than z may exist but not be accessible from z. More interesting is the question
of maximum grade versus maximum hitting cost (that is, maximum expected cost of
hitting t).

Theorem 8.2. In any system S the states of maximum grade and the states of
maximum hitting cost are the same.

Proof. Suppose that x maximizes Ex[S], that is, x incurs the greatest expected
cost hx = Ex[S] of hitting t assuming best strategy. Then we claim that γx = hx. To
see this, we let U be the set of states u in V such that γu > γx and compute hx by
considering the effect of the event “A” that a walk from x hits U before it reaches t.
Then

hx = Pr[¬A]Ex[S|¬A] + Pr[A] (Ex[U ] + EU [S])
≤ Pr[¬A]Ex[S|¬A] + Pr[A] (Ex[U ] + hx) ,

where Ex[U ] is the expected cost of hitting U from x and EU [S] is the expected cost
of hitting t from the random point in U which is hit first. Solving, we get

hx(1− Pr[A]) ≤ Pr[¬A]Ex[S|¬A] + Pr[A]Ex[U ] .
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However, if we compute γx = Ex[S �U ] in the same fashion, we get

Ex[S �U ](1− Pr[A]) = Pr[¬A]Ex[S|¬A] + Pr[A]Ex[U ]

so that hx ≤ γx; thus they are equal. In particular, γy ≤ hy ≤ hx = γx for all y so x
also has maximal grade.

Suppose, on the other hand, that z has maximal grade, but not maximal hitting
cost; let x have maximal hitting cost. But then we have seen that γx = hx > hz ≥ γz,
a contradiction. The theorem follows.

Remark 8.3. Theorems 6.1 and 8.2 provide an algorithm for computing grades
from highest to lowest, as opposed to the one we presented earlier. The idea is to
find the state x1 of largest hitting cost (hence highest grade), then the state x2 which
maximizes Ex2 [S �(V \{x1})], etc. Although we are not able to take advantage here of
the neighborhood structure, the running time for this algorithm is of the same order
as before, relative to the number of states.

9. Grades and graphs. The hitting time (from, say, x to y) for a simple random
walk on a graph G has many beautiful properties, including ties to electrical networks;
our analogue, the “grade,” has the additional advantage of being finite even when G
is infinite. Below we illustrate some calculations and theorems concerning the grades
of vertices of some symmetric graphs.

We have assumed up until now that our Markov chains have finite state spaces,
and indeed it would appear that there are problems with the expected outcome of
our basic game when the expected number of steps to hit a target is infinite; or even
worse, when there is positive probability that the target will never be hit. However,
the simple multitoken game makes sense as long as at least one of the systems it deals
with has a finite hitting time to the target, and of course the “terminator” system
has this property. It is not difficult to prove that.

Theorem 9.1. LetM be an infinite, locally finite Markov chain, with designated
target state t. Then

1. every state u ofM has a grade γu = γu(M) <∞;
2. for all real k, the set Sk = {v ∈M : γv < k} is finite;
3. for all u ∈M, there exists a finite chainM′, obtained via suppressing all but
a finite number of states inM, for which γu(M) = γu(M′).

We will sketch the proof of Theorem 9.1; it is left to the reader to fill in the
details.

Proof.

1. Since the Markov chain is locally finite, it follows that from any state u there
is a (finite) shortest path to t. Let u be an arbitrary state, let k < ∞ be
the length of a shortest path from u to t, and let p be the probability of this
path. (Since the chain is locally finite, it follows that p > 0.) Let g∗ = k/p,
and consider the token vs. terminator Tg∗ game, with the following strategy:
starting from u, move k times “blindly” on M, paying before each move; if
after k steps the token is not on the target, pay the terminator and end the
game in a step.
It is immediate to verify that this strategy, though perhaps suboptimal, breaks
even: the expected profit/loss from it is 0. But if γu were infinite, then for
any finite g (in particular for g∗), any strategy for the token vs. terminator Tg
game that does not choose the terminator Tg immediately would guarantee a
positive loss! Hence γu must be finite. Moreover, it also follows that g∗ ≥ γu.



ON PLAYING GOLF WITH TWO BALLS 613

2. A state v whose distance from t is at least k will also (necessarily) have a
grade of at least k; this is equivalent to saying that for any real k, Sk ⊆ Dk =
{v ∈M : dist(v, t) < k}. Due to the local finiteness of the chain, for any real
k, the set Dk is finite; hence for any real k, Sk is finite.

3. This follows directly from 1 and 2: given a state u, let k = γu, and suppress
all states of M but for those in Sk. In the newly obtained finite chain M′,
γu(M) = γu(M′).

In the following subsections, we consider the grade function for the simple random
walk on each of the following graphs: the hypercube, the Cayley tree, the plane square
grid, and the cubic grid in three-space. The last three are immediately relevant to
the above, as infinite, locally finite chains; the first is finite, but interesting in itself.

9.1. The hypercube. We begin with a finite graph, the n-dimensional hyper-
cube Qn, whose vertices are binary sequences u = (u1, . . . , un) with u ∼ v when
they differ in just one coordinate. The “kth level” of Qn consists of the vertices with
exactly k 1’s. If the target vertex is fixed at the origin, then the grade γk of a point
in level k is the hitting time from level k to level 0 in the truncated hypercube Qn

k ,
defined as follows: all vertices at level greater than k are deleted, and each vertex at
level k is provided with n−k loops so that its total degree is n.

Let Tj be the time it takes to get from level j to level j − 1 in Qn
k . Clearly

γk =
∑k
j=1 Tj ; we derive the following recursion for Tj :

Tk =
n

k
, and

Tj = 1 +
n− j

n

(
Tj + Tj+1

)
.

It is straightforward to verify that

Tj =
1(
n−1
n−j
)

n∑

i=n−j

(
n

i

)
;

this yields

γk =

k∑

i=1

1(
n−1
n−j
)

n∑

i=n−j

(
n

i

)
.

9.2. The Cayley tree. The d-regular Cayley tree is the unique connected, cycle-
free infinite graph T d whose vertices each has degree d. Again, this is a symmetric
graph so we may assume the target vertex is an arbitrary “root” t.

The case d = 2 is the doubly infinite path, in which the grade of a vertex v at
distance k from t is easily seen to be k(k+1).

In general, the grade γk of a vertex v at distance k from the root is the hitting
time from v to t in the graph T dk consisting of the first k levels of the tree (the root
being at level 0), in which every vertex on the last level has d−1 loops (instead of
d−1 children). This leads to a recurrence to which the solution, for d > 2, is:

γk =
d
(
(d− 1)k+1 − 1− (k + 1)(d− 2)

)

(d− 2)2
.(9.1)
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Interestingly, there is another way to compute the grade on T d which works on
any finite tree and shows that on trees, grades and hitting times are always integers.
Let T be any tree, possibly with loops. Fix a target vertex t, and let v be any other
vertex. Order the edges (including loops) incident to each u �= t arbitrarily subject
to the edge on the path from u to t being last. Now walk from v by choosing each
exiting edge in round-robin fashion, in accordance with the edge-order at the current
vertex, until t is reached. For example, if the edges incident to some degree-3 vertex
u are ordered e1, e2, e3, then the first time u is reached it is exited via e1, the second
time by e2, the fourth time by e1 again, etc. We call such a walk a “whirling tour”;
an example is provided in Figure 3.

Fig. 3. A whirling tour.

Theorem 9.2. In any finite tree (possibly with some loops) the length of any
whirling tour from v to t is exactly the expected hitting time from v to t.

We leave the proof to the amusement of the reader.
We will denote by gk the length of such a walk from the kth level to the root for

every k ∈ N, k ≥ 1.
In order to walk from level k to level 0 (the root), we have to first execute a walk

from level k to level 1 and then walk from there to the root. The rest of the walk will
be a depth-first search of a (d−1)-ary tree with loops for leaves, plus the final edge.
The length of the depth-first search is easily computed: we have

k−2∑

i=1

(d− 1)i =
(d− 1)k−1 − 1

d− 2
− 1

edges and (d− 1)k−1 loops; each edge is walked twice (once forward, once backward)
and each loop is walked once for a total length of

2
( (d− 1)k − 1

d− 2
− 1
)
+ (d− 1)k =

d(d− 1)k − 2d

d− 2
.

This sets up the recurrence

gk =
d(d− 1)k − 2d+ 2

d− 2
+ gk−1 + 1,
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where g0 = 0, g1 = d. Thus,

gk =

n∑

j=1

d
(
(d− 1)j − 1

)

d− 2
=

d
(
(d− 1)k+1 − 1− (k + 1)(d− 2)

)

(d− 2)2

in accordance with (9.1), as expected.

9.3. Grids. The d-dimensional grid Z
d is the graph whose vertices are d-tuples

of integers, with u ∼ v if u and v are at Euclidean distance 1. Since simple random
walks on Z

d behave approximately symmetrically with respect to rotation, one would
expect that the Gittins index of a node of Z

d, with the origin as target, depends
largely on its distance from the origin. This and more has recently been verified by
Janson and Peres [3]; we quote their results below. To prove these, Janson and Peres
employ a general lemma bounding the grade of each state of a Markov chain on both
sides. The bounds are provided by integrals which depend on some harmonic function
defined on the states.

Theorem 9.3. For simple random walk on Z
2,

γ(x, 0) = 2|x|2 ln |x|+ (2γ + 3 ln 2− 1)|x|2 +O(|x| ln |x|), |x| ≥ 2,

where γ on the right-hand side is Euler’s constant, limn→∞(− loge n+
∑n
i=1 1/i).

Theorem 9.4. For simple random walk on Z
d, d ≥ 3,

γ(x, 0) =
ωd
pd
|x|d +O(|x|d−1),

where ωd = πd/2/Γ(d/2 + 1) is the volume of the unit ball in R
d and pd is the escape

probability of the simple random walk, i.e., the probability that the random walk never
returns to its starting point.

From these theorems it follows that for each dimension d there is a constant
C = C(d), independent of the starting position x, such that the optimal strategy is
to restart from every position y with |y| > |x|+ C but never when |y| < |x|+ C.
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Abstract. We prove that given any fixed edge ra in a 4-connected graph G, there exists a
cycle C through ra such that G − (V (C) − {r}) is 2-connected. This will provide the first step in
a decomposition for 4-connected graphs. We also prove that, for any given edge e in a 5-connected
graph G, there exists an induced cycle C through e in G such that G − V (C) is 2-connected. This
provides evidence for a conjecture of Lovász.
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1. Introduction and notation. Throughout the paper, we consider only sim-
ple graphs. We let G = (V (G), E(G)) be the graph with vertex set V (G) and edge
set E(G). We use the shorthand notation xy (or yx) for an edge in E(G) whose ends
are x and y. For two subgraphs G and H of a graph, we use G ∪ H and G ∩ H to
denote their union and intersection, respectively. For convenience, we use A := B to
rename B as A or to define A as B.

Let G be a graph. Given x ∈ V (G), let NG(x) := {y ∈ V (G) : yx ∈ E(G)}.
Given S ⊆ V (G), we let NG(S) := {x ∈ V (G) − S : xy ∈ E(G) for some y ∈ S}.
For a subgraph H of G, we write NG(H) := NG(V (H)). When ambiguity is not a
concern, we may simply use V,E,N(x), N(S), and N(H). Let P be a path between
vertices u and v in G; then P is called a u-v path, and u and v are called the ends of
P . Given vertices x, y on P , we let xPy denote the path in P with ends x and y. Let
X be a set of 2-element subsets of V (G); then G+X denotes the graph with vertex
set V (G) and edge set E(G) ∪X.

Again, let G be a graph. Given S ⊆ V (G), let G[S] denote the subgraph of G
induced by S, and let G−S := G[V (G)−S]. For any S ⊆ E(G), we let G−S denote
the graph with vertex set V (G) and edge set E(G)− S. If S = {s} ⊆ V (G) ∪ E(G),
we let G − s := G − S. For any {u, v} ⊆ V (G), G − uv := G if uv /∈ E(G), and
G−uv := G−{uv} if uv ∈ E(G). A cycle C in G is an induced cycle if G[V (C)] = C,
and it is nonseparating if G− V (C) is connected.

A plane graph is a graph which is drawn in the plane with no pair of edges crossing.
The faces of a plane graph are the connected components (in topological sense) of its
complement in the plane. The infinite face of a plane graph is its unbounded face.
The boundary of a face is called a facial walk, or facial cycle if it is a cycle. A graph
is planar if it is isomorphic to a plane graph.

An ear decomposition of a connected graph G is a sequence EG = (P0, P1, P2, . . . ,
Pk) which satisfies the following three conditions: (1) P0 is a cycle in G; (2) for

each 1 ≤ i ≤ k, Pi is a path in G with ends x and y, (
⋃i−1
j=0 E(Pj)) ∩ E(Pi) = ∅,

and (
⋃i−1
j=0 V (Pj)) ∩ V (Pi) = {x, y}; and (3) G = (

⋃k
j=0 V (Pj),

⋃k
j=0 E(Pj)). The

elements of EG are called ears of G.

∗Received by the editors September 14, 2001; accepted for publication (in revised form) February
28, 2003; published electronically July 30, 2003.

http://www.siam.org/journals/sidma/16-4/39518.html
†School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 (curran@math.

gatech.edu, yu@math.gatech.edu). The research of the second author was partially supported by
NSF grant DMS 9970527.

616



NONSEPARATING CYCLES IN 4-CONNECTED GRAPHS 617

Let T1, T2, . . . , Tm be spanning trees of a graph G, and let r ∈ V (G). We say that
T1, . . . , Tm are independent spanning trees of G rooted at r if, for any x ∈ V (G) and
for any distinct i, j ∈ {1, . . . ,m}, the r-x paths in Ti and Tj are vertex-disjoint in G
except at r and x. Given any vertex r in a 2-connected graph G, it is known that G
contains two independent spanning trees rooted at r; Itai and Rodeh [5] constructed
these trees using an ear decomposition of G. In [13], Zehavi and Itai showed that if
G is a 3-connected graph and r ∈ V (G), then G contains three independent spanning
trees rooted at r. Their proof relied on the property that every 3-connected graph
with at least five vertices contains a contractible edge—one whose contraction results
in a new 3-connected graph. Since this property is unique to 3-connected graphs,
there is little hope of generalizing their approach to cases with higher connectivity.
Cheriyan and Maheshwari [3] independently showed the 3-connected result; however,
they used an ear decomposition of the graph, albeit a more restrictive type called a
nonseparating ear decomposition. This nonseparating ear decomposition (P0, P1, . . .)

imposes connectivity conditions between Pi and G − (
⋃i
j=1 V (Pj)) and also on G −

(
⋃i
j=1 V (Pj)). The first ear P0 of a nonseparating ear decomposition is guaranteed

by the following result of Tutte [12].

Theorem 1.1. Let G be a 3-connected graph, let st ∈ E(G), and let r ∈ V (G)−
{s, t}. Then G contains a nonseparating induced cycle through st and avoiding r.

In [13], it is conjectured that, for any vertex r in a k-connected graph G, there
exist k independent spanning trees of G rooted at r. The 4-connected case is the
first case where the existence of a contractible edge is not guaranteed. Huck [4] has
shown that every 4-connected planar graph contains four independent spanning trees
rooted at any given vertex. We would like to devise a 4-connected version of the
nonseparating ear decomposition which could be used to construct four independent
spanning trees (rooted at any given vertex r) in 4-connected graphs. The first step in
building such a decomposition is to find a cycle C through the “root” r which leaves
a certain degree of connectivity in G− (V (C)−{r}). Our construction of such a cycle
is the main result of this paper.

Theorem 1.2. Let G be a 4-connected graph, and let ra ∈ E(G). Then G
contains a cycle C through ra such that G− (V (C)− {r}) is 2-connected.

While motivated by the search for an ear decomposition, this result is of its own
interest. For example, variations of our proof give the following two results.

Theorem 1.3. Let G be a 5-connected graph, and let e ∈ E(G). Then G contains
an induced cycle C through e such that G− V (C) is 2-connected.

Theorem 1.4. Let G be a planar 4-connected graph, and let C be a nonseparating
induced cycle in G. Then, for any r ∈ V (C), G− (V (C)− {r}) is 2-connected.

Note that Theorem 1.3 closely parallels Theorem 1.1, and a 6-connected version
was shown by Kriesell [6]. As a consequence of Theorem 1.3, we can deduce the
following result (also proved in [6] and [2]): for any 5-connected graph G and {a, b} ⊆
V (G), G contains an induced a-b path P such that G − V (P ) is 2-connected. This
result in turn provides some evidence for the following conjecture of Lovász [7]: Given
any positive integer k, there exists some positive integer f(k) with the property that,
for any given vertices x and y in a f(k)-connected graph G, there exists an induced
x-y path P in G such that G− V (P ) is k-connected.

We note that a cycle in a 3-connected plane graph is nonseparating and induced if
and only if it is a facial cycle. Therefore, Theorem 1.4 says that if G is a 4-connected
plane graph and C is any facial cycle of G, then, for each r ∈ V (C), G− (V (C)−{r})
is 2-connected.
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Our paper will progress as follows. In section 2, we establish some convenient
definitions and state some known results. Three technical lemmas will be shown: two
are deduced from well-known results on paths in graphs, and the last is an independent
lemma necessary for proving Theorems 1.2 and 1.3. In section 3, we prove Theorem
1.2; in fact, we will prove a stronger result, Theorem 3.1. Its proof constructs a
nonseparating cycle C for Theorem 1.2 and reveals some structure which will be
useful in constructing nonseparating ear decompositions of 4-connected graphs. In
section 4, we modify our proof of Theorem 3.1 to deduce Theorem 1.3. We also prove
Theorem 1.4. In section 5, we offer some concluding remarks.

2. Preliminary results. For notational convenience, we begin this section with
the following definition. Let G be a graph with distinct vertices a, b, c, and d. We say
that the ordered quintuple (G, a, b, c, d) is planar if G can be drawn in a closed disc
in the plane with no pair of edges crossing such that a, b, c, d occur on the boundary
of the disc in that cyclic order.

Establishing planarity of certain subgraphs will be critical in the proof of Theorem
3.1 in section 3. To this end, we use a well-known result of Seymour [9]. Different
versions of this result were obtained independently by Chakravarti and Robertson [1]
and by Thomassen [10].

Theorem 2.1. Let u1, v1, u2, v2 be distinct vertices of a graph G = (V,E). Then
exactly one of the following is true:

(1) There are vertex-disjoint paths joining u1 to v1 and u2 to v2, respectively.
(2) For some integer k ≥ 0, there are pairwise disjoint sets A1, A2, . . . , Ak ⊆

V − {u1, u2, v1, v2} such that
(a) for 1 ≤ i �= j ≤ k, N(Ai) ∩Aj = ∅,
(b) for 1 ≤ i ≤ k, |N(Ai)| ≤ 3,
(c) if G′ is the graph obtained from G by, for each i, deleting Ai and adding new

edges joining every pair of distinct vertices in N(Ai), and also for j = 1, 2 adding an
edge ej joining uj to vj, then G′ may be drawn in the plane with no pairs of edges
crossing except e1, e2, which cross once.

The following corollary is a simpler version of Theorem 2.1, attained by imposing
some connectivity conditions.

Corollary 2.2. Let u1, u2, v1, v2 be distinct vertices of a graph G. Suppose
that for any T ⊆ V (G) with |T | ≤ 3, every component of G− T contains at least one
element of {u1, u2, v1, v2}. Then exactly one of the following is true:

(1) There are vertex-disjoint paths joining u1 to v1 and u2 to v2, respectively.
(2) (G, u1, u2, v1, v2) is planar.
Proof. Clearly, (1) and (2) are mutually exclusive because of planarity. We know

that either (1) or (2) of Theorem 2.1 must hold. If (1) of Theorem 2.1 holds, then (1)
of Corollary 2.2 holds. So assume (2) of Theorem 2.1 holds. Then {u1, u2, v1, v2} ∩
Ai = ∅ for all 1 ≤ i ≤ k. Hence G[Ai] consists of those components of G − N(Ai)
containing no element of {u1, u2, v1, v2}, contradicting our hypothesis. So no Ai
may exist. Let G′, e1, and e2 be described as in (c) of Theorem 2.1. Observe that
(G′ − {e1, e2}, u1, u2, v1, v2) is planar. But G

′ − {e1, e2} = G.
Let P be a subgraph of G. Then a P -bridge of G is a subgraph of G which is

induced by either (1) an edge in E(G)−E(P ) with both ends on P or (2) edges of a
component of G−V (P ) and edges of G from that component to P . For any P -bridge
B of G, the set V (B ∩ P ) is the set of attachments of B on P .

In the proof of Theorem 3.1, we will reroute paths through planar subgraphs. To
this end, we need a well-known theorem of Thomassen [11].



NONSEPARATING CYCLES IN 4-CONNECTED GRAPHS 619

Theorem 2.3. Let G be a 2-connected plane graph, F be a facial cycle of G, x ∈
V (F ), e ∈ E(F ), and y ∈ V (G) − {x}. Then G contains an x-y path P through e
such that

(1) every P -bridge of G has at most three attachments on P , and

(2) every P -bridge of G containing an edge of F has two attachments on P .

Note that if G is 4-connected and |V (P )| ≥ 4, then P is a Hamilton path in
G. We will apply Theorem 2.3 to certain planar subgraphs of a 4-connected graph.
Therefore, it will be convenient to have the following corollary.

Corollary 2.4. Let (G, a, c, b, d) be planar such that G − {c, d} contains an
a− b path. Assume that, for any T ⊆ V (G) with |T | ≤ 3, every component of G− T
contains an element of {a, c, b, d}. Then G− {c, d} contains an a-b Hamilton path.

Proof. Let G′ := (G− d)+ {{b, c}, {a, c}}. We first show that G′ is 2-connected.
Suppose on the contrary that G′ is not 2-connected. Let x be a cut vertex of G′. Be-
cause G−{c, d} contains an a-b path, {a, b, c} is contained in a cycle of G′. Therefore,
{a, b, c} is contained in an x-bridge of G′, and G′ has another x-bridge B such that
(V (B)−{x})∩{a, b, c} = ∅. Hence B−x is a component of G−T , where T := {x, d},
and V (B − x) ∩ {a, b, c, d} = ∅, a contradiction.

Observe that G′ is planar and may be drawn in the plane so that ac, bc, and
N(d) are on the cycle F which bounds its infinite face. Applying Theorem 2.3 (with
G′, a, c, bc as G, x, y, e, respectively), G′ has an a-c path P through bc satisfying (1)
and (2) of Theorem 2.3. Note that ac /∈ E(P ) because bc ∈ E(P ).

We proceed to show that every P -bridge ofG′ is induced by a single edge, and so P
must be a Hamilton path in G′. Let B be a P -bridge of G′ such that V (B)−V (P ) �= ∅,
and let T := V (B)∩V (P ). Since a, b, and c are all on P , {a, b, c}∩V (B) ⊆ T . Thus
B−T is a component of G−({d} ∪ T ) containing no element of {a, b, c, d}. If |T | ≤ 2,
then |{d} ∪ T | ≤ 3, contradicting our hypothesis. Since P must satisfy (1) of Theorem
2.3, we may assume |T | = 3. Then by (2) of Theorem 2.3, E(B) ∩ E(F ) = ∅, and
hence (V (B)− T ) ∩N(d) = ∅. Therefore, B − T is a component of G− T for which
V (B − T ) ∩ {a, b, c, d} = ∅, a contradiction.

Thus P − c is an a-b Hamilton path in G− {c, d}, as required.
Finally, we prove the following important technical lemma. We rely heavily on

this result in the proof for Theorems 1.3 and 3.1.

Lemma 2.5. Let G be a connected graph, let S ⊆ V (G), and let a, a′, b, b′ ∈ S.
Suppose

(i) G contains vertex-disjoint paths joining a to a′ and b to b′, respectively, and
(ii) for any T ⊆ V (G) with |T | ≤ 2, every component of G − T contains an

element of S.

Then G− {b, b′} contains an induced a-a′ path P such that

(1) {b, b′} is contained in a component of G− V (P ), and

(2) every component of G− V (P ) contains an element of S.

Proof. Let P be the set of those induced a-a′ paths P in G − {b, b′} such that
{b, b′} is contained in a component of G − V (P ). By (i), P �= ∅. For each P ∈ P,
let BP denote the component of G − V (P ) containing {b, b′}, and let TP denote the
union of those components C of G− V (P ) for which V (C) ∩ S = ∅.

Select P ∈ P such that (a) |V (BP )| is maximum and then (b) |V (TP )| is minimum.
If |V (TP )| = 0, then Lemma 2.5 holds. So assume |V (TP )| �= 0.

Let C = {C1, C2, . . . , Cn} be the set of components ofG−V (P ) such that Ci ⊆ TP .
For i = 1, . . . , n, we let ai and a′i be the elements of N(Ci) ∩ V (P ) such that aiPa′i
is maximal. Let the notation be chosen so that a, ai, a

′
i, a
′ occur on P in the order
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Fig. 1. Lemma 2.5.

listed. Let K be the auxiliary graph such that V (K) = C, and CiCj ∈ E(K) if and
only if E(aiPa′i) ∩ E(ajPa′j) �= ∅. Let F be a component of K. From construction,
Q :=

⋃
Ci∈V (F) aiPa′i is a subpath of P . Let x and y be the ends of Q. See Figure 1

for an illustration.

Note that V (Q) �= {x, y}, and there must exist some component K of G− V (P )
such that V (K)∩S �= ∅ and N(K)∩(V (Q)− {x, y}) �= ∅. For otherwise, the subgraph
H of G induced by (

⋃
Ci∈V (F) V (Ci)) ∪ (V (Q)− {x, y}) is a union of components of

G− {x, y}. But H contains no element of S, so T := {x, y} violates hypothesis (ii).
Let z ∈ N(K) ∩ (V (Q)− {x, y}). Then there exists some Ci ∈ V (F) such that

z ∈ V (aiPa′i) − {ai, a′i}. Otherwise, for any Cj ∈ V (F), either {aj , a′j} ⊆ V (xPz)
or {aj , a′j} ⊆ V (zPy). Let Fx be the subgraph of F induced by those Cj such
that {aj , a′j} ⊆ V (xPz), and let Fy be the subgraph of F induced by those Cj
with {aj , a′j} ⊆ V (zPy). Then, for any Ck ∈ V (Fx) and Cl ∈ V (Fy), E(akPa′k) ∩
E(alPa′l) = ∅. Hence F is not connected, a contradiction.

Choose any induced ai-a
′
i path R in G [V (Ci) ∪ {ai, a′i}], and let X := aPai∪R∪

a′iPa′. Clearly, X is an induced a-a′ path in G, and BP is contained in a component
of G−V (X). Hence X ∈ P and V (BP ) ⊆ V (BX). But V (TX) ⊆ V (TP )−V (R∩Ci),
contradicting (a) or (b).

3. 4-connected Graphs. We prove our main result in this section. For the sake
of the proof and for the application to independent trees (as described in section 1),
we prove the following stronger result.

Theorem 3.1. Let G be a 4-connected graph, let r ∈ V (G), and let e ∈ E(G)
such that e is incident with r. Then there exists a cycle C through e in G such that
G − (V (C) − {r}) is 2-connected. Moreover, for some integer m ≥ 0, there exist
edge-disjoint subpaths Pt of C − r with ends at and bt, 1 ≤ t ≤ m, such that

(i) every chord of C has both ends on some Pt, and
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(ii) for each t ∈ {1, . . . ,m}, there exist distinct ct, dt ∈ V (G) − V (C) such that
G[V (Pt) − {at, bt}] is a component of G − {at, bt, ct, dt} and (G [V (Pt) ∪ {ct, dt}] −
ctdt, at, ct, bt, dt) is planar.

Proof. Let D denote the set of those induced cycles D in G for which e ∈ E(D),
G − (V (D) − {r}) is connected, and r is contained in a unique nontrivial block of
G− (V (D)− {r}).

By Theorem 1.1, G contains a nonseparating induced cycle D through e. Since
G is 4-connected, r must have at least four neighbors, and since D is induced, exactly
two of those neighbors lie on D. Thus, G− (V (D)−{r}) is connected. Further, since
G−V (D) is connected, r is contained in a unique nontrivial block of G−(V (D)−{r}).
Hence D �= ∅.

For each D ∈ D, let BD denote the unique nontrivial block of G− (V (D)− {r})
containing r. So BD is 2-connected. We choose D ∈ D so that

(a) |V (BD)| is maximum.
For convenience, let H := G − (V (D) − {r)}, let P := D − r, and let a, b be

the ends of P . If H is 2-connected, then C := D gives the desired cycle, and in
this case, m = 0 and no Pt may exist. So assume that H is not 2-connected. Let
X := {v1, v2, . . . , vn} be the set of cut vertices of H which are contained in BD.
Observe that r /∈ X. Let B1

i , B
2
i , . . . , B

ni
i denote the vi-bridges of H other than BD,

where ni ≥ 1 because vi is a cut vertex of H. Let B := {Bj
i : 1 ≤ i ≤ n, 1 ≤ j ≤ ni}.

Note that r /∈ V (Bj
i ) ∪N(Bj

i − vi) for every Bj
i ∈ B.

Because G is 4-connected, Bj
i −vi has at least three neighbors on P . Let aji , b

j
i be

the neighbors of Bj
i −vi on P such that ajiPbji is maximal and a, aji , b

j
i , b occur on P in

this order. See Figure 2. For convenience, let P ji := ajiPbji , and let Q
j
i = P ji −{aji , bji}.

Because G is 4-connected, we have the following two observations.

(b) V (Qji ) �= ∅ and N(Qji ) ∩ V (Bj
i − vi) �= ∅.

(c) N(Qji ) �⊆ V (Bj
i ) ∪ V (D).

Claim 1. For each Bj
i , there exists a Dj

i ∈ D such that

(i) V (Dj
i ) ∩ (V (H)− V (Bj

i )) = {r},
(ii) vi /∈ V (Dj

i ), and

(iii) V (Dj
i ) ∩ V (Qji ) = ∅.

Proof of claim. Consider the graphGji :=G[V (Bj
i )∪{aji , bji}]. Let S = {vi, aji , bji}∪

(N(Qji ) ∩ V (Bj
i )). Since G is 4-connected, for any T ⊆ V (Gji ) with |T | ≤ 3, every

component of Gji −T must contain an element of S. Further, since Bj
i is a vi-bridge of

H, there must exist an aji -b
j
i path in Gji − vi. Applying Lemma 2.5 (with Gji , a

j
i , b

j
i , vi

as G, a, a′, b = b′, respectively), there must exist an induced aji -b
j
i path Sji in Gji − vi

such that if F is a component of Gji − V (Sji ), then F contains some element of S.

Let Dj
i := (D − V (Qji )) ∪ Sji . Then Dj

i is a cycle in G. By construction, (i)

V (Dj
i ) ∩ (V (H)− V (Bj

i )) = {r}, (ii) vi /∈ V (Dj
i ), and (iii) V (Dj

i ) ∩ V (Qji ) = ∅. Note
that e ∈ E(Dj

i ). It remains to show that Dj
i ∈ D.

Because D and Sji are induced subgraphs of G and by the definitions of aji and

bji , it is easy to see that Dj
i is an induced cycle in G. So we need to show that

G − (V (Dj
i ) − {r}) is connected, and r is contained in a unique nontrivial block of

G − (V (Dj
i ) − {r}). Since V (BD ∩Dj

i ) = V (BD ∩D) = {r}, BD − r ⊆ G − V (Dj
i ).

Since BD − r is connected and Dj
i is induced, it suffices to show that, for each x ∈

V (G)− V (Dj
i ), G− V (Dj

i ) has a path from x to V (BD)− {r}.
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Fig. 2. Theorem 3.1.

Suppose x ∈ V (Bl
k) for some Bl

k �= Bj
i . By construction, V (Bl

k) ∩ V (Dj
i ) = ∅.

Thus, Bl
k (and hence G−V (Dj

i )) has a path from x to vk ∈ V (BD)−{r}. So assume
x ∈ V (Bj

i ) ∪ V (Qji ).
If x ∈ V (Qji ), then, since N(Qji ) �⊆ V (Bj

i )∪V (D) (by (c)) and V (Dj
i )∩V (Qji ) = ∅

(by (iii)), G− V (Dj
i ) has a path from x to V (BD)− {r}.

So let x ∈ V (Bj
i ). Let F denote the component of Gji − V (Sji ) containing x. If

vi ∈ V (F ), then F (and hence G−V (Dj
i )) contains a path from x to vi ∈ V (BD)−{r}.

So assume that F has a neighbor of Qji . Since N(Qji ) �⊆ V (Bj
i ) ∪ V (D) (again, by

(c)) and V (Dj
i )∩ V (Qji ) = ∅ (again, by (iii)), G− V (Dj

i ) must have a path from x to
V (BD)− {r}.

For each x ∈ V (H), we define x∗ as follows. If x ∈ V (Bj
i ) for some B

j
i ∈ B, then

let x∗ = vi. If x ∈ V (BD), then define x∗ = x.

Claim 2. For any Bj
i ∈ B and for any x, y ∈ (N(Qji )∩V (H))−V (Bj

i ), x
∗ = y∗.

Proof of claim. Suppose that there are x, y ∈ (N(Qji ) ∩ V (H)) − V (Bj
i ) such

that x∗ �= y∗. Then G contains disjoint paths X and Y joining x to x∗ and y to y∗,
respectively, such that both X and Y are also disjoint from D ∪ (Bj

i − vi) ∪ (BD −
{x∗, y∗}). Let x′, y′ ∈ V (Qji ) such that xx′, yy′ ∈ E(G). By Claim 1, there is some

Dj
i ∈ D such that V (Dj

i )∩(V (H)−V (Bj
i )) = {r}, vi /∈ V (Dj

i ), and V (D
j
i )∩V (Qji )= ∅.

Then both BD and the x∗-y∗ path X ∪ xx′Qjiy
′y ∪ Y are contained in BDj

i
. Hence
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|V (BDj
i
)| > |V (BD)|, and so Dj

i contradicts (a).

Define a new graph K such that V (K) = B, and Bj
iB

l
k ∈ E(K) if and only if

E(P ji )∩E(P lk) �= ∅. Let A1, . . . ,Am be the components of K. For each t ∈ {1, . . . ,m},
let Vt := {vi : Bj

i ∈ V (At) for some 1 ≤ j ≤ ni}, P ′t :=
⋃
Bj

i
∈V (At)

P ji , and Bt :=
⋃
Bj

i
∈V (At)

Bj
i . By definition, each P ′t is a subpath of P , E(P ′s) ∩ E(P ′t ) = ∅ for all

s �= t. Without loss of generality, assume that P ′1, . . . , P
′
m occur on P from a to b in

the order listed. Let at and bt be the ends of P
′
t such that a, at, bt, b occur on P in

that order, and let Qt := P ′t − {at, bt}. See Figure 3 for an example with t = 3.

Claim 3. For each t ∈ {1, . . . ,m}, |Vt| ≤ 2.

Proof of claim. Assume for a contradiction that |Vt| ≥ 3.

Case 1 (At contains an induced path Bj
iB

l
kB

q
p with i �= p). Then E(P ji )∩E(P qp ) =

∅, E(P ji ) ∩ E(P lk) �= ∅, and E(P lk) ∩ E(P qp ) �= ∅. Hence we may assume that the

vertices a, aji , bji , aqp, bqp, b occur on P in the order listed and that the vertices

a, alk, bji , aqp, blk, b occur on P in the order listed. Moreover, alk �= bji and aqp �= blk.

Let x ∈ V (Bj
i ) − {vi} such that xbji ∈ E(G), and let y ∈ V (Bq

p) − {vp} such that

yaqp ∈ E(G). Then x, y ∈ (N(Qlk) ∩ V (H)
) − V (Bl

k) and x∗ = vi �= vp = y∗,
contradicting Claim 2.

Case 2 (At contains a triangle Bj
iB

l
kB

q
pB

j
i with i �= k �= p �= i). First, we

prove that one of the following must be true: N(Qji ) ∩ (V (Bl
k) − {vk}) �= ∅ and

N(Qji )∩ (V (Bq
p)−{vp}) �= ∅, or N(Qlk)∩ (V (Bj

i )−{vi}) �= ∅ and N(Qlk)∩ (V (Bq
p)−

’
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Fig. 3. Claims 2 and 3.
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{vp}) �= ∅, or N(Qqp) ∩ (V (Bj
i ) − {vi}) �= ∅ and N(Qqp) ∩ (V (Bl

k) − {vk}) �= ∅.
Assume from symmetry that a, aji , alk, aqp, b, not necessarily distinct, occur on P

in that order. Because E(P ji ) ∩ E(P qp ) �= ∅, then bji ∈ V (aqpPb− aqp). Similarly, b
l
k ∈

V (aqpPb−aqp). If aji �= alk, then ∅ �= N(alk)∩(V (Bl
k)−{vk}) ⊆ N(Qji )∩(V (Bl

k)−{vk})
and ∅ �= N(aqp) ∩ (V (Bq

p) − {vp}) ⊆ N(Qji ) ∩ (V (Bq
p) − {vp}). So assume aji = alk.

Then from symmetry we may assume that bji ∈ V (aqpPblk). Hence Qji ⊆ Qlk. If

alk �= aqp, then from (b), ∅ �= N(Qji ) ∩ (V (Bj
i )− {vi}) ⊆ N(Qlk) ∩ (V (Bj

i )− {vi}) and
∅ �= N(aqp)∩ (V (Bq

p)−{vp}) ⊆ N(Qlk)∩ (V (Bq
p)−{vp}). So assume alk = aqp. We may

now assume from symmetry that a, aji , b
j
i , b

l
k, b

q
p, b, not necessarily distinct, occur on

P in that order. Then Qji ⊆ Qlk ⊆ Qqp, and from (b), ∅ �= N(Qji ) ∩ (V (Bj
i )− {vi}) ⊆

N(Qqp)∩ (V (Bj
i )−{vi}) and ∅ �= N(Qlk)∩ (V (Bl

k)−{vk}) ⊆ N(Qqp)∩ (V (Bl
k)−{vk}).

By symmetry, we may assume N(Qlk)∩(V (Bj
i )−{vi}) �= ∅ and N(Qlk)∩(V (Bq

p)−
{vp}) �= ∅. Then there exist x ∈ N(Qlk)∩ (V (Bj

i )− {vi}) and y ∈ N(Qlk)∩ (V (Bq
p)−

{vp}). Hence x, y ∈ (N(Qlk) ∩ V (H)
)− V (Bl

k) and x∗ = vi �= vp = y∗, contradicting
Claim 2.

Case 3 (neither Case 1 nor Case 2). Because Case 1 does not occur, for any
induced path Bj

iB
l
kB

q
p in At, we must have i = p. Because Case 2 does not occur and

since |Vt| ≥ 3, At is not complete. Further, for any induced path R in At, R contains
no subpath Bj

iB
l
kB

q
p with i �= p. Hence R may only take on two forms: (i) V (R) may

be composed of Bj
i ’s for a fixed i, or (ii) R may be alternating between Bj

i ’s and Bl
k’s

for fixed i, k. Since we assume |Vt| ≥ 3, At contains Bj
i , B

l
k, B

q
p with i �= k �= p �= i.

Choose an induced path R1 in At from Bj
i to Bl

k and another induced path R2 in
At from Bl

k to Bq
p. Clearly these paths cannot be of type (i) and so must be of type

(ii). But then R1 ∪R2 contains a subpath Bj0
i Bl

kB
q0
p such that i �= k �= p �= i, and we

would have Case 1 or Case 2, a contradiction.
Claim 4. For each t ∈ {1, . . . ,m} with |Vt| = 1, there exists dt ∈ V (BD)− (Vt ∪

{r}) such that N(Qt)− (V (Bt) ∪ V (D)) = {dt}.
Proof of claim. Suppose |Vt| = 1. Because G is 4-connected and D is induced

in G, Qt must have a neighbor x ∈ V (BD) − (Vt ∪ {r}). By the definition of Qt, we
may assume that x ∈ N(Qji ), and we choose such Qji to be maximal. If N(Qt) −
(V (Bt)∪V (D)) = {x}, then dt := x is the desired vertex. So we assume that there is
some y ∈ N(Qt)− (V (Bt)∪ V (D)) such that y �= x. Then y ∈ V (BD)− (Vt ∪ {r, x}).
Because x, y ∈ V (BD), x

∗ = x and y∗ = y. By Claim 2 and because x∗ = x �= y = y∗,
y /∈ N(Qji ). Hence |At| ≥ 2, and so there exists some Bl

k ∈ V (At) − {Bj
i } such that

E(P lk) ∩ E(P ji ) �= ∅. By the maximality of Qji , Q
j
i is not a proper subpath of Qlk, so

either alk ∈ V (Qji ) or b
l
k ∈ V (Qji ) or Q

l
k = Qji . By (b), N(Qlk) ∩ (V (Bl

k)− {vk}) �= ∅.
Hence Qji has a neighbor z ∈ V (Bl

k) − {vk}. Then x, z ∈ (N(Qji ) ∩ V (H)) − V (Bj
i ),

z∗ = vk, and x∗ = x. But since vk ∈ Vt and x /∈ Vt, we have z
∗ �= x∗. This contradicts

Claim 2.
Claim 5. For each t ∈ {1, . . . ,m} with |Vt| = 2, N(Qt) ∩ V (BD) ⊆ Vt.
Proof of claim. Suppose |Vt| = 2, and assume that there is some x ∈ (N(Qt) ∩

V (BD))−Vt. Then x∗ = x /∈ Vt. By definition of Qt, x ∈ N(Qji ) for some Q
j
i ∈ V (At),

and we may choose such Qji to be maximal. Because |Vt| ≥ 2, |At| ≥ 2. Hence there

exists some Bl
k ∈ V (At) − {Bj

i } such that E(P lk) ∩ E(P ji ) �= ∅. By the maximality

of Qji , Qji is not a proper subpath of Qlk, so either alk ∈ V (Qji ) or blk ∈ V (Qji )

or Qlk = Qji . From (b), N(Qlk) ∩ (V (Bl
k) − {vk}) �= ∅. Hence Qji has a neighbor
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y ∈ V (Bl
k) − {vk}. Note that y∗ = vk ∈ Vt and x∗ = x /∈ Vt. Hence x∗ �= y∗. But

x, y ∈ (N(Qji ) ∩ V (H))− V (Bj
i ), contradicting Claim 2.

From Claims 3, 4, and 5, we may now identify the paths P1, . . . , Pm and vertices
at, bt, ct, dt, 1 ≤ t ≤ m, given in the statement of Theorem 3.1. We will then verify
conditions (i) and (ii) in the conclusion of this theorem.

If |Vt| = 2, then let Vt := {ct, dt} and let Gt := G[V (Bt)∪V (P ′t )]−ctdt. If |Vt| = 1,
then by Claim 4, N(Qt) − (V (Bt) ∪ V (D)) = {dt} ⊆ V (BD), and so, let Vt := {ct}
and Gt := G [V (Bt) ∪ {dt} ∪ V (P ′t )]− ctdt. From Claims 4 and 5, Gt − {at, bt, ct, dt}
is a component of G− {at, bt, ct, dt}. We proceed to prove (i) and (ii). To do so, we
will replace P ′t with an at-bt Hamilton path Pt in Gt − {ct, dt}. First, we establish
the following fact.

Claim 6. The ordered quintuple (Gt, at, ct, bt, dt) is planar.
Proof of claim. Since G is 4-connected, if T ⊆ V (Gt) with |T | ≤ 3, then any

component of Gt − T must contain an element of {at, bt, ct, dt}. We may apply
Corollary 2.2 to Gt, at, bt, ct, dt (as G, u1, v1, u2, v2, respectively). Then either (1) Gt
has disjoint paths joining at to bt and ct to dt, respectively, or (2) (Gt, at, ct, bt, dt) is
planar. If (2) holds, then we have our claim. So assume that (1) holds.

We may apply Lemma 2.5 to Gt, at, bt, ct, dt (as G, a, a′, b, b′, respectively), letting
S = {at, bt, ct, dt}, and find an induced at-bt path R in Gt − {ct, dt} such that every
component of Gt−V (R) contains an element of S. Let D′ := (D−V (Qt))∪R. Then
D′ is an induced cycle in G and G − V (D′) is connected. It is then easy to see that
D′ ∈ D. But both BD and a ct-dt path in Gt − V (R) are contained in BD′ . Thus
|V (BD′)| > |V (BD)|, contradicting (a).

Since G is 4-connected, if T ⊆ V (Gt) with |T | ≤ 3, then every component of
Gt − T must contain an element of {at, bt, ct, dt}. We may now apply Corollary
2.4 (with (Gt, at, ct, bt, dt) as (G, a, c, b, d)) to create an at-bt Hamilton path Pt in
Gt−{ct, dt} for each t ∈ {1, . . . ,m}. By construction, P1, . . . , Pm are all edge-disjoint
paths. We let C := (D−(⋃mt=1 V (Qt)))∪(

⋃m
t=1 Pt). Then C is a cycle in G, e ∈ E(C),

and G−(V (C)−{r}) = BD is 2-connected. Note that Gt = G[V (Pt)∪{ct, dt}]−ctdt,
and Gt − {at, bt, ct, dt} = G[V (Pt) − {at, bt}] is a component of G − {at, bt, ct, dt}.
Hence Pt, at, bt, ct, dt, 1 ≤ t ≤ m, satisfy condition (ii). We may easily see that
condition (i) is also satisfied. Suppose there is a chord xy of C with {x, y} �⊆ V (Pt)
for all 1 ≤ t ≤ m. If x, y /∈ V (Qt) for any t, then xy is a chord of D. But D is
induced in G, and this is a contradiction. So assume that y ∈ V (Qt) for some t,
and then x /∈ V (Pt), contradicting the fact that Gt − {at, bt, ct, dt} is a component of
G− {at, bt, ct, dt}.

This completes the proof of Theorem 3.1.
As a corollary, we have Theorem 1.2 by setting e = ra.

4. 5-connected graphs and planar graphs. In the proof of Theorem 3.1,
we choose a cycle D to maximize a block BD of H = G − (V (D) − {r}). After a
sequence of five claims, we showed that any vi-bridge other than BD in H could be
enclosed within a subgraph associated with a 4-cut. In a 5-connected graph, these
4-cuts cannot exist; this is the inspiration for Theorem 1.3. However, since we are
now interested in the connectivity of G − V (C), we must ensure that a nontrivial
block exists in G− V (C).

Since the proof of Theorem 1.3 closely parallels the proof of Theorem 3.1, we give
only an outline and refer the reader to section 3, where possible. Following the proof,
we demonstrate the relation of Theorem 1.3 to Lovász’s conjecture.

Proof. Let G be a 5-connected graph, and let e = ab.
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Claim 0. There exists a nonseparating induced cycle D through e in G such that
G− V (D) contains a nontrivial block.

Proof of claim. By Theorem 1.1, there exists a nonseparating induced cycle F
through e in G such that G− V (F ) is connected. Note that |V (G)− V (F )| ≥ 2 since
F is an induced cycle and the minimum degree of G is at least five. If G − V (F )
contains a nontrivial block, then D := F gives the desired cycle for the claim. So
assume that G− V (F ) does not contain a nontrivial block; then G− V (F ) is a tree.

Let T := G− V (F ) and P := F − e. Since |V (T )| ≥ 2, T has a leaf, say x. Then
|N(x) ∩ V (F )| ≥ 4. Let a′, b′ be the neighbors of x on F such that a′Pb′ is maximal
and a, a′, b′, b occur on P in that order. Let P ′ := a′Pb′, Q′ := P ′ − {a′, b′}, and
D := ((F − V (Q′)) ∪ {x}) + {{x, a′}, {x, b′}}. Since |N(x) ∩ V (F )| ≥ 4, V (Q′) �= ∅.
It follows from the choice of a′ and b′, D is an induced cycle in G.

Since |N(v)∩V (F )| = 2, |N(v)∩V (T )| ≥ 3 and hence |N(v)∩ (V (T )−{x})| ≥ 2.
Therefore, since both Q′ and T−x are connected, G−V (D) = G[(V (T )−{x})∪V (Q′)]
is connected. So D is nonseparating in G.

Let v1, v2 be distinct neighbors of v in T − x. Since T − x is connected, T − x
has a v1-v2 path. This path together with v, vv1, and vv2 forms a cycle in G− V (D).
Hence G− V (D) contains a nontrivial block.

Let D denote the set of those nonseparating induced cycles D in G for which
e ∈ E(D) and G − V (D) contains a nontrivial block. By Claim 0, D �= ∅. For any
D ∈ D, let BD denote a block of G − V (D) where |V (BD)| is maximum. We may
choose D ∈ D so that

(a) |V (BD)| is maximum.
For convenience, let H := G − V (D) and P := D − e. If H is 2-connected,

then C := D is the desired cycle. So assume that H is not 2-connected. Let
X := {v1, v2, . . . , vn} be the set of cut vertices of H which are contained in BD.
Let B1

i , B
2
i , . . . , B

ni
i denote the vi-bridges of H other than BD, where ni ≥ 1 because

vi is a cut vertex of H. Let B := {Bj
i : 1 ≤ i ≤ n, 1 ≤ j ≤ ni}.

Because G is 5-connected, Bj
i − vi has at least four neighbors on P . Let aji , b

j
i be

the neighbors of Bj
i −vi on P such that ajiPbji is maximal and a, aji , b

j
i , b occur on P in

this order. As in the proof of Theorem 3.1, we let P ji := ajiPbji and Qji := P ji −{aji , bji}.
We have the following two observations:

(b) V (Qji ) �= ∅ and N(Qji ) ∩ V (Bj
i − vi) �= ∅.

(c) N(Qji ) �⊆ V (Bj
i ) ∪ V (D).

Claim 1. For any Bj
i , there exists a Dj

i ∈ D such that (i) V (Dj
i ) ∩ (V (H) −

V (Bj
i )) = ∅, (ii) vi /∈ V (Dj

i ), and (iii) V (Dj
i ) ∩ V (Qji ) = ∅.

Proof of claim. Showing such a cycle exists is nearly identical to the proof of Claim
1 in section 3. Apply Lemma 2.5 (with G[V (P ji ) ∪ V (Bj

i )], a
j
i , b

j
i , and vi as G, a, a′,

and b = b′, respectively) to create the cycle Dj
i through e. The only difference is that

V (Dj
i ) ∩ (V (H)− V (Bj

i )) = ∅ in conclusion (i), since V (H) ∩ V (D) = ∅.
For any x ∈ V (H), we may define x∗ as in section 3. Similarly, we define the aux-

iliary graph K, its components A1,A2, . . . ,Am, the sets V1, V2, . . . , Vm, the subgraphs
B1, B2, . . . , Bm, and the paths P ′1, P

′
2, . . . , P

′
m, Q1, Q2, . . . , Qm as in section 3. With

the same proofs for Claims 2, 3, 4, and 5 in the proof of Theorem 3.1, appealing to
Claim 1 above where necessary, we have the following claims.

Claim 2. For each Bj
i ∈ B and for any x, y ∈ (N(Qji )∩V (H))−V (Bj

i ), x
∗ = y∗.

Claim 3. For each t ∈ {1, . . . ,m}, |Vt| ≤ 2.

Claim 4. For each t ∈ {1, . . . ,m} such that |Vt| = 1, there exists dt ∈ V (BD)−
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(Vt ∪ {r}) such that N(Qt)− (V (Bt) ∪ V (D)) = {dt}.
Claim 5. For each t ∈ {1, . . . ,m} such that |Vt| = 2, N(Qt) ∩ V (BD) ⊆ Vt.
If |Vt| = 2, then let Vt := {ct, dt}, and let Gt := G[V (Bt) ∪ V (P ′t )]. If |Vt| = 1,

then by Claim 4, N(Qt) − (V (Bt) ∪ V (D)) = {dt} ⊆ V (BD), and so, let Vt := {ct}
and Gt := G [V (Bt) ∪ {dt} ∪ V (P ′t )]. From Claims 4 and 5 above, Gt − {at, bt, ct, dt}
is a component of G− {at, bt, ct, dt}. This is a contradiction, since G is 5-connected.

Hence H is 2-connected, completing our proof.
As a consequence of Theorem 1.3, we derive the following result of [6] and [2].
Corollary 4.1. Let G be a 5-connected graph and x, y ∈ V (G) be distinct. Then

G contains an induced x-y path P such that G− V (P ) is 2-connected.
Proof. If xy ∈ E(G), then let P be the x-y path with E(P ) = {xy}. Since G is

5-connected, G− V (P ) = G− {x, y} is 2-connected. So assume that xy /∈ E(G). Let
G′ := G + xy and let e = xy. Note that G′ is 5-connected. By Theorem 1.3, G′ has
an induced cycle C through e such that G′ − V (C) is 2-connected. Let P := C − e.
Then P is an induced path in G. Since G − V (P ) = G′ − V (C), then G − V (P ) is
2-connected.

Corollary 4.1 shows that if f(k) (of Lovász’s conjecture, mentioned in section 1)
exists, then f(2) ≤ 5. The following example shows equality. Let G be the graph
obtained from a cycle C on four or more vertices by adding two vertices x and y along
with edges xa and ya for all a ∈ V (C). Then G is 4-connected, but deleting any x-y
path leaves only a path.

We proceed to prove Theorem 1.4.
Proof. Let G be a 4-connected planar graph, let C be a nonseparating induced

cycle in G, and let r ∈ V (C). Since G is 4-connected, r must have at least four
neighbors, and since C is induced, exactly two of those neighbors lie on C. Thus,
G− (V (C)− {r}) is connected. Further, since G− V (C) is connected, r is not a cut
vertex of G− (V (C)− {r}).

Let B denote the block ofG−(V (C)−{r}) containing r. Clearly, B is 2-connected.
For convenience, let P := C − r, and let H := G − V (P ). Suppose that H is not
2-connected. Let v ∈ V (B) such that v is a cut vertex of H (and hence v �= r),
and let B′ be a v-bridge of H such that B′ �= B. Let x, y ∈ V (P ) ∩ N(B′ − v)
such that xPy is maximal. Since G is 4-connected, G− {x, y, v} is connected; hence
G− {x, y, v} has a path P ′ from V (B′ ∪ xPy)− {x, y, v} to V (B)− {v}. Because C
is an induced cycle in G, B′ is a v-bridge of H, and r is not a cut vertex of H, then
P ′ is a path from V (xPy) − {x, y} to some w ∈ V (B) − {v, r} which is also disjoint
from (V (B)− {w})∪ V (B′)∪ (V (C)− (V (xPy)− {x, y})). Let z be the end of P ′ in
V (xPy)− {x, y}. See Figure 4.

Since B is 2-connected, there exist a v-r path R1 and v-w path P ′′ in B such that
V (R1∩P ′′) = {v}. Let P1 := P ′′∪P ′, P2 := zPx, P3 := zPy, let R3 be the subpath
of C − x between y and r, and let R2 be the subpath of C − y between x and r.

Let x′, y′ ∈ V (B′) − {v} such that xx′, yy′ ∈ E(G). Since B′ − v is connected,
B′ − v contains a path Q from x′ to y′. Note that B′ contains a path Q1 from v to
some s ∈ V (Q) such that V (Q1 ∩Q) = {s}. Let Q2 := sQx′x and Q3 := sQy′y.

Then (
⋃3
i=1 Pi) ∪ (

⋃3
i=1 Qi) ∪ (

⋃3
i=1 Ri) is a subdivision of K3,3. Hence G is not

planar, contradicting our hypothesis.

5. Concluding remarks. Theorem 1.3 suggests that Theorem 1.1 might be
generalized.

Conjecture. For any positive integer k, there exists some positive integer f(k)
such that if graph G is f(k)-connected, then, for any e ∈ E(G), there exists an induced
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Fig. 4. Theorem 1.4.

cycle C through e in G such that G− V (C) is k-connected.

This would imply Lovász’s conjecture in exactly the same way that Theorem
1.3 implies the case for k = 2. Our proof for k = 2 relied on the highly useful block
decomposition of connected graphs. Therefore, a natural problem is how to generalize
block decomposition to k-connected graphs.

Our short-term goal is to find a nonseparating ear decomposition for 4-connected
graphs which will yield four independent spanning trees rooted at a vertex. Theorem
3.1 provides the first ear. It is not incidental that the cycle in Theorem 3.1 has planar
sections. Huck in [4] proved the existence of four independent spanning trees in every
4-connected planar graph. (Miura et al. [8] gave a linear time algorithm for finding
four independent spanning trees in 4-connected planar graphs.) We intend to produce
four independent trees in any 4-connected graph by building an ear decomposition
with numerous planar sections and applying Huck’s result. We hope that this will
lend insight to an approach which could work for higher connectivity.

Acknowledgment. We would like to thank the referees for helpful suggestions.
The proof of Claim 0 in the proof of Theorem 1.3 was suggested by one referee.
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Abstract. The expected diameter of a cubic undirected N -vertex graph is no more than lgN +
lg lgN + 10. However, the problem of explicitly constructing an infinite family of N -vertex graphs
with maximum degree 3 and diameter lgN+o(lgN) is open; the best construction known for graphs
on N vertices has diameter 1.47 lgN . Here we present an explicit construction of an infinite family
H of cubic graphs Λ with diameter 1.413 lg |V (Λ)|+O(1).
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1. Introduction. Let X = (V,E) be an undirected connected graph. For any
u, v ∈ V , we define dX(u, v) to be the number of edges in the shortest path from u to
v. The diameter d(X) of X is defined to be the quantity

d(X) = max
u,v∈V

dX(u, v).

It is well known (see [2]) that the expected diameter of a randomly constructed cubic
graph on N vertices is no greater than lgN + lg lgN + 10. However, the problem of
explicitly constructing an infinite family of cubic graphs with N vertices and diameter
lgN + o(lgN) appears to be a very difficult open question. (See [1] and [4, p. 754].)
The best construction known for such graphs of N vertices has diameter slightly
greater than 1.47 lgN and is presented in [2] and [3]. Low-diameter bounded-degree
graphs are important in the design of networks that allow for fast broadcasting and
routing. Explicit constructions of such networks are much preferred over random
constructions; among other things, it is much easier to describe, store, and reproduce
an explicit construction than a random construction. It also tends to be much easier
to exploit a network which has a known, easily describable structure.

We progress toward a solution of the problem of explicitly constructing a low-
diameter cubic graph by presenting an infinite family H of graphs such that the
diameter of each Λ ∈ H is less than 1.414 lg |V (Λ)| + O(1). Like the construction in
[2], H is also constructed from the family of 3-ary shuffle-exchange graphs; however,
we make more nontrivial modifications.

2. Construction of H. Let N be an arbitrarily large positive integer of the
form N = 39r/103−10, where r is a positive integer that is a multiple of 10. We
construct H by presenting the construction of a graph Λ ∈ H such that Λ has at least
N vertices. Then we prove that Λ has maximum degree 3 and that the diameter of Λ
is no greater than 1.413 lgN , where lgN denotes log2 N .

We now present the notation that we will use for the rest of this paper. Let
{0, 1, 2}r and W denote the linear space of vectors v of length r such that each
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18, 2002; published electronically August 19, 2003.

http://www.siam.org/journals/sidma/16-4/33026.html
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coordinate of v is in {0, 1, 2}, with componentwise addition and subtraction done mod
3. Also, for each v ∈W , let vi denote the ith component of v, where i ∈ {0, . . . , r−1},
so v = vr−1vr−2 . . . v1v0. Next, let X be the subspace of W consisting of the vectors x
such that x10n+l′ = x10n+l for all nonnegative integers n, l, and l′ such that n < r/10
and l, l′ < 10. Also, let C be the subspace of W consisting of the vectors c such that
cl = c10n+l for all nonnegative integers n and l such that n < r/10 and l < 10. So
|X| = 3r/10 and |C| = 310. Then let C ⊕X be the linear space generated by X and
C. Thus |C ⊕ X| = 3103r/10. Next let ∼ be the equivalence relation on W , where
u ∼ v if and only if u− v ∈ C ⊕X. For each v ∈ W , let [v] be the equivalence class
of W with respect to ∼ that contains v, and let [W ] denote the set of equivalence
classes of W with respect to ∼. So |[W ]| = |W |/|C ⊕X|, which is 3−1039r/10 = N .
Furthermore, for each k ∈ {0, 1, . . . , r − 1}, let ek denote the vector in W such that
ekk = 1, but every other coordinate of ek is 0, and for each ι ∈ {0, 1, 2}, let ιek denote
the vector in W such that ιekk = ι, but every other coordinate of ιek is 0. Finally, for
each u ∈W , let λ10(u) denote the vector u9u8 . . . u1u0ur−1ur−2 . . . u11u10.

Construction of Λ. We construct Λ from a graph Λ′ on 10|[W ]| vertices, which
we next specify. The vertex-set of Λ′ is [W ] × {0, 1, . . . , 9}. For any (not necessarily
distinct) u u′ ∈ W , vertices ν = 〈[u], k〉 and ν′ = 〈[u′], k′〉 are adjacent in Λ′ if and
only if ν and ν′ satisfy either condition (I) or (II), stated next.

(I) Both k = k′, and also [u′] ∈ [u + ek], [u + 2ek].
(II) ν and ν′ satisfy one of (A), (B), (C), stated next.

(A) [u] = [u′], and k is either k′ + 1 or k′ − 1.
(B) [u′] = [λ10(u)], and k = 9 and k′ = 0.
(C) [u] = [λ10(u′)], and k′ = 9 and k = 0.

Having specified Λ′, we next construct Λ from Λ′. For each u ∈ W and each
k ∈ {0, 1, . . . , 9}, the induced subgraph of Λ′ on the set I[u],k = {〈[u], k〉, 〈[u+ ek], k〉,
〈[u + 2ek], k〉} is a 3-cycle T[u],k. For each u ∈ W and each k ∈ {0, 1, . . . , 9}, (1)
remove each of the three edges of T[u],k, and then (2) put an edge between νI[u],k

and
each of the three vertices in I[u],k. The resulting graph is Λ.

Clearly Λ′ has |[W ]| = N vertices, and |V (Λ′)| ≤ |V (Λ)|. So Λ has at least N
vertices, as claimed in the beginning of this section. So to prove that H is as claimed,
it suffices to prove Theorem 2.1.

Theorem 2.1. Λ has diameter no greater than 1.413 lg |V (Λ)| and is 3-regular.
We devote the rest of this paper to proving Theorem 2.1. We first show that Λ

has maximum degree 3. The graph Λ′ is 4-regular. Indeed, for each vertex ν ∈ Λ′,
there are exactly two vertices ν′ such that ν and ν′ satisfy (I) and exactly two other
vertices ν′ such that ν and ν′ satisfy (II). Then Λ is 3-regular. Indeed, on one hand,
every vertex ν in V (Λ′) is in exactly one I[u],k, so from (1) and (2), the degree of ν
in Λ is exactly one less than the degree of ν in Λ′. On the other hand, each I[u],k has
exactly three vertices, so every vertex ν in V (Λ) \ V (Λ′) has degree exactly 3 by (2).
We have proved the following lemma.

Lemma 2.1. Λ is 3-regular.
Having shown that Λ is 3-regular, we show in the next section that Λ has diameter

no greater than 1.413 lg |V (Λ)|. From this Theorem 2.1 will follow.

3. Bound on the diameter of Λ. In this section, we bound the diameter of
Λ. To do this, we first introduce notation. Set E′1 to be the set of edges {ν, ν′} of Λ′,
where the endpoints ν and ν′ satisfy (I), and set E′2 to be the set of edges {ν, ν′} of
Λ′, where the endpoints ν and ν′ satisfy (II). So E′1 and E′2 partition the edge-set of
Λ′. We note the following.
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(*) Suppose that ν and ν′ are adjacent vertices in Λ′. If {ν, ν′} is an edge in E′1,
then dΛ(ν, ν′) is no greater than 2. But if ν and ν′ are linked by an edge in E′2, then
ν and ν′ are still adjacent in Λ or, equivalently, dΛ(ν, ν′) is 1.

To see (*), note from (1) and (2) that the only edges we removed from Λ′ to
construct Λ are those in the T[u],k’s. But each such edge is in E′1. So if ν and ν′ were
linked by an edge in E′2, then ν and ν′ still would be adjacent in Λ. On the other
hand, if ν and ν′ were linked by an edge in E′1, then they would be in the same I[u],k.
So by (2), ν and ν′ share a common neighbor in Λ and (*) follows.

Finally, for arbitrary vectors v and v′ in W , let h(v, v′) denote the number of
indices i such that vi �= v′i.

To show that Λ has the low diameter claimed, we do the following. Let v and v′ be
arbitrary elements of W . We first show in Lemma 3.2 that there is a path in Λ′ from
ν = 〈[v], 0〉 to ν′ = 〈[v′], 0〉 that uses at most r edges of E′2 and h(v, v′) edges of E′1.
We next show in Lemma 3.4 (which uses Lemma 3.3) that there is some x ∈ C ⊕X
such that h(v + x, v′) ≤ .507342r. Then, because [v + x] = [v] if x ∈ C ⊕X, Lemmas
3.4 and 3.2 will imply that there is a path in Λ′ from ν to ν′ that has no more than
r edges of E′2 and .507342r edges of E′1, and thus r + .507342r edges total. But then
this and (*) imply that (*) there is from ν to ν′ a path in Λ having no more than
r+(2× .507342r) edges. However, for every vertex ν′′ in Λ, there is a v ∈W such that
ν′′ is within distance 7 in Λ of the vertex 〈[v], 0〉. ( Indeed, if ν′′ is also in V (Λ′), then
ν′′ = 〈[v′′], k〉 for some v′′ ∈ W and k ∈ {0, 1, . . . , 9}. So there is a path of exactly k
edges (all of E′2) from ν′′ to 〈[v′′], 0〉 and a path of exactly 10 − k edges from ν′′ to
〈[λ10(v)], 0〉. But if ν′′ is not in V (Λ′), then from (2) ν′′ is adjacent in Λ to a vertex
in V (Λ′).) This and (*) imply that the diameter d(Λ) of Λ is r + (2 × .507342r) +
O(1), which is 1.413 lg |[W ]| + O(1), because |[W ]| is 3−1039r/10. As the number of
vertices in Λ is at least |[W ]|, the next lemma follows.

Lemma 3.1. Theorem 2.1 will follow from Lemmas 2.1, 3.2, and 3.4.

We next establish Lemma 3.2, and then Lemma 3.4, and then we are done.

Lemma 3.2. Let ν and ν′ be two vertices in Λ′ of the form ν = 〈[v], 0〉 and
ν′ = 〈[v′], 0〉. Then there is a path P in Λ′ from ν to ν′ containing at most r+h(v, v′)
edges that satisfies both of the following simultaneously:

(A) P contains at most h(v, v′) edges of E′1.
(B) P contains at most r edges of E′2.
Proof. The path

〈[v], 0〉 = 〈[vr−1 . . . v1v0], 0〉 → 〈[vr−1 . . . v1v
′
0], 0〉 → 〈[vr−1 . . . v1v

′
0], 1〉

→ 〈[vr−1 . . . v
′
1v
′
0], 1〉 → · · · → 〈[vr−1 . . . v10v

′
9v
′
8 . . . v

′
1v
′
0], 9〉

→ 〈[v′9 . . . v′1v′0vr−1 . . . v10], 0〉 → · · · → 〈[v′r−11 . . . v
′
1v
′
0v
′
r−1 . . . v

′
r−10], 9〉

→ 〈[v′r−1 . . . v
′
1v
′
0], 0〉 = 〈[v′], 0〉

uses exactly r edges from E′2, and h(v, v′) edges from E′1, and r + h(v, v′) edges
total.

We next present Lemma 3.3, which we will use to prove Lemma 3.4.

Lemma 3.3. For each w, y ∈ {0, 1, 2}10, let f(w, y) denote the number of indices
i such that the ith coordinate wi of w differs from the ith coordinate yi of y. Then let
f̂(w, y) denote the minimum of f(w, y), f(w+1, y), f(w+2, y), where 1 and 2 denote
the vectors in {0, 1, 2}10 of all 1’s and 2’s, respectively (addition is componentwise and
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mod 3). Then for each w ∈ {0, 1, 2}10,
∑

y∈{0,1,2}10
f̂(w, y) ≤ 310 × 5.07342.(3.1)

Proof. For each ι ∈ {0, 1, 2}, let jι denote the number of indices l such that

wl − yl = ι (mod 3). Then f̂(w, y) can be no greater than 10 − max{j0, j1, j2}. Thus

j can be no greater than 6. So, with w fixed, f̂(w, y) = 5 for exactly 3
(
10
5

)
(25 − 2)

+ 3
(
10
5

)
= 23436 of the y’s. Also, f̂(w, y) = 4 for exactly 3

(
10
6

)
24 = 10080 of the y’s.

Futhermore, f̂(w, y) = 3 for exactly 3
(
10
7

)
23 = 2880 of the y’s; f̂(w, y) = 2 for exactly

540 of the y’s; f̂(w, y) = 1 and 0 for exactly 60 and 3 of the y’s, respectively. Then

f̂(w, y) = 6 for the remaining 22050 y’s. Summing up gives Lemma 3.3.
Lemma 3.4. Let v and v′ be two vectors in W . Then there exists an x ∈ C ⊕X

such that h(v + x, v′) ≤ .507342r.
Proof. For each nonnegative integer n < r/10, let v(n) and v′(n) denote the

following vectors in {0, 1, 2}10. For each i ∈ {0, 1, . . . , 9}, the ith coordinate of v(n) is
v10n+i (equivalently, the (10n + i)th coordinate of v) and the ith coordinate of v′(n)

is v′10n+i. Then (using the notation in Lemma 3.3), we claim that

min
x∈C⊕X

h(v + x, v′) ≤ min
y∈{0,1,2}10

n<r/10∑

n=0

f̂(v(n) + y, v′(n)).(3.2)

Indeed, let 0, 1, 2 be the vectors in {0, 1, 2}10 of all 0’s, 1’s, and 2’s, respectively.
Then let y′ be a vector in {0, 1, 2}10, and let z′(0),. . . ,z′(r/10−1) be vectors in {0,1,2},
such that

n<r/10∑

n=0

f(v(n) + y′ + z′(n), v′(n)) = min
y∈{0,1,2}10

n<r/10∑

n=0

f̂(v(n) + y, v′(n)).(3.3)

Such y′ and z′(n) exist by definition of f̂ . Then let x̂ denote the vector in C such
that x̂10n+l equals the lth coordinate of y′ for all nonnegative integers n and l such
that n < r/10 and l < 10. Also, let z′ denote the vector in X such that z′10n+l equals

the lth coordinate of z′(n) for all nonnegative integers n and l such that n < r/10
and l < 10. (Since each z′(n) is either 0, 1, or 2, the vector z′ is in X.) Then set
x = x̂ + z′. Thus by definition of h, we see that h(v + x, v′) equals the quantity on
the left-hand side of (3.3) which, by (3.3), equals the quantity on the right-hand side
of (3.2). Therefore, (3.2) follows, since x ∈ C ⊕X.

If we show that the right-hand side of (3.2) is no greater than .507342r, then
Lemma 3.4 follows, so we show this next. To this end, we now use Lemma 3.3. By
Lemma 3.3,

∑

y∈{0,1,2}10

n<r/10∑

n=0

f̂(v(n) + y, v′(n)) ≤ 310 × 5.07342× r/10.(3.4)

So there must exist some y ∈ {0, 1, 2}10 such that

n<r/10∑

n=0

f̂(v(n) + y, v′(n)) ≤ 5.07342× r/10,(3.5)
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and so the right-hand side of (3.2) is indeed no greater than .507342r, and thus Lemma
3.4 follows.

Theorem 2.1 follows from Lemmas 2.1, 3.2, and 3.4 by Lemma 3.1.
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Abstract. In a graph coloring, each color class induces a disjoint union of isolated vertices.
A graph subcoloring generalizes this concept, since here each color class induces a disjoint union of
complete graphs. Erdős and, independently, Albertson et al., proved that every graph of maximum
degree at most 3 has a 2-subcoloring. We point out that this fact is best possible with respect to
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for fixed k, recognizing k-subcolorable graphs is NP-complete on graphs with maximum degree at
most k2. In contrast, we show that, for arbitrary k, k-subcolorability can be decided in linear time
on graphs with bounded treewidth and on graphs with bounded cliquewidth (including cographs as
a specific case).
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1. Introduction and results. A k-coloring of a graph G is a partition of the
vertices into k pairwise disjoint sets V1, . . . , Vk such that for every i = 1, 2, . . . , k, each
color class Vi consists of isolated vertices; i.e., it forms a stable set. The smallest k for
which the graph G has a k-coloring is called the chromatic number of G, denoted by
χ(G). Graph coloring is well studied for both its theoretic and algorithmic aspects.
It is well known that testing 3-colorability is NP-complete for triangle-free graphs
with maximum degree 4 (see [24]) and for planar graphs with maximum degree 4
(see [19]). Testing 3-colorability is easy for graphs with maximum degree 3 (by
the Brooks theorem) and for triangle-free planar graphs (by the Grötzsch theorem).
2-colorable graphs can be recognized in linear time.

Graph coloring has been generalized in several ways and by a number of authors;
see [2] for a comprehensive survey. In this paper we address one of these generalized
colorings. A partition V1, . . . , Vk of the vertex set of a graph G is called a k-subcoloring
of G if each color class Vi induces in G a disjoint union of complete subgraphs (of
various sizes). The subchromatic number χs(G) of G is the smallest integer k for
which G has a k-subcoloring. Subcolorings have been discussed in [2, 7, 8, 25]. It
turns out that subcolorings have many interesting properties similar to colorings, and
every k-coloring is also a k-subcoloring; hence χ(G) ≥ χs(G). Among other results
we would like to mention the following properties of graph subcolorings:

(1) For every k ≥ 1, there is a triangle-free graph Gk with χs(Gk) = k [2, 25].
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(2) For every planar graph G, χs(G) ≤ 4. In addition, if G is outerplanar,
χs(G) ≤ 3. These bounds are tight [7].

(3) For every graph G with maximum degree ∆, χs(G) ≤ �∆2 �+ 1 [2].
Gimbel showed in [20] that the subchromatic number is dominated by the 1-

defective coloring number. Cowen, Cowen, and Woodall showed, without using the
4-color theorem, that the 1-defective coloring of all planar graphs is at most 4 (see
[15]). Therefore, the 4-subcolorability of planar graphs (2) is independent on the
4-color theorem as well.

By (3), every graph with maximum degree at most 3 is 2-subcolorable. Actually,
this fact follows also from a theorem due to Erdős [16] which says that every graph G
has a bipartite spanning subgraph H such that the degree in H of every vertex is at
least one-half of its degree in G. Thus, if the maximum degree in G is at most 3, every
bipartition of H defines a subbipartition of G. Moreover, such a bipartite spanning
subgraph H of G can be found easily in polynomial time by a “local improvement”
technique.

Albertson et al. [2] point out the difficulties involved in characterizing 2-subcolor-
able graphs by giving a number of examples. In this paper we prove the following
theorems in sections 2.1 and 2.2.

Theorem 1. Recognizing 2-subcolorable graphs of maximum degree 4 is NP-
complete, even on triangle-free planar graphs.

Albertson informed us that, independently, Gimbel also proved Theorem 1 with
a completely different reduction [20].

Formally we define k-subcolorability as a decision problem whose input is a
graph G, and we question whether χs(G) ≤ k. Notice that the NP-completeness of k-
subcolorability for the class of all graphs follows from a theorem by Achlioptas [1].
We prove the following theorem in section 2.4.

Theorem 2. For every fixed k ≥ 2, k-subcolorability is NP-complete for
graphs of maximum degree at most k2.

For constant k, k-subcolorability can be expressed as a monadic second or-
der logic formula, and hence can be tested in linear time for graphs with bounded
treewidth. Due to the fact that for these graphs χs(G) ≤ c for a constant c, we get
that there exists an algorithm that in linear time determines χs(G) for graphs with
bounded treewidth. On the other hand, the general algorithm is unnecessarily com-
plicated for our purpose, and in section 3.1 we present a simpler algorithm solving
this problem.

On the other hand, χs(G) can be arbitrarily large for graphs with constant
cliquewidth (or cographs that have cliquewidth ≤ 2).

Theorem 3. For every k, the k-subcolorability problem can be decided in
time O(n2ckc+1) on graphs of treewidth bounded by a constant c, on cographs in

time O(nk3), and finally in time O(nk32c+1

) on graphs with cliquewidth bounded by c
(assuming that a construction tree is given in all three cases).

These algorithms can be fine tuned to compute the subchromatic number on these
three graph classes. Note that our result on graphs with bounded cliquewidth is new
because, for arbitrary k, k-subcolorability cannot be expressed in the so-called
monadic second order logic.

2. The NP-completeness of the subcoloring problem. We prove Theorem
1 by reducing the not-all-equal 3-satisfiability problem, which was proved to be NP-
complete by Schaefer [27] (see also [18, Problem LO3]).
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u v u u′ v′ v

F

Fig. 1. Two connector graphs.

xi1xi1 xi2 xi2 ximxim

Fig. 2. The variable gadget Hi.

Problem. Let C be a Boolean formula consisting of m clauses such that every
clause has exactly three distinct literals. Then the decision problem of whether there
exists a satisfying assignment for C such that each clause in C has at least one false
(and at least one true) literal is NP-complete.

We denote the class of all formulas that allow such a not-all-equal assignment by
NAE3SAT .

2.1. Triangle-free graphs of maximum degree 4. We first prove in this sec-
tion the NP-completeness of 2-subcolorability for nonplanar triangle-free graphs
of maximum degree 4 (the problem is clearly in NP). Let C = {C1, C2, . . . , Cm} be a
Boolean formula consisting of m clauses over variables x1, x2, . . . , xn such that every
clause Cj of C contains exactly three literals, Cj = (l′j ∨ l′′j ∨ l′′′j ). We will construct a
triangle-free graph G = G(C) of maximum degree 4 such that G has a 2-subcoloring
if and only if C ∈ NAE3SAT .

Before we describe the construction of G, observe the two connector graphs de-
picted in Figure 1.

The first graph has the property that, under any 2-subcoloring, vertices u and
v have distinct colors. Its symbolic representation is shown below, and we will use
this simplified drawing when a larger graph contains this connector as a subgraph.
Such an example is depicted in the connector graph F (in the right part of Figure 1).
Observe that under any 2-subcoloring of F the pair u, v is always colored by the same
color, distinct from the color used on the pair u′, v′.

The graph G consists of three parts: clause gadgets, variable gadgets, and con-
nectors. The clause gadget is very simple: For each clause Cj , we insert into G a
unique path P3 of length 2, with vertices labeled l′j , l

′′
j , and l′′′j . Observe that every

clause gadget allows all possible 2-subcolorings such that both colors are used and
that (by the definition of 2-subcoloring) it is impossible to color the P3 by one color.

For each variable xi we insert in G a copy of graph Hi, depicted in Figure 2.
Lemma 4. The graph Hi is 2-subcolorable. Any 2-subcoloring contains vertices

xi1, xi2, . . . , xim in the same color class, and vertices xi1, xi2, . . . , xim are colored by
the other color.

We complete the construction of the graph G by connecting clause and variable
gadgets by inserting a copy of the connector graph F for each literal lαj of C, where
the vertex u of F is merged with the corresponding vertex lαj in a clause gadget, and
the vertex v is merged either with the vertex xij if the literal lαj equals xi or with the
vertex xij if lαj = ¬xi. (We make the construction for all possible α ∈ {′, ′′, ′′′}.)
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y′

y

x x′

u vv′

Fig. 3. The “crossover” graph and the crossing replacement.

Observe that all graphs involved in the construction of the graph G are triangle
free and of maximum degree 4, and even the final composition does not violate this
property.

We now show that C ∈ NAE3SAT if and only if G has a 2-subcoloring.
Let φ be a truth assignment for C in which every clause has at least one true and

at least one false valued literal. We define a 2-subcoloring of G as follows: For every
variable xi, color all xij red if and only if φ(xi) = true, and use the blue color otherwise.
Then extend this subcoloring to a unique 2-subcoloring of Hi. This is possible, as we
have seen by Lemma 4. Next extend this 2-subcoloring for all connectors F . Since
φ was a feasible NAE3SAT assignment, every clause gadget (path of length 3) is
also properly 2-subcolored. Observe also that there is no conflict due to the vertex
merging in the construction of G since, in every F , vertices u and u′ and also v and
v′ have different colors.

In the opposite direction, suppose that there is a 2-subcoloring of G in red and
blue. We define the assignment φ for C as follows: φ(xi) = true if xij is red for some
j; otherwise φ(xi) = false. By Lemma 4, this assignment is well defined. Due to
the properties of connectors F it holds that in every clause gadget two of the three
vertices l′j , l

′′
j , l
′′
j have different colors. Therefore, each clause Cj has at least one true

and at least one false literal by the truth assignment φ.

2.2. Planar graphs of maximum degree 4. In this section, we construct a
triangle-free planar graph G′ from the graph G obtained in the previous section, such
that G is 2-subcolorable if and only if G′ is 2-subcolorable.

Note that G can be embedded in the plane, in polynomial time, such that every
edge is a straight line, all edge crossings occur only on (v, v′) edges of the connector
graphs F , and each crossing point meets exactly two edges. This makes possible the
use of the “crossover” technique, described among others in [18], in proving NP-com-
pleteness of planar graph 3-colorability.

The “crossover” in our construction is the graph depicted in Figure 3 on the left
side and has the following properties:

• In any 2-subcoloring, vertices x and x′ belong to the same color class, and
also vertices y and y′ have the same color (not necessarily the same as x, x′).
• There exists a 2-subcoloring such that x and y belong to the same color class,

and also another 2-subcoloring such that x and y are colored by different
colors.

The construction of the planar graph G′ from G is very similar to the construc-
tion for planar graph 3-colorability. We replace each crossing point with the
“crossover” graph and join these crossovers by connectors F (see Figure 3, right).
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v′
vv′′

u′ u′′u

Fig. 4. The edge replacement graph.

Observe that the graph G′ has a 2-subcoloring if and only if G does.
Suppose that G has a 2-subcoloring. Such a subcoloring of G can be extended

to a 2-subcoloring for G′ as follows: For every edge (v′, v) in G use the color of v on
vertices u and v of all connectors F added during removed crossovers. Such a coloring
can be extended to the coloring of G′.

In the opposite direction, suppose that G′ has a 2-subcoloring. Then, due to
the properties of connector F (u and v are colored the same) and the “crossover”
graph (opposite vertices maintain the same color), the color restriction on the original
vertices is a proper 2-subcoloring of G.

2.3. 3-subcolorability of planar graphs. The 3-subcolorability of pla-
nar graphs is also NP-complete. We show a simple reduction from planar graph
3-colorability. Assume that G is a planar graph whose proper 3-coloring is ques-
tioned. We replace each edge (u, v) with a graph, depicted in Figure 4, composed of
four copies of path P11 and six additional vertices (see [7]).

By a case study, it is easy to check that, under any 3-subcoloring of this replace-
ment graph, vertices u, u′, and u′′ have the same color, distinct from the color used
on v′′, v′, and v. Hence the result for the reduction is straightforward.

Corollary 5. The planar 3-subcolorability is NP-complete on planar graphs.
Recall that every planar graph is 4-subcolorable and that every outerplanar graph

is 3-subcolorable.

2.4. The hardness of k - subcoloring for k ≥ 3. In this section we show that,
for each fixed k ≥ 2, the k-subcolorability is an NP-complete problem on graphs
with maximum degree at most k2.

Lemma 6. If ϕ is a k-subcoloring of a graph G and H is an induced subgraph of
G, then the restriction of ϕ on H is a k-subcoloring of H.

Note that Lemma 6 does not hold for subgraphs in general.
Lemma 7. For every k ≥ 2, the complete k-partite graph Kk,...,k,k+1 consisting

of k− 1 (small) partitions with k vertices and one (big) partition of k+1 vertices has
exactly one (up to permutation) k-subcoloring; this k-subcoloring is also its unique
k-coloring. The graph Kk,...,k,k+1 cannot be subcolored with less than k colors.

The reduction from (k − 1)-subcolorability to k-subcolorability goes as
follows: Let G be the graph for which the existence of a (k − 1)-subcoloring is
questioned and let V (G) = {v1, . . . , vn}. Then the graph G′, the instance for k-
subcolorability, is constructed as follows:

• Take n copies H1, . . . , Hn of the Kk,...,k,k+1;
• in each Hi, label four distinct vertices of the big class with xi1, x

i
2, x

i
3, x

i
4, and

label one vertex in each of the k − 1 small classes with yij , 1 ≤ j ≤ k − 1;

• add edges (xi1, y
i−1
j ), (xi2, y

i−1
j ) for all 1 ≤ j ≤ k − 1, 2 ≤ i ≤ n;

• add edges (xi3, vi), (x
i
4, vi) for all 1 ≤ i ≤ n.
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We claim by (1) and (2) below that G is (k − 1)-subcolorable if and only if G′ is
k-subcolorable:

(1) Suppose that G can be subcolored with k − 1 colors. Then subcolor, in each
Hi, the k−1 small classes with these k−1 colors (each class gets one color), and take
one new color for the big class. This is a k-subcoloring for G′.

(2) Consider a k-subcoloring of G′. Then, by Lemma 6, the restriction of this
subcoloring on each Hi is a k-subcoloring. By Lemma 7, each Hi gets all k colors
and each class in Hi is monochromatic. Moreover, the big classes of all Hi’s have the
same color.

We show that, for 1 ≤ i < n, xi1 and xi+1
1 have the same color. Assume the

contrary; then the color of xi+1
1 must occur in a small class of Hi; say yi1 has this

color. But then xi+1
1 , xi+1

2 , yi1 induce a monochromatic path P3 in G′, contradicting
the definition of k-subcoloring.

No vertex in G can have the color occurring in the big classes of the Hi’s. There-
fore, the restriction of the k-subcoloring of G′ on G is a (k − 1)-subcoloring of G.

Lemma 8. For k ≥ 3, ∆(G′) = max{∆(G) + 2, k2}.
Proof. Observe that ∆(G′) = max{∆(G)+ 2, dG′(x2

1), dG′(y2
1)}. By the construc-

tion, dG′(x2
1) = (k−1)k+(k−1) = k2−1 and also dG′(y2

1) = (k−2)k+(k+1)+2 =
k2 − k + 3; hence, for k ≥ 3, the lemma follows.

Proof of Theorem 2. The case k = 2 is proven by Theorem 1. The statement
for k ≥ 3 follows from the construction and Lemma 8 and by noting that if G has
maximum degree at most (k − 1)2, then the graph G′ constructed from G as above
has maximum degree at most k2.

3. Polynomially solvable cases—algorithms. In this section we show that
the k-subcolorability problem allows a polynomial time algorithm on restricted
classes of input graphs, in particular on graphs with bounded treewidth, cographs,
and graphs with bounded cliquewidth.

For fixed k, k-subcolorability can be expressed in monadic second order logic,
which is a language used to describe graph properties, using the following construc-
tions: quantifications over vertices, edges, sets of edges, sets of vertices, membership
tests, adjacency tests, and logic operations.

By the results of Courcelle it is known that each problem that can be stated
in monadic second order logic can be solved in linear time on graphs with bounded
treewidth [12] or graphs with bounded cliquewidth [13]. Unfortunately, in both cases
the multiplicative constant grows very fast; essentially it is a tower of 2’s whose height
is the number of quantifier-alternations of the monadic second order logic formula. In
our case the height is, at worst, linear in k.

We develop our algorithm on an underlying tree structure for a given graph, and
with the use of dynamic programming we perform the feasibility test for all vertices
of the tree. Here we would like to introduce notions that will be common for all three
forthcoming subsections.

The tree is denoted by T , and its nodes (to distinguish them from vertices of G)
are denoted by X1, . . . , Xm. The tree is rooted, and hence the parent-child relation
� is well defined. Moreover, each node has at most two descendants, and the size of
T is always linear in the size of G. Each node Xi is of a certain type (this type is
sometimes specified by its label) and corresponds to a subgraph of G, denoted by Gi.

For each node Xi we build a table Tabi of constant or polynomial size whose
entries describe necessary properties of a feasible k-subcoloring φi of the graph Gi.
The situation in which the table Tabm is nonempty for the root node Xm corresponds
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to the fact that a proper k-subcoloring of the entire graph G exists.

3.1. Graphs with bounded treewidth. The notion of treewidth was intro-
duced by Robertson and Seymour in [26] via tree decompositions.

Let G = (V,E) be a graph. The tree decomposition of G is a tree T whose nodes
Xi are subsets of V . The following are satisfied:

1. For each edge (u, v) ∈ E there exists a node Xi ∈ V (T ) such that u, v ∈ Xi.
2. For any v ∈ V (G) the sets Xi containing v induce a nonempty connected

subtree of T .
The width of a tree decomposition T is maxXi∈V (T ){|Xi|}−1 and the treewidth of

G is the minimum width among all possible tree decompositions. We denote treewidth
by tw(G). If the treewidth of G is bounded by a constant c, a tree decomposition of
width at most c of G can be constructed in linear time O(|V |+ |E|) (see [6]).

We present a decision algorithm that, for fixed k, tests whether the subchromatic
number χs(G) ≤ k for graphs G with bounded treewidth. For simplicity we restrict
our attention to a nice tree decomposition.

A nice tree decomposition of G [22] is a tree decomposition such that T is a rooted
binary tree and, for each i ∈ V (T ), at least one of the following cases applies:

• Xi is a leaf and |Xi| = 1; then Xi is a leaf node.
• Xi has one child j and Xi = Xj ∪ {v} for some v ∈ V (G) \Xj ; then we call
Xi an introduce node.

• Xi has one child j and Xi = Xj \{v}, where v ∈ Xj ; then Xi is a forget node.
• Xi has two children j, j′, and Xi = Xj = Xj′ ; then we call Xi a join node.

Any tree decomposition of width bounded by a constant can be transformed in
linear time into a nice tree decomposition of the same width [22].

Denote by Gi the subgraph of G induced by vertices of Xi and by G′i the subgraph
of G induced by vertices of

⋃
j�iXj , where j � i means that j is a descendant of i;

i.e., i lies on the path from j to the root of T .
Let φi be a k-subcoloring of Gi; then the color clique of φi is any inclusion-

maximal set K ⊆ V (Gi) = Xi such that all vertices of K have the same color under
φi and are mutually adjacent in Gi. In other words, a color clique is any clique that
belongs to a color class of φi.

The entries of Tabi consist of several pairs (φi, gφi), where φi is a feasible k-
subcoloring of Gi that might be extended to a subcoloring of G′i, and gφi is a function
assigning to each color clique K of φi a Boolean variable, which helps us to properly
define a new k-subcoloring in the inductive step. Note that a single φi may occur
in some entry of Tabi several times with different functions gφi

. However, as G has
bounded treewidth, the number of all pairs (φi, gφi) is bounded by a constant. The
evaluation of Tabi goes as follows:

1. IfXi = {v} is a leaf node, then Tabi contains all k possible k-subcolorings φi of
Gi = ({v}, ∅). For the only color clique K = {v} and all φi set gφi

(K) = true.
2. Let Xi be a forget node with the child Xj . Tabj already has been com-

puted. Then let Tabi contain all entries from Tabj , restricted to set Xi. Take
(φj , gφj ) ∈ Tabj , and let φi be the restricted k-subcoloring. For the color
clique K of φj containing the vertex v = Xj \Xi set gφi(K \ {v}) = false (if
K \{v} is nonempty). For all other color cliques L of φi let gφi(L) = gφj(L).
Remove duplicated entries in Tabi, if any exist.

3. Let Xi be an introduce node with the child Xj , v ∈ V (G) as the added vertex,
and Tabj already known. Then for every pair (φj , gφj ) ∈ Tabj and every k-
subcoloring φi of Gi, such that φi restricted onto Xj is equal to φj , find a
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color clique K of φi containing v. If K = {v} or gφj
(K \ {v}) = true, then

add into Tabi entry (φi, gφi), where gφi(K) = true, and set gφi(L) = gφj (L)
for all other color cliques L �= K of φi.

4. Let Xi be a join node with children Xj and Xj′ and φi be a k-subcoloring of
Gi. Then for all possible combinations of (φj , gφj ) ∈ Tabj and (φj′ , gφj′ ) ∈
Tabj′ add the entry (φi, gφj

∧gφj′ ) into Tabi if and only if φi = φj = φj′ . Thus
for each color clique K of φi the value of gφj (K) ∨ gφj′ (K) is true. Again, if
some entries are present more times, store only one.

5. Compute the values of Tabi for all nodes Xi in the tree, as described in steps
1–4. The graph G allows a k-subcoloring if and only if the table entry Tabm
is nonempty for the root Xm.

To show that the algorithm is correct we further explain steps 2, 3, and 4.
In step 2 we remember that in the function g a certain color clique K has already

lost a vertex v, and future extension of K by v′ would cause the color class to contain
an induced P3, since the edge (v, v′) does not belong to G. Therefore in step 3 we
try extending only those color cliques which might be extended. The same argument
is used in step 4, since it is impossible to identify two color cliques when both of
them have already forgotten a vertex. Note that various functions gφi for a single
k-subcoloring φi may appear during steps 2 and 4.

This discussion concludes the proof of the first part of Theorem 3. For a graph
G with tree decomposition of width bounded by a constant c the decision of k-
subcolorability can be performed as fast as the evaluation of the table (Tabi)i∈V (T ),
that is, in time O(n2ckc+1). This expression is linear in n.

Note that finding the minimum k such that G allows a k-subcoloring can be done
in time O(nc+2) by running at most n tests for all k < n.

3.2. Cographs. Cographs, defined below, belong to the class of graphs with
bounded cliquewidth. In this section we present an O(nk3) algorithm to decide k-
subcolorability and propose an O(n4) algorithm to compute the subchromatic
number of cographs (graphs of cliquewidth bounded by 2). In particular, k-subcolor-
ability (k arbitrary) is efficiently solvable for cographs.

Cographs are inductively defined as follows [9]:
• Every single vertex graph is a cograph.
• If Gj and Gj′ are two cographs, then the disjoint union Gj ∪Gj′ is a cograph.
• Similarly the join graph Gj + Gj′ of two cographs is a cograph. The join

graph Gj + Gj′ is obtained from the disjoint union Gj ∪ Gj′ by adding all
edges between vertices of Gj and Gj′ .

With each cograph G = (V,E) we associate a cotree T . Each leaf node Xi of
the cotree T represents a vertex v ∈ V , and in this case Gi = (vi, ∅). Note that each
vertex v ∈ V is represented exactly once by a leaf node in T .

Internal nodes of T have either label ∪ or +. If a parent Xi of nodes Xj and
X ′j carries label ∪, then Gi = Gj ∪ Gj′ , and similarly, if it is labeled by +, then
Gi = Gj +Gj′ .

There is a linear time algorithm for recognizing whether a given graph G is a
cograph and, if so, for constructing a cotree T of G (see [10]).

Our algorithm for determining the subchromatic number of a cograph relies on
the following notion. A subcoloring φi of a graph Gi is of type (α, β) if φi has α color
classes, each of which induces a clique (called small classes), and β remaining classes
(called big classes). If φi is of type (α, β), we also call φi an (α, β)-subcoloring.

We write (α, β) � (γ, δ) and say that (α, β) minorizes (γ, δ) if it simultaneously
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holds that β ≤ δ and α+ β ≤ γ + δ. It is clear that from a subcoloring of type (α, β)
any subcoloring of type (γ, δ) with (α, β) � (γ, δ) can be derived by adding extra
colors or claiming some small color classes as big.

Consider an (αi, βi)-subcoloring φi of a graph Gi which arose by disjoint union
or by the join of two graphs Gj and Gj′ . In the following, for each t = j, j′ we denote
by φt the restriction of φi on Gt and assume that φt is of type (αt, βt).

Lemma 9. If Gi = Gj + Gj′ , then any (αi, βi)-subcoloring φi of Gi satisfies
αi ≥ max{αj , αj′} and βi = βj + βj′ .

Proof. The first equality follows from the fact that any small class of φi may
consist of at most two small color classes, one in φj and one in φj′ . The second
equality expresses the fact that a big color class of φi is big in exactly one of φj or
φj′ .

Lemma 10. If φj and φj′ are subcolorings of type (αj , βj) and (αj′ , βj′), respec-
tively, then a (max{αj , αj′}, βj + βj′)-subcoloring of Gi = Gj + G′j can be obtained
from φj and φj′ .

Proof. A (max{αj , αj′}, βj+βj′)-subcoloring of Gi can be obtained by combining
min{αj , αj′} small classes of Gj and Gj′ into the same color class of Gi and leaving
the other color classes disjoint.

Lemma 11. If Gi = Gj∪Gj′ , then βi ≥ max{βj , βj′}, αi+βi ≥ αt+βt (t = j, j′),
and αi + 2βi ≥ αj + βj + αj′ + βj′ .

Proof. Let
• r denote the number of the big color classes C of φi such that, for each
t = j, j′, C ∩Gt is a big class in φt;

• rt denote the number of big classes C of φi such that, for t �= t′, C ∩Gt is a
small class in φt but C ∩Gt′ is a big class in φt′ ;
• qt denote the number of big classes of φi belonging only to φt;
• s denote the remaining big classes of φi, which are small in both Gj and Gj′ ;
• lt denote the number of the small classes of φi belonging to φt.

The first statement of the lemma follows directly from

αi = l1 + l2, βi = r + r1 + r2 + q1 + q2 + s,

αj = r1 + l1 + s, βj = r + r2 + q1,

αj′ = r2 + l2 + s, βj′ = r + r1 + q2.

Moreover, αj + βj = αi + βi − l2 − q2 and αj′ + βj′ = αi + βi − l1 − q1; hence the
second statement holds. The third statement then follows from αj + βj +αj′ + βj′ =
2(αi + βi)− l1 − l2 − q1 − q2 = αi + 2βi − q1 − q2.

In view of Lemmas 9 and 10, we are interested in (αi, βi)-subcolorings with a
small number βi of big classes. A way to obtain such a subcoloring of Gi = Gj ∪Gj′
from φj and φj′ is as follows: We first merge min{βj , βj′} pairs of big classes of φj
and φj′ and then combine as many as possible of the |βj − βj′ | remaining big classes
together with some small classes into a new color class of φi. The number of remaining
small classes of φj is then κj := αj−min{αj ,max{0, βj′−βj}}. Similarly, φ2 contains
κj′ := αj′ −min{αj′ ,max{0, βj − βj′}} remaining small classes.

Note that κj = αj (if βj ≥ βj′) or κj′ = αj′ otherwise. Finally, we combine
κ, 0 ≤ κ ≤ min{κj , κj′}, small classes of φj with k small classes of φj′ and get a
(κj + κj′ − 2κ,max{βj , βj′}+ κ)-subcoloring φi of Gi = Gj ∪Gj′ .

This and Lemma 10 suggest the following algorithm for determining χs(G), as-
suming that the cotree T of a cograph G is given.
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For each node Xi of T the algorithm stores in Tabi the type (αi, βi) of all possible
(αi, βi)-subcolorings φi of the graph Gi that are relevant for computing χs(G) as
follows:

1. For each leaf node Xi of T , put (1, 0) into Tabi.
2. If Xi has label + and children Xj , Xj′ , then for all combinations of entries

(αj , βj) ∈ Tabj and (αj′ , βj′) ∈ Tabj′ put into Tabi the entry (αi, βi), where
αi = max{αj , αj′} and βi = βj + βj′ . Remove all minorized entries, if any
exist.

3. If Xi has label ∪ and children Xj , Xj′ , then for all combinations of entries
(αj , βj) ∈ Tabj and (αj′ , βj′) ∈ Tabj′ perform the following computation:
3.1. Set κj := αj−min{αj ,max{0, βj′−βj}} and κj′ := αj′−min{αj′ ,max{0,

βj − βj′}}.
3.2. For each κ varying from 0 to min{κj , κj′} put into Tabi the entry (αi, βi),

where αi = κj + κj′ − 2κ and βi = max{βj , βj′}+ κ.
Remove all minorized entries, if any exist.

4. Return χs(G) = min{αm + βm : (αm, βm) ∈ Tabm} for the root Xm of T .
Note that the number of all entries (αi, βi) stored in each Tabi is bounded by k.

Moreover, as discussed by Lemmas 9 and 10 and after Lemma 11, if (αi, βi) ∈ Tabi,
then there exists a subcoloring of Gi of type (αi, βi).

The following lemma shows the correctness of the algorithm.
Lemma 12. For every node Xi of T and every subcoloring φi of Gi of type

(γi, δi), there exists a pair (αi, βi) ∈ Tabi such that (αi, βi) � (γi, δi).
Proof. The proof is by induction on the level of Xi. The statement of the lemma

is correct for leaves of the cotree. So, let Xi be an internal node of T , and let Xj , Xj′

be the two children of Xi. For t = j, j′ let φt denote the restriction of φi on Gt, and
suppose that φt is of type (γt, δt). By induction there exists (αt, βt) ∈ Tabt such that

(αt, βt) � (γt, δt).(I)

We distinguish two cases.
Case 1. Xi is + node.
Set αi := max{αj , αj′} and βi := βj + βj′ . Then, according to step 2 of the

algorithm, some entry in Tabi minorizes (αi, βi). We claim that (αi, βi) � (γi, δi): By
the induction hypothesis (I) and Lemma 9, βi = βj + βj′ ≤ δj + δj′ = δi. To see the
second condition in the definition of � we may assume without loss of generality that
αj ≤ αj′ . Then

αi + βi = αj′ + βj + βj′ ≤ βj + γj′ + δj′

≤ δj + γj′ + δj′ = γj′ + δi

= max{γj , γj′}+ δi ≤ γi + δi.

Case 2. Xi has label ∪.
Let κj , κj′ be the integers computed from (αj , βj) and (αj′ , βj′) in step 3 of the

algorithm. Note that by (I) and Lemma 11,

max{βj , βj′} ≤ max{δj , δj′} ≤ δi,

and hence there exists some integer κ ≥ 0 such that

max{βj , βj′}+ κ ≤ δi and κ ≤ min{κj , κj′}.
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Let κ be the maximum integer satisfying these properties. Note that by the maxi-
mality of κ,

either κ = min{κj , κj′} or κ = δi −max{βj , βj′}.(II)

Set αi := κj + κj′ − 2κ and βi := max{βj , βj′}+ κ. Then according to step 3 of the
algorithm, some entry in Tabi minorizes (αi, βi). We claim that (αi, βi) � (γi, δi).

By the choices of κ and βi, we have βi ≤ δi. To see the second condition in
the definition of �, we may assume without loss of generality that βj ≤ βj′ . Then
κj = αj −min{αj , βj′ − βj} and κj′ = αj′ .

If κj = 0, then κ ≤ min{κj , κj′} = 0 and

αi + βi = αj′ − 2κ+ βj′ + κ ≤ αj′ + βj′

≤ γj′ + δj′ ≤ γi + δi.

If κj = αj − (βj′ − βj), then

αi + βi = αj − (βj′ − βj) + αj′ − 2κ+ βj′ + κ = αj + βj + αj′ − κ.
In this case, in consideration of (II) there are two possibilities for κ. If κ = δi −
max{βj , βj′} = δi − βj′ , we get

αi + βi = αj + βj + αj′ − (δi − βj′)
≤ γj + δj + γj′ + δj′ − δi
≤ (γi + 2δi)− δi = γi + δi,

and if κ = min{κj , κj′}, then

αi + βi = αj + βj + αj′ −min{κj , κj′}
= αj + βj + αj′ −min{αj − βj′ + βj , αj′}
= max{αj′ + βj′ , αj + βj}
≤ max{γj′ + δj′ , γj + δj} ≤ γi + δi.

Thus, in any case, αi + βi ≤ γi + δi. Hence (αi, βi) � (γi, δi), and the lemma is
proved.

Lemma 12 implies that the k-subcolorability can be decided for cographs in time
O(nk3) using types of subcolorings with α + β ≤ k. This finishes the second part of
Theorem 3. In addition we can compute χs(G) in time O(n4), since χs(G) ≤ n.

3.3. Graphs with bounded cliquewidth. Graphs of bounded cliquewidth
generalize both the notion of cographs and graphs with bounded treewidth [14, 11].

We have already mentioned that all graph problems that are expressible in monadic
second order logic can be solved in linear time on graphs with bounded cliquewidth
[12, 13], given an expression defining the input graph. There are many problems not
expressible in monadic second order logic (e.g., Hamiltonicity, k-colorability
with k arbitrary, etc.) but, nevertheless, are solvable in polynomial time on graphs
with bounded cliquewidth [17, 23].

In this section, we extend this list by showing that k-subcolorability with k
being a part of the instance can be solved in polynomial time on graphs with bounded
cliquewidth. Our approach is different from that of [17] and [23]. Subcolorability
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is, however, much more complicated than colorability (as one may see in the case
of cographs) and it is not clear whether the schemes suggested in [17, 23] can be
modified for our problem.

Let us now recall the notion of cliquewidth. Consider a construction tree T over
a finite label set L, which recursively defines a graph G as follows:

• Every leaf node Xi with operation t(v), which means creation of a one-vertex
graph Gi = ({v}, ∅) where v is labeled by t ∈ L.

• The join node Xi with operation ηs,t and one child Xj inserts into the graph
Gj all edges between vertices labeled s and t (s, t ∈ L). We require that
labels s and t be distinct; however, some edges between vertices labeled s and
t may already exist.

• The relabel node Xi with operation ρs→t (s, t ∈ L) and one child Xj changes
all labels s in the graph Gj to t.

• Finally, the union node Xi with two children Xj and Xj′ corresponds to the
graph Gi = Gj ∪Gj′ , where all vertices maintain their labels from subgraph
Gj and Gj′ , respectively.

The cliquewidth of a graph G is the smallest cardinality of the label set L such
that

(1) there exists a construction tree T that uses label set L, and
(2) G is isomorphic to the graph Gm corresponding to the root Xm of the tree T .

It is shown in [14] that every construction tree can be rearranged in polynomial time
such that

• for each join operation ηs,t we may assume that in this moment there are no
edges between vertices labeled s and t.
• for each node Xi it is possible to compute in polynomial time a graph G′i, the

subgraph of Gm induced by V (Gi) (i.e., it contains Gi and all edges that will
be added later due to join operations on the path from Xi to the root Xm).
• for each Xi it is possible to compute also in polynomial time an auxiliary

graph Fi, defined on the label set used on Gi, where two labels s and t
are connected in Fi if on the path from Xi to the root there is a sequence
of operations ρ changing label s to s′ and t to t′ (possibly in several itera-
tions) followed by ηs′,t′ . In other words, edge (s, t) in Fi means that later
there should be added an edge between vertices which in Gi have labels
s and t.

Now assume that the size of the set L is a fixed constant c. Consider an arbitrary
set of labels K ⊆ L and define a (possibly empty) subgraph GKi of G′i induced by all
vertices of Gi whose label belongs to K.

Assume that φi is a k-subcoloring of a graph G′i and Va is its color class. The
type of the color class Va is a vector τ of length 2c, where entries are indexed by sets
K ⊆ L, and

τK(Va) =






0 if Va induces an empty graph in GKi ,
1 if Va induces in GKi a single clique with at least one vertex,
2 if Va induces in GKi a disjoint union of nonempty cliques.

Observe that τK(Va) ≤ τK′(Va) whenever K ⊆ K ′. Moreover, there exist at most
M = 32c

different types of color classes. Let Γ be the set of all possible color class
types.

The following definition will help us to control color class types in the time of
relabeling operation ρs→t.
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τ(V•) = (1, 1, 1, 2, 2, 1, 2)

τ(V◦) = (2, 0, 1, 2, 2, 1, 2)

L = {1, 2, 3}1 2 3

Fig. 5. Example of a 2-subcoloring of a graph of cliquewidth 3.

We say that a color class of type ς transmutes into a color class of type τ via
relabeling s→ t if

• τK = ςK if s, t �∈ K,
• τK = ςK∪{s} if t ∈ K, s �∈ K,
• τK = τK\{s} if s ∈ K.

Observe that for every type ς, the target type τ via transmutation s→ t is unique.
Note that such a test can be performed in constant time, as long as the length of the
type is constant. To illustrate these notions, see a 2-subcoloring of a graph depicted
in Figure 5. If we order subsets of L as (1, 2, 3, 12, 13, 23, 123), then the types of the
white and black classes are

τ(V◦) = (2, 0, 1, 2, 2, 1, 2), τ(V•) = (1, 1, 1, 2, 2, 1, 2).

Observe also that in this example the relabeling ρ1→3 transmutes the class V• into a
class of type (0, 1, 2, 1, 2, 2, 2).

For a k-subcoloring φi we define its characteristic vector a indexed by color class
types τ ∈ Γ whose entry aτ equals the number of color classes of φi that are of type
τ .

The following lemma gives us a tool to test whether the characteristic vector a of
a k-subcoloring φi of G′i can be composed from the characteristic vectors b and c of a
k-subcoloring of G′j and G′j′ , respectively, during the union operation Gi = Gj ∪Gj′ .
In such a case we say that a is compatible with a composition of b and c in the label
graph Fi.

Before stating the lemma we would like to discuss in more detail one particular
case in the composition of types τ and ω into ς (with respect to Fi). Consider K ⊆ L
such that τK = ωK = 1. In this case we have to decide whether ςK = 1 or 2. To get the
right answer we first find sets I, J ⊆ K such that τI = ωJ = 1 and τK\I = ωK\J = 0.
Only the following two situations make a composition of τ and ω possible:

• There is no edge in Fi between any u ∈ I and v ∈ J . In this case we set
ςK = 2.

• Sets I and J are disjoint and Fi contains all edges between vertices from I
and from J . In this case we set ςK = 1.

If only one of these two cases applies, we say that τK and ωK can be merged into ςK .
Observe also that for a single K we may perform such a test in time O(|K|2).

In Figure 6 we present two examples for K = {1, 2, 3}. In the first one we consider
I = {1, 2} and J = {1}. These two types can be merged if and only if Fi does not
contain the edge (1, 2), and the resulting type is ςK = 2. In the next example assume
I = {1, 2} and J = {3}. Then these types can be merged if and only if none or
both of the two edges (1, 3) and (2, 3) are in Fi. The existence of dotted edges is not
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1 2 3 1 2 3

J = {1}

I = {1, 2}

J = {3}

I = {1, 2}

ςK = 2

ςK = 1

ςK = 2Fi :

Fig. 6. Merging of two color types τK = ωK = 1.

important here. In any other case of the composition of two types τK and ωK , where
at least one of them is not 1, we follow the majority principle, i.e., ςK = max{τK , ωK}.

Lemma 13. The type a is compatible with a composition of b and c in the label
graph Fi if and only if the following system of linear inequalities over variables xς,τ,ω
has an integral solution:

• xς,τ,ω ≥ 0,
• aς =

∑
τ,ω∈Γ xς,τ,ω,

• bτ =
∑
ς,ω∈Γ xς,τ,ω,

• cω =
∑
ςτ,∈Γ xς,τ,ω,

• xς,τ,ω = 0 if there exists K ⊆ L such that
– either (τK �= 1 ∨ ωK �= 1) and ςK �= max{τK , ωK},
– or τK = ωK = 1 and τK , and ωK cannot be merged into ςK .

Since the dimension of this instance is bounded by a constant M3, the corre-
sponding integer linear program can be solved in time O(M9).

Now we are ready to present the decision algorithm. As in the previous cases we
store in the table Tabi all characteristic vectors of all proper k-subcolorings of the
graph G′i. Each entry in the characteristic vector of a k-subcoloring is bounded by k,
so the number of records in Tabi is bounded by kM .

The recursive evaluation of Tabi goes as follows:
1. For a leaf node Xi with t(v) store in Tabi the unique characteristic vector a

of the k-subcoloring for which {v} = V1 is its only color class and its type
satisfies τK(V1) = 1 if t ∈ K ⊆ L, and τK(V1) = 0 otherwise. This operation
requires O(kM ) time.

2. All entries of a join nodeXi with ηs,t are taken from its only childXj . Observe
that in this case G′j = Gj , including the vertex labeling, so no new restriction
should be applied. We can use the same table for Xi as for Xj and this can
be done in constant time.

3. For a recolor node Xi with label ρs→t and child Xj take every characteristic
vector b ∈ Tabj and compute aτ as the sum of all bς , where the sum is taken
over all types ς which transmute onto τ via relabeling s→ t. As shown above
this can be done in time O(kM ).

4. For the union node Xi with children Xj , Xj′ and for every possible type a
perform the test whether or not it is compatible with some type b ∈ Tabj
and some type c ∈ Tabj′ . If the test succeeds, put a into Tabi. By involving
a linear program here the evaluation requires at most O(k3MM9) = O(k3M )
time units.
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Remember that each step is followed by removing duplicates in table entries, if any
appear.

Since the construction tree T has O(cn) nodes and each evaluation of Tabi can

be done in time O(k32c+1

), the entire time complexity of the algorithm is O(nk32c+1

)
in the worst case.

Note that computing χs(G) also can be determined in polynomial time: As, for
constant cliquewidth c, the number of types of a color class is 32c

, the evaluation of

the table Tabi∈V (T ) can be performed in O(n32c+1+1) time. Thus, after n tests, we

can compute χs(G) in O(n32c+1+2) time.

4. Conclusion. In this paper we discussed both positive and negative results
on the computational complexity of the k-subcolorability problem.

We showed a full complexity classification on planar graphs; in the case of 2-
subcolorability we have even refined this classification on the degree condition.

Similarly, we have shown that the general k-subcolorability problem is NP-
complete on graphs of degree at most k2. Here we would like to point out that in view
of degree constraints the planar graph 3-subcolorability and k-subcolorability
are not fully classified and we are convinced that they deserve further research.

To motivate this study we would like to mention that we expect there is a possibil-
ity of constructing uniquely k-subcolorable graphs of degree 2k. Here, we would like to
propose a generalization of the complete computational complexity characterization
for the case k = 2, as stated in the following conjecture.

Conjecture. For every fixed k ≥ 2, k-subcolorability is NP-complete for
graphs with maximum degree 2k.

If true, this conjecture is best possible because every graph with maximum degree
at most 2k − 1 is k-subcolorable (cf. section 1).

Finally, we would like to remark that in all considered cases (bounded treewidth,
cographs, bounded cliquewidth), an optimal subcoloring can be constructed with the
same running time.
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650 JIŘÍ FIALA, KLAUS JANSEN, VAN BANG LE, AND EIKE SEIDEL

[9] D. G. Corneil, H. Lerchs, and L. Stewart Burlingham, Complement reducible graphs,
Discrete Appl. Math., 3 (1981), pp. 163–174.

[10] D. G. Corneil, Y. Perl, and L. K. Stewart, A linear recognition algorithm for cographs,
SIAM J. Comput., 14 (1985), pp. 926–934.

[11] D. G. Corneil and U. Rotics, On the relationship between clique-width and treewidth, in
Graph-Theoretic Concepts in Computer Science—WG 2001, Lecture Notes in Comput.
Sci. 2204, Springer-Verlag, Berlin, 2001, pp. 78–90.

[12] B. Courcelle, Graph rewriting: An algebraic and logical approach, in Handbook of Theoretical
Computer Science, Vol. B, Elsevier, Amsterdam, 1990, pp. 192–242.

[13] B. Courcelle, The monadic second-order logic of graphs I: Recognizable sets of finite graphs,
Inform. and Comput., 85 (1991), pp. 12–75.

[14] B. Courcelle and S. Olariu, Uper bounds to the clique-width of graphs, Discrete Appl. Math.,
101 (2000), pp. 77–114.

[15] L. J. Cowen, R. H. Cowen, and D. R. Woodall, Defective colorings of graphs in surfaces:
Partitions into subgraphs of bounded valency, J. Graph Theory, 10 (1986), pp. 187–195.
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1. Introduction. The kth power Gk of a graph G is defined on the same set of
vertices as G and has an edge between any pair of vertices of distance at most k in
G. The topic of this paper is the coloring of power graphs or, equivalently, coloring
the underlying graphs so that vertices of distance at most k receive different colors.
We focus on the planar case, which has long been the center of attention for graph
coloring.

We upper-bound the chromatic number and the choosability (see Definition 2.10)
by the inductiveness of the graph G, which we denote here by ind(G). This measure
of G, also known as the degeneracy, the coloring number, and the Szekeres–Wilf
number, is defined to be maxH⊆G{minv∈H(dH(v))}, whereH runs through all induced
subgraphs of G. Inductiveness leads to an ordering of the vertices, {v1, . . . , vn}, such
that the number d+(vi) = |{vj ∈ NG(vi) : j > i}| of preneighbors vj ’s of any vi, with
j < i, is at most ind(G).

The problem of coloring squares of graphs has applications to frequency alloca-
tion. Transceivers in a radio network communicate using channels at given radio
frequencies. Graph coloring formalizes this problem well when the constraint is that
nearby pairs of transceivers cannot use the same channel due to interference. How-
ever, if two transceivers are using the same channel and both are adjacent to a third
station, a clashing of signals is experienced at that third station. This can be avoided
by additionally requiring all neighbors of a node to be assigned different colors, i.e.,
that vertices of distance at most 2 receive different colors. This is equivalent to color-
ing the square of the underlying network. Another application of this problem, from a
completely different direction, is that of approximating certain Hessian matrices [13].
Observe that neighbors of a node in a graph form a clique in the square of the graph.
Thus, the minimum number of colors needed to color any square graph is at least
∆ + 1, where ∆ = ∆(G) is the maximum degree of the original graph. As a result,
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the number of colors used by our algorithms on power graphs will necessarily be a
function of ∆. We are particularly interested in the asymptotic behavior as ∆ grows.

Coloring squares of graphs, in particular planar graphs, has been studied in the
literature from two perspectives: in graph theory, focusing on bounding the number
of colors needed, and in computer science, focusing on complexity and approximate
algorithms. We attempt here to contribute to both of these perspectives. We first
review graph-theoretic results on planar graphs in chronological order.

The first reference to appear on coloring squares of planar graphs was by Weg-
ner [19], who gave bounds on the clique number of such graphs. In particular, he
gave an instance for which the clique number is at least �3∆/2�+ 1 (which is largest
possible) and conjectured that this is an upper bound on the chromatic number. He
conjectured that

χ(G2) ≤
{

∆+ 5 if 4 ≤ ∆ ≤ 7;
�3∆/2� if ∆ ≥ 8.

Some work has been done on the case ∆ = 3, as listed in [8, Problem 2.18]. Ra-
manathan and Lloyd [16, 12] showed that ind(G2) ≤ 9∆, which is obtained by a
minimum-degree greedy coloring algorithm. Krumke, Marathe, and Ravi [10] gener-
alized the bound to other classes of graphs, obtaining that ind(G2) ≤ (2 ind(G)−1)∆.

Independent of the original version of this paper [1], there were at least two
unrelated papers on bounding the chromatic number χ(G2) of a square of a planar
graph. van den Heuvel and McGuinness [6] showed that χ(G2) ≤ 2∆ + 25, using
methods similar to those of the proof of the 4-color theorem. Also Jendrol’ and
Skupień [7] showed that χ(G2) ≤ 3∆ + 9, by bounding the inductiveness.

In the current paper, we show that for large values of ∆, squares of planar graphs
are 
9∆/5�-inductive, implying a 
9∆/5�+1-coloring. We show that this is sharp for
all large values of ∆ by constructing graphs attaining this inductiveness. For larger
powers of a planar graph G, we obtain that Gk is O(∆�k/2�)-inductive for any k ≥ 1.
This gives an asymptotically tight algorithmic bound for the chromatic number of the
power graph.

McCormick [13] showed that the problem of coloring the power of a graph is NP-
complete, for any fixed power, and a later proof was given by Lin and Skiena [11].
McCormick gave a greedy algorithm with an O(

√
n)-approximation for squares of

general graphs. Heggernes and Telle [5] showed that determining if the square of a
cubic graph can be colored with four colors or less is NP-complete, while determining
if three colors suffice is easy.

Ramanathan and Lloyd [16, 12] showed the problem of coloring squares of planar
graphs to be NP-complete. Their bound mentioned earlier gave an algorithm with a
performance ratio of 9, which was the best result known previous to [1]. The result of
Krumke, Marathe, and Ravi [10] yields in general a performance ratio of 2 ind(G)−1.
They also gave a polynomial algorithm for graphs of both bounded treewidth and
bounded degree and used that to give a 2-approximation for bounded-degree planar
graphs. Sen and Huson [17] showed that coloring squares of unit-circle graphs is
NP-complete, while a constant approximation algorithm was given in [18].

Zhou, Kanari, and Nishizeki [20] have, in independent work, given a polynomial
algorithm for distance-d coloring partial-k trees, for any constants d and k. As in-
dicated in section 4, this implies a 2-approximation for distance-d coloring planar
graphs for any d. Their algorithm, however, has a large polynomial complexity.

Our contributions give several approximation results. Combining the bound for
squares of large-degree planar graphs with previous results for bounded-degree graphs,
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we obtain a 2-approximation for coloring that holds for all values of ∆. By itself, our
bound gives a 1.8 asymptotic approximate coloring, as the chromatic number of the
square goes to infinity. For higher powers of planar graphs, we obtain the first constant
factor approximation for coloring cubes of planar graphs. However, the real strength
of the current bounds are in giving absolute bounds on the number of colors used by
the algorithm, as opposed to relative approximations, and thus implicitly bounding
the number of colors used by an optimal solution.

Note the fine distinction between coloring the power graph Gk and finding a
distance-k coloring of G. The resulting coloring is naturally the same. However, in
the latter case, the original graph is given. While it is easy to compute the power
graph Gk from G, Motwani and Sudan [14] showed that it is NP-hard to compute the
kth root G of a graph Gk. All of the algorithms presented in this paper work without
knowledge of the underlying root graph.

The rest of the paper is organized as follows. We bound the inductiveness of
squares of planar graphs in section 2 and general powers of planar graphs in section
3. We consider the implications of these bounds to approximate colorings of powers
of planar graphs in section 4.

Notation. The degree of a vertex v within a graph G is denoted by dG(v), or
simply by d(v) when there is no danger of ambiguity. The maximum degree of G is
denoted by ∆ = ∆(G). For a vertex v denote by dk(v) the degree of v in Gk. The
distance between two vertices u and v in a graph is the number of edges on the shortest
path from u to v and is denoted by dG(u, v). Let G[W ] denote the subgraph of G
induced by vertex subset W . Let N(v) = NG(v) be the set of neighbors of v in G, and
let N [v] = NG[v] be the closed neighborhood of v in G given by N [v] = N(v) ∪ {v}.
The common closed neighborhood of u and v in G, denoted N [uv] or NG[uv], is given
by N [uv] = N [u] ∩N [v].

2. Squares of planar graphs. We start with a look at the main technique we
use to derive bounds on the inductiveness of a square graph (and more generally, power
graphs). The argument that is used to show, e.g., that planar graphs are 5-inductive,
is the following. Euler’s formula states that in a planar graph G, |E(G)| ≤ 3|V (G)|−2
(see [4, p. 74]). Thus, G contains a vertex of degree at most 5. Place one such node
first in the inductive ordering and remove it from the graph. Now the remaining graph
is planar, so inductively we obtain a 5-inductive ordering.

The upper bound of 5 on the minimum degree of a planar graph also implies that
squares of planar graphs are of minimum degree at most 5∆. That would seem to
imply a 5∆-ordering of the square graph. However, when a vertex is deleted from the
graph, its incident edges are deleted as well so that vertices originally distance 2 apart
may become much further apart in the remaining graph. An example of this is shown
in Figure 1. Namely, the problem is that an induced subgraph does not preserve the
paths of length 2 between vertices within the subgraph. The upshot is that degrees
in the remaining graph do not adequately characterize degrees in the remaining part
of the square of the graph. Our solution is to replace the deletion of a vertex by the
contraction of an incident edge.

The contraction of an edge uv in graph G is the operation of collapsing the vertices
u and v into a new vertex, giving the simple graph G/uv defined by V (G/uv) =
V (G) \ {v} and E(G) = {ww′ ∈ E(G) : w,w′ �= v} ∪ {uw : vw ∈ E(G)}. Note that if
G is planar, then G/uv is also planar. This is a property of various classes of graphs
that are closed under minor operations. By the classic theorems of Kuratowski and
Wagner (see [4, p. 85]), planar graphs are precisely those graphs for which repeated
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∆
∆

∆

∆

∆

Fig. 1. After the removal of nodes from a graph, a vertex can have vastly more of its original
distance-2 neighbors remaining than its neighbors. After the deletion of the three white vertices, the
center node has five neighbors but 5∆ + 9 of its remaining distance-2 neighbors.

contractions do not yield supergraphs of K5 or K3,3. Minor-closedness holds for
various other classes of graphs, e.g., partial-k trees, but not d-inductive graphs in
general.

Since our bounds on the inductiveness are functions of ∆, it is imperative that
the contraction operations do not increase the maximum degree.

Definition 2.1. An edge uv is mergeable if |N [u] ∪N [v]| ≤ ∆+ 2.
The contraction of a mergeable uv in G yields a simple planar graph G/uv whose

maximum degree stays at most ∆. Also, by the property of edge contractions, the
new distance function is dominated by the one on G (i.e., distances in G/uv are at
most those in G). Thus, to show that a square graph G2 is f(∆)-inductive, we want
to show the existence of a mergeable edge uv with d2(v) ≤ f(∆). We state this as a
general proposition.

Proposition 2.2. Let G be a class of graphs closed under edge contractions, and
let f be a nondecreasing function. Suppose every graph G in G contains a mergeable
edge uv with d2(v) ≤ f(∆). Then, the square of each G in G is f(∆)-inductive.

2.1. Example applications of the contraction technique. We first illus-
trate the technique on simpler examples. Consider a minor-closed class of graphs that
are 2-inductive (e.g., partial-2 trees or series-parallel graphs).

Theorem 2.3. Squares of partial-2 trees are 2∆-inductive.
Proof. We inductively choose a vertex of degree at most 2 in the graph and

contract one of its incident edges. In this case, either of its incident edges is mergeable,
as the degree of each of its remaining neighbors does not increase. At most 2∆ vertices
are within distance at most 2 of the selected vertex. Thus we obtain a 2∆-inductive
ordering of the square graph.

Our second example yields a bound on the inductiveness of planar graphs of small
degree that improves on the 9∆-bound of [16] for 5-inductive graphs.

Theorem 2.4. If G is a planar graph with ∆(G) ≥ 9, then ind(G2) ≤ 4∆(G)+4.
Proof. We consider a maximal supergraph G′ of G and apply a theorem of

Kotzig [9] (see also [7]). The theorem states that a maximal planar graph G′ contains
an edge uv such that dG′(u) + dG′(v) ≤ 13 and, further, that dG′(u) + dG′(v) ≤ 11
unless dG′(u) = 3 or dG′(v) = 3. We may assume dG′(u) ≤ dG′(v).

We claim that uv is mergeable when ∆ ≥ 9 and that d2(u) ≤ 4∆ + 4 (within
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G). By Proposition 2.2, this yields the theorem. We show this by considering the
following two cases. Observe first that since G′ is maximal, u and v share two common
neighbors a and b in G′, and also that NG[w] ⊆ NG′ [w] for any node w.

Case when dG′(u) = 3. In this case, NG′ [u] = {u, v, a, b} ⊆ NG′ [v]. Then, the
union of the closed neighborhoods of u and v in G satisfies

NG[u] ∪NG[v] ⊆ NG′ [u] ∪NG′ [v] = NG′ [v].

Hence, |NG[u]∪NG[v]| ≤ dG′(v) + 1 ≤ 11. So, the edge uv is mergeable when ∆ ≥ 9.
The number of distance-2 neighbors of u in G is at most the sum of the degrees

of a, b, and v, not counting the possible edges from v to a and b, or is at most 2∆+8.
Case when 4 ≤ dG′(u) ≤ 5. Recall that the closed neighborhoods of u and v in

G′ share the four nodes a, b, u, and v. Thus,

|NG[u]∪NG[v]| ≤ |NG′ [u]∪NG′ [v]| = |NG′ [u]|+ |NG′ [v]|−4 = dG′(u)+dG′(v)−2 ≤ 9.

Thus, uv is mergeable when ∆ ≥ 7.
When counting the number of distance-2 neighbors of u inG, each of the neighbors

of u other than v contributes at most ∆ of them, while v contributes itself along with
those of its neighbors not among {u, a, b}. Thus,

d2(u) ≤ (d(u)− 1)∆ + [1 + (11− d(u)− 3)] ≤ 4∆ + 4.

Jendrol’ and Skupień [7] have recently given a refinement of Kotzig’s result, ob-
taining a bound of 3∆+8 on the inductiveness of the square of a planar graph G with
∆(G) ≥ 8.

2.2. Sharp upper bound for large-degree graphs. We now turn to the main
result of this section, which is that when G is planar and ∆ = ∆(G) is large enough,
then G2 is 
9∆/5�-inductive. The following lemma is the key to this result.

Lemma 2.5. Let G be a simple planar graph of maximum degree ∆ ≥ 48. Then
there exists a mergeable edge vw in G with d2(v) ≤ max(
9∆/5�,∆+ 600).

Proof. We assume that we have a fixed planar embedding of G, i.e., that G is a
plane graph. Let Vh = {v ∈ V (G) : d(v) ≥ 26} and Vl = V (G) \ Vh.

If there is a vertex v ∈ Vl with at most one neighbor in Vh, then d2(v) ≤ 1 ·
∆ + 24 · 25 = ∆ + 600. Select any incident edge vw to a low-degree neighbor w
of v, and notice that the contracted edge would result in a node of degree at most
(25− 1) + (25− 1) = 48. Since ∆ ≥ 48, vw satisfies the claim of the lemma. Hence,
for the rest of this proof, we assume the contrary, i.e., that every vertex in Vl has at
least two neighbors in Vh.

Call a cycle of four vertices in G forbidden if exactly two opposite vertices of the
cycle are in Vh and the enclosed region formed by the cycle in the plane properly
contains at least one vertex in Vh.

If G contains a forbidden 4-cycle, then let G′ be the subgraph of G induced by
the region bounded by a minimal such 4-cycle. (Here, minimal means that no other
4-cycle is inside.) If G contains no such cycle, then let G′ be G.

Consider now the multigraph H with vertex set V (H) = Vh ∩ V (G′) and with
colored edges defined as follows. For each edge uw in E(G′) with both u,w ∈ Vh,
connect u and w with a red edge. For each vertex v ∈ Vl adjacent to u and w ∈ Vh in
G′ and to no other vertex in Vh, connect u and w in H with a green edge. Finally, for
v ∈ Vl adjacent to u1, u2, . . . , ut ∈ Vh in G′ in a clockwise order for t ≥ 3, connect u1
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to u2, u2 to u3,. . . ,ut−1 to ut, and ut to u1 with blue edges in H. A vertex in V (G′)
is said to be green (blue) if the corresponding edge in H is.

Since G is planar, we note that H is also a planar multigraph. Hence, we can
assume we have a drawing of H in the plane such that

• the vertices of H have the same configuration as in the plane graph G.
• for every pair {u,w} of vertices of H connected by green or blue edges, their
order with respect to u and w is the same as the order of the corresponding
vertices of Vl.

By our assumption there is no vertex in Vl with at most one neighbor in Vh in G, and
hence in G′. Therefore, the degree of a vertex in H is at least that in G′.

4 51 2 3

u

x xxxx

v

u

v

Fig. 2. Example of a common neighborhood and the corresponding multigraph.

For reference, we show in Figure 2 the common neighborhood in G of two vertices
u and v, along with the the corresponding multigraph. Vertices in Vh are in black,
blue vertices are grey, and green vertices are white. Here N [uv] contains five nodes,
in addition to u and v, corresponding to two blue and three green edges. Hence, in
this figure we have in clockwise order w.r.t. the vertex v that x1 is blue (grey in the
figure) since it has three black neighbors, the vertices x2, x3, and x4 are green (white
in the figure) since each has two black neighbors u and v, and x5 is blue (grey in the
figure) since it has four black neighbors.

Let v ∈ V (H) denote a vertex with at most five neighbors in H such that v is not
on the 4-cycle defining G′ (if G′ was so defined). Euler’s formula for planar graphs
implies that there are at least three vertices of V (H) = Vh ∩ V (G′) with at most five
neighbors in H. Hence, there is such a vertex that is not on the 4-cycle defining G′,
as required. From now on, let v denote such a vertex.

Claim 2.6. Let x ∈ NH(v). There are at most two vertices in Vl ∩NG′ [vx] that
have neighbors outside NG′ [vx] ∪ {v, x}.

Assume the contrary, i.e., that there are three vertices in Vl ∩NG′ [vx] that have
neighbors outside NG′ [vx] ∪ {v, x}. Since G′ is a plane graph, one of these three
vertices, call it w, must be contained in the 4-cycle formed by v, x, and the other
two vertices of those three. If w has a neighbor in (Vh ∩ V (G′)) \ NG′ [vx], then we
have a smaller forbidden 4-cycle, contradicting our assumption. If w has a neighbor
in (Vl ∩ V (G′)) \NG′ [vx], then by our assumption, that neighbor must have at least
two neighbors in Vh ∩ V (G′) that cannot be the vertices {v, x}. That would again
yield a smaller forbidden 4-cycle, a contradiction. Hence, we have the claim.

From now on, let u be the node in V (H) with the largest neighborhood NG′ [uv]
in common with v in G′. When breaking ties, we prefer nodes that are not adjacent
to v with a red edge.



COLORING POWERS OF PLANAR GRAPHS 657

Claim 2.7. There is a vertex w ∈ NG′ [uv] such that vw is mergeable and
NG[NG[w]] ⊆ NG[v] ∪NG[v].

Observe that the selection criteria for u also serve to maximize the multiplicity
muv of edges uv in H. Since dG(v) ≥ 26 and dH(v) ≤ 5, we have that muv ≥ 
26/5� =
6. Among these at least six edges, there is at most one red edge, and (by Claim 2.6)
at most two edges (blue or green) that correspond to vertices of Vl ∩ NG′ [uv] with
neighbors outside NG′ [uv]∪{u, v}. Let w′, w, and w′′ be nodes in Vl in this order that
correspond to the first three of the remaining at least muv − 3 edges in a clockwise
order viewed from v (i.e., the white nodes in Figure 2, from left to right). By the
planarity of G′, w must be properly enclosed in the cycle formed by C = {u, v, w′, w′′}.
Hence, NG(w) = NG′(w) ⊆ C, and wv is mergeable. Further, since w′ and w′′ have
no neighbors outside of N [v] ∪N [u], all distance-2 neighbors of w are in N [v] ∪N [u]
as claimed.

To prove the lemma, it suffices to bound the distance-2 degree of either v or
w. We split the argument into two cases, depending on whether there is a red edge
incident to v in H.

Case I. There is no red edge incident to v. Then all of v’s neighbors are in Vl.
Recall that each of them must have at least two high-degree neighbors; thus each of
them belongs to some NG′ [vx] for some x ∈ NH(v). For each x ∈ NH(v), there are
by Claim 2.6 at most two nodes in NG′ [vx], excluding v and x, that have neighbors
outside of NG′ [vx]. Since there are at most five nodes in NH(v), there are at most 10
neighbors of v that have neighbors outside of NG′ [v] ∪NH(v). Hence,

d2(v) ≤ ∆+ 10 · 25 + 5 < ∆+ 600.

Case II. There is a red edge incident on v, say x1v. Thus, v ∈ NG′ [x1v]. Since
each node in Vl is by assumption adjacent to at least two vertices in Vh, it holds that⋃
x∈NH(v) NG′ [xv] = NG′ [v]. Then,

|NG[uv]| = |NG′ [uv]| ≥ |NG′ [v]|/|NH(v)| ≥ 
(dG′(v) + 1)/5�.

Since NG[w] = NG′ [w] ⊆ NG′ [uv], and since x �→ x− 
x/5� is an increasing function,
we have

d2(w) + 1 = |NG[u] ∪NG[v]|
≤ |NG[u]|+ |NG[v]| − |NG[uv]|
≤ (∆ + 1) + (dG′(v) + 1)− 
(dG′(v) + 1)/5�
≤ 2(∆ + 1)− 
(∆ + 1)/5�
= 
9∆/5�+ 1.

Together, the two cases establish that for at least one of the nodes v, w, we have that
the distance-2 degree is at most max(
9∆/5�,∆+ 600).

Our main result now follows from Lemma 2.5 and Proposition 2.2.
Theorem 2.8. If G is a planar graph with ∆ = ∆(G) ≥ 750, then G2 is 
9∆/5�-

inductive.
It turns out that 
9∆/5� is a sharp upper bound for the inductiveness for all

values of ∆ ≥ 750.
Observation 2.9. For any ∆ ≥ 5, there exists a planar graph G of maximum

degree ∆ such that G2 is of minimum degree 
9∆/5�.
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Fig. 3. Icosahedron graph and split edges.

Proof. Let ∆ ≥ 5 and q = �∆/5� + 1. Then ∆ = 5q − i, where q ≥ 2 and
i ∈ {1, 2, 3, 4, 5}. Let H be a five-regular planar icosahedron graph that can be
partitioned into five perfect matchings (see Figure 3, where the edges of the first
perfect matching are shown in bold). We construct from H a graph G as follows:
To the first i perfect matchings we add q − 2 paths of length 2, and we replace the
remaining 5 − i perfect matchings with q paths of length 2. Observe that there are
two kinds of vertices in G; one kind has degree 2 and the other has degree ∆.

Consider a vertex w of degree 2 in G. If the neighbors of w of degree ∆ are u and
v, then there are precisely q vertices in N [uv]. Hence, the distance-2 degree of w is
given by

d2(w) + 1 = |N [u]|+ |N [v]| − |N [uv]|
= 2(∆ + 1)− (�∆/5�+ 1)

= 
9∆/5�+ 1.

However, a vertex v of degree ∆ is connected to i ≥ 1 other vertices of degree ∆. Call
one of them u. Note that every vertex in N [v] ∪N [u] is of distance 2 or less from v,
and hence we have

d2(v) + 1 ≥ |N [v] ∪N [u]| = |N [u]|+ |N [v]| − |N [uv]| = 
9∆/5�+ 1.

Therefore, the minimum degree of G2 is precisely 
9∆/5�, thereby completing our
proof.

Recall the following definition of choosability given in [4].

Definition 2.10. A graph G is k-choosable if for every collection {Sv : v ∈
V (G)} of lists of colors, Sv ⊆ {1, 2, 3, . . .}, where |Sv| = k for every v ∈ V (G), there
is a color assignment

c : V (G)→
⋃

v∈V (G)

Sv

such that

• c(v) ∈ Sv for each v ∈ V (G), and
• if c(v) = c(u), then v and u are not neighbors in G.
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The minimum such k is called the choosability of G and denoted by ch(G).
We note that if a graph is k-choosable, then it is k-colorable. Also, by an easy

induction, one can see that if a graph is k-inductive, then it is (k+ 1)-choosable. For
any graph G we therefore have

χ(G) ≤ ch(G) ≤ ind(G) + 1.

Hence, from Theorem 2.8 we have in particular the following corollary.
Corollary 2.11. If G is a planar graph with ∆ = ∆(G) ≥ 750, then ch(G2) ≤


9∆/5�+ 1.

3. General powers of planar graphs. In this section we consider general pow-
ers Gk of planar graphs and establish tight asymptotic bounds on the inductiveness
of ind(Gk). In fact we prove the following theorem, which in particular improves the
bound of χ(Gk) given in [7], where it is shown that χ(Gk) is bounded from above by
a polynomial in ∆ of degree k − 1.

Theorem 3.1. Let G be a planar graph with maximum degree ∆. For any fixed
k ≥ 1, Gk is O(∆�k/2�)-colorable. Also, there is a family of graphs that attains this
bound. This bound is also asymptotically tight for the clique number, inductiveness,
choosability, arboricity, and minimum degree of Gk.

Let us first give a construction that matches the bound of the theorem. Given
k,∆ ≥ 1, consider the tree T of height �k/2�, where internal vertices have degree ∆.
The number of vertices in T is

D∆,k = 1+∆+∆(∆− 1)+∆(∆− 1)2 + · · ·+∆(∆− 1)�k/2�−1 =
∆(∆− 1)�k/2� − 2

∆− 2
.

Observe that T k is a complete graph; thus χ(T k) = D∆,k.
We now turn to proving the upper bound of the theorem. First we introduce

some terminology.
Notation and arboricity. A k-path is a path of length exactly k. A (k,≤)-path is

a path of length k or less. If u and v are vertices of a given graph, then a walk of
length k from u to v is simply a sequence (u0, e1, u1, . . . , uk−1, ek, uk), where u0 = u,
uk = v, and each ei has end vertices ui−1 and ui. Note that in a walk, both vertices
and edges may be repeated.

Definition 3.2. For a graph G, define its arboricity, denoted arb(G), as the
minimum number of forests needed to cover all the edges of the graph G.

Nash-Williams [15] proved that

arb(G) = max
H⊆G

⌈ |E(H)|
|V (H)| − 1

⌉
.

Arboricity is closely related to inductiveness.
Lemma 3.3. For any graph G, we have arb(G) ≤ ind(G) ≤ 2 arb(G)− 1.
Proof. Let q be ind(G). We first show that E(G) can be partitioned into q forests.

Given a linear arrangement of the vertices, such that each vertex vi has at most q later
neighbors, we arbitrarily color the edges from vi to later vertices with at most q colors.
In this way, each color class is acyclic, since two edges of the same color cannot have
the same first-labeled endpoint, and thus is a forest. Therefore arb(G) ≤ q, proving
the first inequality.

For the second inequality, let ind(G) = q. Let H be a subgraph of G such that
minv(dH(v)) = q. Since 2|E(H)| = ∑

v∈V (H) dH(v) ≥ q|V (H)|, we have arb(G) >
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|E(H)|/|V (H)| ≥ q/2. Since arb(G) is an integer, we have q ≤ 2 arb(G) − 1, which
completes our lemma.

Note that if G is planar, we have that arb(G) ≤ 3 by Euler’s formula and the
Nash-Williams theorem. Also we have that ind(G) ≤ 5. Since there are planar graphs
obtaining these values, the upper bound of Lemma 3.3 is tight for planar graphs.

From Theorem 2.4 and Lemma 3.3 we have in particular that arb(G2) ≤ 4∆ + 4
if ∆ ≥ 9.

Arboricity of power graphs. We now want to find an upper bound of the arboricity
of Gk in terms of ∆, where G is a planar graph. For a vertex set U ⊆ V (G), let Ek(U)
be the edge set of the subgraph of Gk induced by U . Then, the arboricity of Gk is

arb(Gk) = max
U⊆V (G)

⌈ |Ek(U)|
|U | − 1

⌉
.(3.1)

We will use this to bound arb(Gk), but first we note the following.
Lemma 3.4. If G is a simple graph with arb(G) = α, then the edges of G can

be directed in such a way that for each vertex v ∈ V (G), at most α directed edges are
pointing from v.

Proof. Let F1, . . . , Fα be the forests that cover the edges of G. For each subtree
T of each Fi, direct its edges upward towards an arbitrarily chosen root r of T . In
this way each Fi becomes a directed forest F d

i in which every vertex, except the root,
has outdegree 1, and the root has outdegree 0. Hence, as G is the disjoint union of
the forests Fi, the outdegree of each vertex in G is at most α.

Let G be a planar graph and let U ⊆ V (G). Note that if two vertices of U are
connected in Gk, then there is a (k,≤)-path in G between them, and hence an i-walk
between them, where i ∈ {k − 1, k}.

Theorem 3.5. For any graph G, we have arb(Gk) ≤ 2k+1α	k/2
∆�k/2�, where
α = arb(G).

Remark. The main idea of the proof below, of counting the i-walks directly, is
due to the anonymous referees.

Proof. By Lemma 3.4 we can direct the edges of G in such a way that for each
vertex v ∈ V (G) there are at most α directed edges pointing from v.

Let U ⊆ V (G). If uv ∈ Ek(U), then there is an i-walk in G, where i ∈ {k− 1, k},
either from u to v, or from v to u, that walks against at most �i/2� of the given
directions of the edges. Assume in this case there is such an i-walk (w from u to v.

There are
∑�i/2�
j=0

(
i
j

)
possibilities of at most �i/2� edges in (w pointing against the walk.

Also, for each vertex on (w, there are at most α choices of directed edges pointing from
the vertex, and at most ∆ ≥ α choices of directed edges pointing to the vertex. Hence,
the number of possible such i-walks (w from u, with at most �i/2� edges pointing

against the direction of the walk, is
∑�i/2�
j=0

(
i
j

)
αi−j∆j ≤ (

∑�i/2�
j=0

(
i
j

)
)α	k/2
∆�k/2�.

Hence,

|Ek(U)| ≤ 2




�(k−1)/2�∑

j=0

(
k − 1

j

)
+

�k/2�∑

j=0

(
k

j

)

α	k/2
∆�k/2�|U | ≤ 2kα	k/2
∆�k/2�|U |.

The theorem now follows from (3.1).
Note that for a planar graph G we have arb(G) ≤ 3. Also note that for any set U

of vertices in graph G, 2|Ek(U)| =∑v∈U dG[U ]k(v), and hence, from the above proof,

there is a vertex v with dG[U ]k(v) ≤ 2k+1α	k/2
∆�k/2�. With this in mind we have the
following.
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Corollary 3.6. For a planar graph G with ∆ ≥ 3 we have

arb(Gk), ind(Gk) ≤ 2k+13	k/2
∆�k/2�.

By Lemma 3.3 and Theorem 3.5 we have that for any planar graph G, the chro-
matic number, clique number, choosability, and inductiveness are all at most 2 arb(G),
which completes the proof of Theorem 3.1.

Remarks. Our original approach for proving Theorem 3.1, as found in our un-
refereed report [1], was different. There, our argument was partly based on the fol-
lowing claimed “expansion property” for planar graphs: For a planar graph G and
any subset W ⊆ V (G) of vertices, there is a subset W ′ with W ⊆ W ′ ⊆ V (G) and
|W ′| ≤ 10k−1|W | such that if any two vertices in W are neighbors in Gk, then they
are also neighbors in G[W ′]k, the subgraphs of Gk induced by W ′. Note that there
are serious typos1 in [1].

4. Approximation algorithms. We can improve the best approximation factor
known for coloring squares of planar graphs. Recall that since neighbors in G must
be colored differently in G2, χ(G2) ≥ ∆+ 1. Thus, for ∆ ≥ 750, Theorem 2.8 yields
a 1.8-approximation. Hence, we obtain an asymptotic ratio of 1.8.

For constant values of ∆, we can use a result of Krumke, Marathe, and Ravi [10].
They stated a 3-approximation, but actually a 2-approximation easily follows from
their approach, which is based on an often-used decomposition due to Baker [2]. The
complexity of their approach is equivalent to the complexity of coloring a partial
O(∆)-tree. Combining the results of [10] and [2] with our Theorem 2.8, we obtain a
2-approximation for any value of ∆.

Theorem 4.1. The problem of coloring squares of planar graphs has a 2-approx-
imation.

Theorem 3.1 also immediately gives an O(1)-approximation to coloring cubes of
planar graphs. However, better factors are possible.

Zhou, Kanari, and Nishizeki [20] independently gave a polynomial algorithm for
distance-d coloring partial k-trees for any constant d and k. The complexity of their

algorithm is O(n(α+1)2
2(k+1)(d+2)+1

+n3), where α = O(min(∆d/2, n)) is the number
of colors needed. Since it is not indicated in [20], we show here how this result
yields a 2-approximation for coloring Gd, for any constant d, when combined with the
decomposition of Baker.

The technique of Baker [2] partitions the vertex set V of a planar graph into
subsets V1, V2, . . . , referred to as layers, such that all edges are between adjacent
layers or within the same layer; i.e., if u ∈ Vi and uv ∈ E, then v ∈ Vi−1 ∪ Vi ∪ Vi+1.
Now, let V ′ = ∪i mod 2d<dVi, V

′′ = V − V ′, and G′, G′′ be the subgraphs induced by
V ′ and V ′′. Observe that both G′ and G′′ consist of a collection of disjoint subgraphs
Ui, corresponding to Vdi ∪ Vdi+1 ∪ · · · ∪ Vd(i+1)−1. Further, notice that the subgraphs

induced by the Ui will also be disjoint in G′d and G′′d, since the distance between any
pair of nodes in different subgraphs Ui is at least d+1. Thus, G′d can be computed by
considering each Ui separately. Now, Gd restricted to Ui is a subgraph of the graph

Hd
i , where Hi = G[∪d(i+1)−(d−2)

j=di−(d−1) Ui]. Hi is a (3d−2)-outerplanar graph, which means

1In [1, p. 659], the displayed inequality of Lemma 3.2 and the last line of its proof should have
“E(G)” instead of “E(F )” on the right of that inequality. Likewise, in the first displayed inequality
in the right column on that same page “E(Fi)” should be “E(G[WU ]).” Finally, since G[WU ] is
planar, a factor of “3” should be in front of the rest of the remaining expressions in that display.
This affects the rest of that article, in particular αk in Lemma 3.3 and Corollary 3.1.
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that it is a partial (9d− 8)-tree by a result of Bodlaender [3]. Hence, we can compute

the optimal coloring of each Hi in time O(n2(9d−7)(d+2)+1+1). Thus, we can solve G′2

and G′′2 exactly and, in total, using at most twice the optimal number of colors.
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Abstract. Parameter identifiability and polynomial systems for maximum likelihood estimates
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1. Introduction. In Cáceres et al. [1], maximum likelihood estimation was stud-
ied for a model of network reliability called the Bernoulli model. In this paper, we
study a more general model called the interaction model which includes a parameter
θ for spatial dependence. The model resembles the Curie–Weiss model in statistical
mechanics (see Ellis [7]), because there is interaction among all pairs of edges. Param-
eter identifiability is established using algebraic methods in section 4. The technique
involves some simple toric ideals different than those that arise in the Gröbner bases
for the Markov Monte Carlo methods invented by Diaconis and Sturmfels in [5] (see
Caffo and Booth [2], Fienberg, Makov, and Steele [8] and Pistone, Riccomagno, and
Wynn [12] for further statistical applications of the Gröbner basis of a toric ideal).
In section 5, computational methods based on algebraic equations are described for
the maximum likelihood estimates and also for certain approximations to the max-
imum likelihood estimates which are based on a relaxation approach to maximizing
the likelihood. The approximations can be obtained by extending existing estima-
tion algorithms for the Bernoulli model of Cáceres et al. [1]. Simulation examples in
section 6 confirm that the maximum likelihood estimates have less variability than
the approximate estimators, but both work well. Large scale simulations would be
interesting.

Let us recall the original problem and introduce some notation. A tree with
vertices V and edge set E has root node 0 ∈ V and “leaf” nodes R ⊂ V (R stands
for receivers). The parent nodes will be denoted VP := V −R. All vertices in VP will
be assumed to have at least two child nodes. The multicast statistical experiment is
the following. One probe is sent from the root node 0 towards the receiver nodes R,
and it copies itself at each vertex onto each subsequent edge on its trip towards the
receiver nodes (this is the meaning of “multicast”). The probe is lost on an edge en
route to the leaf nodes with a probability that depends on the edge, say βi ∈ [0, 1),
for the edge that connects vertex i to its parent f(i). (We will assume that βi > 0 in
order to get parameter identifiability.) The observed data is the vector y ∈ {0, 1}R,
where component i indicates whether the multicast signal was lost (yi = 1 means it

∗Received by the editors June 13, 2001; accepted for publication (in revised form) April 1, 2003;
published electronically September 17, 2003 DATE DATE. This research was supported by NSF
grant DMS-0200888.

http://www.siam.org/journals/sidma/16-4/39081.html
†Department of Mathematics, Tulane University, New Orleans, LA 70118 (ihd@math.tulane.edu).
‡Department of Mathematics, Loyola Marymount University, Los Angeles, CA 90045 (emosteig@

lmu.edu).

663



664 I. H. DINWOODIE AND EDWARD MOSTEIG

0

1

23

4

5
6

Fig. 1.

was lost) on the trip from 0 to the leaf node i ∈ R. The data y is the image under
a many-to-one linear map A of a hidden outcome x indicating success or failure on
each edge.

This experiment is repeated independently and identically n ≥ 1 times, and obser-
vations Y1, . . . , Yn are a random sample of independently and identically distributed
(i.i.d.) {0, 1} vectors at the receiver nodes.

Our goal here is to generalize the original Bernoulli multicast model to one with
a new interaction parameter θ ≥ 0 which adds dependence across all edges.

2. Bernoulli multicast model. In this section we describe the Bernoulli mul-
ticast model of Cáceres et al. [1], which we aim to generalize to include spatial depen-
dence.

Let T be the tree with vertices V numbered 0, 1, . . . , c, and let 0 ∈ V be designated
the root node. Define V0 := V − {0} to be the collection of nonroot nodes. Let
f : V0 → V be the function that gives the parent node of a nonroot node, that is, the
vertex before i in the unique path from 0 out to i ∈ V . The leaf vertices R ⊂ V are
the ones in V0 with no descendants or, in other words, those vertices i ∈ V0 for which
f−1(i) = ∅. In Figure 1, R = {3, 4, 5, 6}. Let the descendants of node i (the set of
nodes whose path back to 0 goes through i but not including i) be denoted d(i). The
siblings of i would be f−1 ◦ f(i).

The assumption that all parent vertices (VP ) have at least two child nodes means
that for each i ∈ VP it holds that f−1 ◦ f(i)− {i} �= ∅. This property will play a role
in the identifiability of parameters for this model (cf. Theorem 4.1).

Basic hidden outcomes are vectors of counts x = (xi)i∈V0 ∈ {0, 1}V0 , where xi
specifies how many probes were lost on the edge {f(i), i} (the edges are labelled by
the outer vertex). The multicast data y can be written as a many-to-one function of
basic hidden outcomes x with the help of a routing matrix A. The matrix A will have
d = |R| rows, one for each leaf node, and c = |V0| columns indexed by edges. The
row for leaf node v will have “1” in column j if j is on the path from 0 to leaf node
i. For the binary tree in Figure 1, the matrix is given by

A =





1 2 3 4 5 6

3 1 0 1 0 0 0
4 1 0 0 1 0 0
5 0 1 0 0 1 0
6 0 1 0 0 0 1



.(2.1)
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The experiment is repeated n ≥ 1 times. Then the total observed loss vector yk (for
experiment k out of n) at leaf nodes is given by

yk = Axk.

It is convenient to have a |V | × |V0| routing matrix B for all nodes in V , not just
the leaf nodes. The row for vertex i would have “1” in each column for vertices on the
path from 0 to i. (Bx)i for a node i ∈ V0 would give the total number of messages
lost along the path from 0 out to i. The row for vertex 0 in B is identically 0.

Now let βi be the probability that a probe from vertex f(i) will fail to cross edge
{f(i), i} to reach vertex i ∈ V0. We will use an odds-ratio parametrization of the
failure probability βi:

βi =
λi

1 + λi
, λi ≥ 0.

For the basic original “Bernoulli model” it is assumed that a probe fails to cross edge
{f(i), i} with probability λi/(1 + λi), and edges and probes all behave independently
given failure count data on parent nodes (we generalize this below). The distribution
µλ on S0 = {x = (xi) ∈ ZV0

+ : xi ∈ {0, 1}} is

µλ(x) =
∏

i∈V0

(
1− (Bx)f(i)

xi

)
λxi
i

(1 + λi)
1−(Bx)f(i)

= λx
∏

i∈V0

(
1− (Bx)f(i)

xi

)
1

(1 + λi)
1−(Bx)f(i)

= λx
∏

i∈V0

(
1−(Bx)f(i)

xi

)

(1 + λi)

∏

i∈V0

(1 + λi)
(Bx)f(i)

= λx
∏

i∈V0

(
1−(Bx)f(i)

xi

)

(1 + λi)

∏

i∈V0−R

∏

j∈d(i)
(1 + λj)

xi .

(2.2)

For i ∈ V0, let pi =
∏
j∈d(i)(1 + λj). Then (2.2) can be written

µλ({y}) =
∑

{x∈Zc
+

:Ax=y}
h(x)

λx
∏
i∈V0

pi(λ)
xi

zλ

=
∑

{x∈Zc
+

:Ax=y}
h(x)

λxp(λ)x

zλ
,

where

h(x) =
∏

i∈V0

(
1− (Bx)f(i)

xi

)

zλ =
∏

i∈V0

(1 + λi),
(2.3)

and the notation p(λ)x is the usual representation of
∏c
i=1 pi(λ)

xi . The vector of
parameters (λi : i ∈ V0) is identifiable (see Dinwoodie [6]), meaning that two different
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vectors give rise to two different distributions µλ({y}) on the observed (incomplete)
data y. (In the Bernoulli model, identifiability holds, in fact, even if vertex v0 has only
one child, and the failure probabilities are allowed to be zero.) This gives consistent
maximum likelihood estimates (the estimates converge to the true parameter values)
as the sample size n increases.

3. Multicast model with spatial dependence: Interaction model. We
have described the original model of Cáceres et al. [1]. Now we generalize the Bernoulli
multicast model to one which includes spatial dependence among sibling edges, which
we will call the interaction model. We will add an interaction parameter θ ≥ 0 which
will affect the probability of multiple losses. The new model reduces to the Bernoulli
model when θ = 1. The range of the interaction is across all edges (as in the Curie–
Weiss model), and values of θ greater than 1 mean that multiple losses are more
likely than they would be under the Bernoulli model. Identifiability will be proved in
section 4, assuming that the failure rates λi are positive (not just nonnegative) and
that all parent vertices including the root vertex have at least two children.

Let VP = V −R be the collection of nonreceiver or parent vertices, which includes
the root vertex “0.”

For x ∈ {0, 1}V0 , let |x| :=∑i∈V0
xi be the number of 1’s in x. Then the notation

[|x| − 1]+ will give |x| − 1 if there are two or more 1’s in x; otherwise, it will vanish.
The new law νγ,θ in parameters γi > 0, i = 1, . . . , c, θ ≥ 0, is specified by

νγ,θ(x) := h(x)
γxθ[|x|−1]+

wγ,θ
,

wγ,θ =
θ − 1 + zλ(θγ)

θ
,

(3.1)

where the formula for the normalizing constant wγ,θ relates to z from the Bernoulli
model as follows. Consider the one-to-one reparametrization from positive γ to posi-
tive λ with inverse given by

γi = λipi(λ), i = 1, . . . , c.

Then λ(θγ) is the vector (λ1(θγ), . . . , λc(θγ)) that comes from finding the λ corre-
sponding to (θγ1, θγ2, . . . , θγc). From the Bernoulli model, we know that

c∏

i=1

(1 + λi(γθ)) =
∑

x∈Zc
+

h(x)γxθ|x|

and separating the case x = 0 gives the formula. In terms of the odds-ratio parameters
λi, the law ν can be written

νγ(λ),θ(x) := h(x)
λxp(λ)xθ[|x|−1]+

wγ(λ),θ
.(3.2)

4. Identifiability of parameters. In the model (3.1), we have parameters
γ1, . . . γc, θ (or equivalently λ1, . . . , λc, θ) with c-dimensional outcomes in {0, 1}V0

+ and
d-dimensional observations (data) in {0, 1}R+, where c = |V0|, d = |R| (the number of
receiver nodes), and A is a d× c matrix of 0’s and 1’s.

The parameter pair (γ, θ) is called identifiable for positive γ and nonnegative θ if
νγ,θ({x ≥ 0 : Ax = y}) = νγ′,θ′({x ≥ 0 : Ax = y}) for all y ∈ Zd+ implies that γ = γ′
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and θ = θ′, where γ and γ′ are assumed to be positive in each coordinate and θ and
θ′ are assumed to be nonnegative real numbers. If the parameters are identifiable,
then different parameters will lead to different statistical patterns, and consistent es-
timation is possible under repeated, independent experiments. Otherwise, different
parameter values may be statistically indistinguishable based on repeated experimen-
tal outcomes.

We define δ : V → {0, 1, 2, . . .} recursively on the set of vertices in T . For v ∈ R,
set δ(v) = 0. Given a vertex v ∈ V −R, we define δ(v) = 1+min{δ(v′) : v′ ∈ f−1(v)}.
We call δ(v) the height of the vertex v. The height of the tree T is defined as δ(T ) :=
max{δ(v) : v ∈ V }.

Theorem 4.1. Assume that all parent vertices VP have at least two children.
Then the parameters λi > 0 and θ ≥ 0 are identifiable.

Proof. We prove the result in case δ(T ) ≥ 2. For δ(T ) = 1, the proof is similar
but much easier.

Let γ > 0, γ′ > 0, θ ≥ 0, θ′ ≥ 0 be two possible parameter values. Assume
that νγ,θ({y}) = νγ′,θ′({y}) for all vectors y. We must show that the condition of
containment on indeterminate differences implies that γ = γ′, θ = θ′.

Consider the expressions (3.2) for the law νγ,θ on the observed vector y. By
setting y = 0 and observing that only x = 0 hits 0 under A and h(0) = 1, it follows
that wγ,θ = wγ′,θ′ . Therefore it follows that for all y ∈ Zd+,

∑

Ax=y

h(x) γxθ[|x|−1]+ =
∑

Ax=y

h(x) γ′xθ′[|x|−1]+ .

Given v ∈ R, define yv to be the vector in ZR+ with “1” in entry for v ∈ R, and
“0” elsewhere. For v ∈ V − R, define yv =

∑
w∈d(v)∩R yw. Note that if v ∈ R, then

∑
Ax=yv

h(x)γxθ[|x|−1]+ = γv and
∑
Ax=yv

h(x)γxθ′[|x|−1]+ = γ′v, and so γv = γ′v.
We now demonstrate that θ = θ′. Let v1, v2 be receiver nodes that are not siblings.

We know such a pair exists since δ(T ) ≥ 2, and we have assumed that every parent
vertex has at least two children. In this case,

∑
Ax=yv1+yv2

h(x)γxθ[|x|−1]+ = γv1γv2θ

and
∑
Ax=yv1+yv2

h(x)γxθ′[|x|−1]+ = γ′v1γ
′
v2θ
′. Since v1, v2 ∈ R, we have γv1 = γ′v1

and γv2 = γ′v2 , and so θ = θ′.
We now prove that γv = γ′v by induction on the height of the vertex v ∈ V0. We

have already shown that if δ(v) = 0 (that is, if v ∈ R), then γv = γ′v. Now suppose
that γv = γ′v for all v such that δ(v) < n, and let v′ ∈ V0 with δ(v′) = n. Since θ = θ′,
we have

∑

Ax=yv′

h(x) γx =
∑

Ax=yv′

h(x) γ′x.

Note that
∑
Ax=yv′ h(x) γ

x consists of a sum of the term γv′ together with terms

of the form γx, where x contains components that correspond to descendants of v′.
Similarly,

∑
Ax=yv′ h(x) γ

′x consists of a sum of the term γ′v′ together with terms

of the form γ′x, where x contains components that correspond to descendants of v′.
By the induction hypothesis, whenever x consists of components that correspond to
descendants of v′, γx = γ′x. Thus, γv′ = γ′v′ .

5. Estimation and inference. In this section, we consider numerical meth-
ods for finding estimates of the unknown parameter values. In particular, we seek
maximum likelihood estimates and approximations that are based on a relaxation ap-
proach. With the “incomplete” data yi = Axi as a many-to-one function of outcomes
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xi, it seems that the EM-algorithm (see Dempster, Laird, and Rubin [4]) is appropri-
ate. However, it is quite complicated and cumbersome for the interaction model, and
here we pursue more direct ways to maximize the likelihood function.

Let the observations for an i.i.d. sample be y1 = Ax1, . . . ,yn = Axn. Observe
that the relationship between the Bernoulli model µλ and the interaction model νλ,θ
implies the following formula:

νγ,θ({y}) = µλ(θγ)({y})
(
θI0(y) + I
=0(y)

θ − 1 + zλ(θγ)

)
zλ(θγ),

where θγ := (θγ1, . . . , θγc).
Let N0 be the number of times the vector 0 appears in the sample. The objective

function for maximum likelihood estimation is the log-likelihood function l in (γ, θ)
given by

l(γ, θ) =
1

n

n∑

i=1

log νγ,θ({yi})

=
1

n

n∑

i=1

log(µλ(θγ)({yi})) + N0

n
log(θ) + log

(
zλ(θγ)

θ − 1 + zλ(θγ)

)
.

(5.1)

It follows that l(γ, θ) = l0(θγ, θ), where l0 is defined by

l0(γ
′, θ) =

1

n

n∑

i=1

logµλ(γ′)({yi}) + N0

n
log(θ) + log

(
zλ(γ′)

θ − 1 + zλ(γ′)

)
.(5.2)

The objective function l0 (5.2) can be simplified for more efficient numerical optimiza-
tion. For each y ∈ ZR+ , let V y ⊂ V0 be the collection of edge labels that are closest
to the root whose failure could lead to observation y. For example, in the binary tree
in Figure 1, V (1,1,1,1) = {1, 2}, V (1,1,0,1) = {1, 6}. Define polynomials qv, v ∈ V0 in
variables sv, v ∈ V0 recursively by

qr := sr, r ∈ R,
qv := sv +

∏

w∈f−1(v)

qw.

By the independence in the Bernoulli model,

µλ(γ)({y}) =
∑

Ax=y

h(x)
γx

zλ(γ)
=

1

zλ(γ)

∏

v∈V y

qv(γ),

which leads to the formula for the normalizing constant zλ(γ) in terms of the variables
qv:

zλ(γ) =
∑

y∈{0,1}R

∏

v∈V y

qv(γ).

Let Nv, v ∈ V0, be the number of observations in the sample y1, . . . ,yn such that
the corresponding collections V yi include v:

Nv := #{i : 1 ≤ i ≤ n, v ∈ V yi}.
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Now we can represent the distribution µλ in a simplified form:

n∏

i=1

µλ(γ)({yi}) = 1

znλ(γ)

n∏

i=1

∏

v∈V yi

qv(γ)

=
1

znλ(γ)

∏

v∈V0

∏

i:v∈V yi

qv(γ)

=
1

znλ(γ)

∏

v∈V0

qv(γ)
Nv

.

This leads to a simpler form of the objective function l0:

l0(γ, θ) =
1

n

∑

v∈V0

Nv log qv(γ) +
N0

n
log(θ)− log(θ − 1 + zλ(γ)).(5.3)

The procedure to maximize l over (γ, θ) is to maximize l0 over γ′, θ and transform
back:

(γ̂′, θ̂) := arg maxγ>0,θ≥0 l0(γ
′, θ),

(γ̂, θ̂) := (γ̂′/θ̂, θ̂).
(5.4)

Observe that l0 as it is written in (5.2) can be maximized approximately over
γ′ > 0, θ > 0 by extending the methods for the Bernoulli model in what is called a
“relaxation” approach. If γ̂′B maximizes

∑n
i=1 logµλ(γ′)({yi}) (in other words, it is

the maximum likelihood estimate for the Bernoulli model), then let θ̂ maximize the
second part of the objective function, fixing γ′B :

θ̂ := arg maxθ>0

N0

n
log(θ) + log

(
zλ(γ′

B
)

θ − 1 + zλ(γ′
B

)

)
.

It is a simple calculus exercise to see that θ̂ satisfies the equation

θ̂

θ̂ + zλ(γ′
B

) − 1
=
N0

n
,

which can be solved explicitly for θ̂ whenever N0/n ∈ (0, 1). Then the combination

γ̂′B := arg maxγ′>0

n∑

i=1

logµλ(γ′)({yi}),

θ̂rel =
zλ(γ̂′

B
) − 1

(n/N0)− 1
,

γ̂rel :=
γ̂′B
θ̂

(5.5)

gives an estimator (γ̂rel, θ̂rel) for (γ, θ) that is approximately the maximizer of l when
θ is near 1, and it is computationally faster than finding the exact maximum likelihood
estimates (γ̂, θ̂).

The approximate procedure (5.5) can be viewed as one step in a relaxation method
that starts with θ0 = 1 and alternates between maximizing over γ′ and maximizing
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over θ. Observe that θ̂ = 1 exactly when N0/n = 1/zλ(γ̂′), in other words when the
observed fraction of 0 vectors is the probability of the 0 vector under the Bernoulli
model with parameter γ̂′. If the proportion of 0’s is higher, then θ̂ > 1. In fact, the
proportion of 0’s under the interaction model with parameters (γ, θ) is higher than
the proportion under the Bernoulli model with parameters θγ when θ > 1:

1

zλ(θγ)
<

θ

θ − 1 + zλ(θγ)
=

1

wγ,θ
.

We now describe further algebraic features of the quantities in (5.3). With inde-
terminates qc > qc−1 > · · · > q1 for a ring R[qc, . . . , q1] ordered so that the variables
indexed by a node’s children are greater than the one for the node itself, quantities
above can be described precisely in algebraic terms. Let G be the Gröbner basis in
R[qc, . . . , q1] given by G = {∏w∈f−1(v) qw −qv, v ∈ V0−R}. Then V y is the collection

of indeterminates present in the monomial nf(qy, G), where nf denotes the normal
form with respect to plex order of the monomial qy :=

∏
v∈R q

yv
v . We will use the

simpler notation qy for
∏
v∈R q

yv
v . Define the polynomial Z(q1, . . . , qc) by

Z(q) :=
∑

y∈{0,1}R

∏

v∈V y

qv.

Then it can be shown that

zλ(γ) = Z(q(γ)),

Z(q) = nf

(
∏

v∈R
1 + qv, G

)
=

∑

y∈{0,1}R
nf(qy, G).

An interior stationary point for l0(γ, θ) can be found as a positive solution to a
system of polynomial equations in the variables qv, θ by the chain rule for derivatives.
Using the definition above for Z(q) in terms of qv, v ∈ V0, consider l0 in the variables
q1, . . . , qc:

l0(q, θ) =
1

n

∑

v∈V0

Nv log qv +
N0

n
log(θ)− log(θ − 1 + Z(q)).(5.6)

Setting ∇l0 = 0 leads to c+ 1 polynomial equations:

(
Nv

n−N0

)
(Z(q̂)− 1) = q̂v

∂Z(q̂)

∂qv
=

∑

y:v∈V y

∏

w∈V y

q̂w, v ∈ V0,

(
N0

n−N0

)
(Z(q̂)− 1) = θ̂,

(5.7)

for which a solution q̂v (in the range of (q1(γ), . . . , qc(γ)) for positive γ > 0 and

positive in θ̂) is sought. This can then be transformed back to positive γ̂′ and used
in (5.4). A search for monomials in the right side can be avoided. In fact,

∑

y:v∈V y

∏

w∈V y

qw = Z(q)− nf(Z(q), {qv}).

Thus the polynomial system (5.7) can be rewritten as follows.
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Proposition 5.1. Suppose that γ̂, θ̂ are strictly positive, and maximize l0(γ, θ)
over positive γ ∈ Rc and positive θ ∈ R. Then q(γ) = (qv(γ))v∈V0 satisfies the
polynomial system of c+ 1 equations:

(
Nv

n−N0

)
(Z(q̂)− 1) = Z(q̂)− nf(Z(q̂), {qv}),

θ̂ =

(
N0

n−N0

)
(Z(q̂)− 1).

(5.8)

Proof. The variables q and γ are in one-to-one correspondence. The condition
that ∇l0(q, θ) = 0 holds at an interior maximum q̂ (= (q1(γ̂), . . . , qc(γ̂) ) ), θ̂ leads to
the system above in the variables q.

Observe that the vector (Nv, v ∈ V0) is a multidegree of a monomial:

(Nv, v ∈ V0) = multideg

n∏

i=1

nf(qyi , G).

This representation implies the following algebraic formula:

n∏

i=1

µλ(γ)({yi}) = 1

znλ(γ)

n∏

i=1

∏

v∈V yi

qv(γ)

=
1

znλ(γ)

∏

v∈V0

qv(γ)
Nv

=
1

znλ(γ)

n∏

i=1

nf(qyi , G)(γ).

The main reason one may be interested in the approximate method (5.5) is be-
cause the approximate estimators are relatively easy to compute. Most of the work
is in fitting a Bernoulli model (finding γ′B). Just as a stationary point for (5.6)
satisfied a polynomial system (5.7), a stationary point γ′B for the Bernoulli part of
(5.5)

∑n
i=1 log(µλ({yi})) =

∑
v N

v log(qv) − Z(q) in the variables q1, . . . , qc satisfies
a polynomial system

Nv

n
Z(q̂) = q̂v

∂Z(q̂)

∂qv
=

∑

y:v∈V y

∏

w∈V y

q̂w = Z(q̂)− nf(Z(q̂), {qv}).

There is also the recursive numerical method of Cáceres et al. [1].
Example 5.1. Consider the simplest example of a tree with root node 0 and two

child nodes 1, 2, with data y1 = (0, 0), y2 = (0, 1), y3 = (1, 0), y4 = (1, 1). There
are three parameters: γ1, γ2, θ.

To use the approximate method (5.5), first fit the Bernoulli model with parameters

γ′B . The optimal values are γ̂′B = (1, 1). Then the value of θ̂rel becomes (4−1)/(4/1−
1) = 1. Finally, γ̂rel is found to be the correct maximizer (1, 1).

For the polynomial system (5.8), N1 = 2, N2 = 2, N0 = 1, and the polynomial
system becomes

2

3
(q1q2 + q1 + q2) = q1q2 + q1,

2

3
(q1q2 + q1 + q2) = q1q2 + q2,

1

3
(q1q2 + q1 + q2) = θ,
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which can be solved for q̂1 = q̂2 = θ̂ = 1. This transforms to the solution γ̂′1 = 1, γ̂′2 =

1, θ̂ = 1, which by (5.4) leads to the final estimates γ̂1 = 1, γ̂2 = 1, θ̂ = 1.
Example 5.2. Consider the binary tree in Figure 1 with γi = 1, θ = 2. Then

λ(γ) = (1/4, 1/4, 1, 1, 1, 1), λ(θγ) = (2/9, 2/9, 2, 2, 2, 2), wγ,θ = 61. To find an interior
stationary point for the function l0(q, θ), we solve the following system (5.8) for
positive qv, θ:

N1

n−N0
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2)− 1) = q1(1 + q5 + q6 + q2),

N2

n−N0
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2)− 1) = q2(1 + q3 + q4 + q1),

N3

n−N0
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2)− 1) = q3(1 + q5 + q6 + q2),

N4

n−N0
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2)− 1) = q4(1 + q5 + q6 + q2),

N5

n−N0
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2)− 1) = q5(1 + q3 + q4 + q1),

N6

n−N0
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2)− 1) = q6(1 + q3 + q4 + q1),

N0

n−N0
((1 + q3 + q4 + q1)(1 + q5 + q6 + q2)− 1) = θ.

The solution must be transformed to γ̂′ and then again transformed to γ̂ using (5.4).

6. Simulation. Simulating from the interaction model is useful for several ap-
plications. First, it can be used for bootstrap variance estimates of the parameter
estimates. That is, after finding particular estimates γ̂, θ̂, one can simulate the pro-
cess with these parameters, recomputing estimates each time for both γ and θ. Then
sample variances can be used to understand the variability. A second application is
to assess the bias of the estimates.

Whereas the Bernoulli model is easy to simulate, simulation of the full interaction
model requires some extensions. A Metropolis or Metropolis–Hastings algorithm (see
Hastings [11] or Fishman [9]) is possible but complicated compared to importance
sampling.

To find the expectation and the mean square error for estimators of γ, θ on sample
size n, it is more efficient to simulate from the distribution µλ(γ) with the Bernoulli
model and reweight the relevant random variables with the ratio of the distributions.
This is “importance sampling.” It is ideal to find bias and mean square error for
estimates in the interaction model, because µλ(γ) is close the νγ,θ, and yet it is very
easy to simulate from the Bernoulli distribution µλ(γ). The method can be easily
justified. If Xk,1, Xk,2, Xk,3, . . . , Xk,n, k = 1, 2, 3 . . . , are random samples of size n
from the distribution µλ(θγ)(x), let γ̂

k
1 be the value of the estimator for γ1 on the

sample k (whose distribution will depend on n). Then as m→∞,

1

m

m∑

k=1

γ̂k1

n∏

i=1

νγ,θ(Xk,i)

µλ(θγ)(Xk,i)
→ Eµλ(θγ)

γ̂1

n∏

k=1

νγ,θ(Xk)

µλ(θγ)(Xk)
= Eνγ,θ γ̂1,

1

m

m∑

k=1

(
γ̂k1 − γ1

)2 n∏

i=1

νγ,θ(Xk,i)

µλ(θγ)(Xk,i)
= Eνγ,θ

(
γ̂1 − γ1

)2
.

(6.1)
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Fig. 2.

Example 6.1. With n = 400 and γ = (1, 1, 1, 1, 1, 1), θ = 1.2 on the binary tree
in Figure 1, 1000 outcomes of both the maximum likelihood estimator γ̂1 and the
approximate relaxation estimator γ̂1,rel gave sample means of 1.034 and 1.077, with
empirical mean square errors of .226 and .380. The corresponding histograms are
shown in Figure 2. The greater value of θ results in more variability in the estimates
for γ.

Problems for further research include finding efficient methods to numerically
resolve the polynomial systems (5.7) and (5.8), such as characterizing a Gröbner basis
in plex order or another elimination order. Also, variance estimates or bounds on
the variance more practical than the asymptotic quantities from Fisher information
could be useful for experimental design. Finally, extending the interaction model
described here to one with more general interaction, including shorter range, could
be of practical interest.

Acknowledgment. We used R from lib.stat.cmu.edu for simulations.
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